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Chapter 1

Introduction

Digital systems are increasingly used in applications where they interact with

physical processes. These systems often have to meet real-time constraints: they

have to react to events within a prescribed time interval, to produce output

before a certain delay has elapsed, etc. In order to reason about such real-

time applications, quantitative as well as qualitative time requirements have to

be considered. For this purpose, various real-time temporal logics have been

proposed.

For example, several real-time extensions of linear propositional temporal

logic (PTL) are reviewed and compared in [4]. Although these logics are sub-

stantially more complex than ordinary PTL, some of them conserve interesting

properties such as decidability [4]. Similarly, real-time extensions of the branch-

ing time logic CTL have been introduced [10, 19] for which model checking is

decidable [3, 17].

In the above logics, formulas are interpreted over states which represent

instantaneous situations; time points are the basic entities. Other formalisms

adopt a di�erent semantics and interpret formulas over intervals of time [20, 12,

27]. Among such interval modal logics, ITL [20] and more speci�cally the dura-

tion calculus [8, 24] have been proposed for reasoning about real-time systems.

These two formalisms are �rst order modal logics which incorporate a binary

modal operator (denoted by `;') interpreted as the operation of `chopping' an

interval into two parts: a formula (f ; g) is satis�ed by an interval i if i can be

split into two sub-intervals j and j

0

as follows

j’j

i

with j satisfying f and j

0

satisfying g.

Other systems of temporal logics also incorporate the operator chop. It

is known that the addition of chop and of its reexive and transitive closure

to PTL yields a logic which has the same expressive power as full regular ex-

pressions [25]. A decision procedure and a complete proof system for such a

propositional logic are given in [25]. Other complete deductive systems for

propositional modal logics which include the operator chop can also be found

in [23] and [27].
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In the �rst order case, di�erent deductive systems exist for both ITL [21]

and the duration calculus [14, 26] but little is known about their power. Close

links between the two logics have been established in [14]: a complete proof

system for a dense-timed ITL would yield a complete deductive system for the

duration calculus. Except for restricted fragments, the duration calculus (and

ITL) are not decidable [7].

In this document, we examine completeness problems for �rst order ITL in

a variant similar to the one introduced in [14] which contains no other modal

operator than chop

1

. We consider di�erent classes of models of the logic and

we give a complete and sound proof system for each class.

� First, we give possible world semantics to ITL which generalizes the tradi-

tional interval-based semantics. We de�ne a �rst proof system S adequate

for a class of possible worlds models. Completeness is shown by using clas-

sic techniques, similar to those presented in [11] and [1]. The main interest

of this �rst result is to provide a general model construction which can

be applied to any consistent extension of S.

� Then, we concentrate on interval models similar to the traditional ones.

These are constructed from a notion of linear temporal domain together

with a measure function which assigns a length to intervals. In this con-

text, real-time properties can be expressed as relations on the length or

duration of intervals. We give a deductive system for reasoning about such

interval models and we show that this system is complete. The proof of

completeness uses the general model construction developed for S and a

translation from possible worlds to interval models.

In the remainder of this document, chapter 2 presents the syntax and pos-

sible world semantics of �rst order interval temporal logic. Chapter 3 describes

the deductive system S and the associated class of models, and exposes the �rst

completeness result. Chapter 4 is dedicated to interval models. A proof system

S

0

is de�ned and S

0

is shown to be sound and complete for the class of interval

models. In chapter 5 a few applications of the completeness results are exposed.

Several extensions of S

0

are considered which make various assumptions on time

or the properties of models and the problem of expressing �nite variability in

ITL is examined.

1

Other modalities such as 2 (in all sub-intervals) or � (in some sub-interval) can still be

easily de�ned in terms of chop (see [14] for example).
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First order ITL

2.1 Syntax

2.1.1 Language

A language for �rst order ITL with equality (or ITL-language) consists of a

denumerable collection of function and predicate symbols. With each symbol

is associated an non-negative integer as its arity. Predicate symbols of arity 0

are propositions and function symbols of arity 0 are individual constants.

In addition, we distinguish between exible and rigid symbols (we use the

terminology of [1, 11]). Rigid symbols are intended to represent �xed, global

entities. Their interpretation will be the same in all the intervals or worlds of a

model. Conversely, entities which may vary in di�erent intervals or worlds are

represented by exible symbols.

Such a distinction between two classes of symbols is common in the context

of �rst order temporal logics [1, 9]. It also appears in the duration calculus and

ITL although it is often restricted to propositions and individual constants only;

all the functions and predicates of non-null arity are considered rigid [21, 14, 8].

In order to be as general as possible, we do not make such a restriction, function

and predicate symbols of any arity can be exible.

An ITL-language speci�es a set of non-logical symbols fromwhich terms and

formulas are constructed. The vocabulary also contains an in�nite, denumerable

set of variables V = fx

1

; x

2

; : : :g, the existential quanti�er 9, the connectives

^ and :, and the symbol `=' and a single binary modal connectives `;'. The

equality symbol is considered as a supplementary rigid binary predicate.

2.1.2 Terms

For a �xed language L, the set of terms is de�ned { as in ordinary �rst order

logic { as the smallest set which satis�es the following rule:

� any variable x

i

is a term,

� any constant a is a term,
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� if t

1

; : : : ; t

n

are n terms (n > 0) and � a function symbol of arity n then

�(t

1

; : : : ; t

n

) is a term.

We say that a term t is exible if it contains some exible constant or

function symbol of L. Conversely, a term in which no exible symbol occurs is

said to be rigid. In particular all the variables are rigid.

2.1.3 Formulas

Atomic formulas are also de�ned as in �rst order logic with equality. An atomic

formula is either

� a propositional symbol p,

� an expression �(t

1

; : : : ; t

n

) where � is a predicate symbol of arity n > 0

and t

1

; : : : ; t

n

are n terms, or

� an identity (t

1

= t

2

) where t

1

and t

2

are two terms.

The set of formulas is the smallest set which satis�es the following rules:

� any atomic formula is a formula,

� if f is a formula, then (:f) is a formula,

� if f

1

and f

2

are formulas then (f

1

^ f

2

) and (f

1

; f

2

) are formulas,

� if f is a formula and x a variable then (9x)f is a formula.

The other standard logic connectives and the universal quanti�er are introduced

as abbreviations. If f

1

and f

2

are two formulas,

� (f

1

) f

2

) stands for (:(f

1

^ (:f

2

))),

� (f

1

_ f

2

) for ((:f

1

)) f

2

), and

� (f

1

, f

2

) for ((f

1

) f

2

) ^ (f

2

) f

1

)).

If x is a variable and f a formula then

� (8x)f is an abbreviation for (:(9x)(:f)).

Free and bound variables, open and closed formulas (sentences) are de�ned

as in �rst order logic (see [13] for example). As for terms, we say that a formula

is exible or rigid according as whether it contains a exible symbol or not. If a

formula f does not contain the chop operator `;' then f is said to be chop-free.

In order to simplify the notations, we adopt the usual rules for suppressing

excessive parentheses of logical expressions but we always keep parentheses

around chop formulas. The propositional connectives have all a higher priority

than `;'. For convenience, we also use in�x notations for binary functional or

predicate symbols such as + or 6.
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2.2 Semantics

2.2.1 Models

In most of the interval logics encountered in computer science [12, 19], intervals

are constructed from time points which are the primitive objects. Traditional

models for ITL and the duration calculus are based on such an approach [14, 21].

We adopt a di�erent point of view: as in [27], we de�ne a general possible worlds

semantics for ITL and we consider the traditional ITL models as a special cases

1

.

Possible worlds models are similar the Kripke structures of classic modal logic

[18]. This makes possible the application of techniques developed for showing

completeness of systems of modal logic with quanti�ers [11] to ITL.

De�nition 2.1 A model M for an ITL-language L is a quadruple (W;R;D; I)

where

� W is a non-empty set of possible worlds and R a ternary accessibility

relation on W ,

� D is a non-empty set,

� I is a function which assigns to each symbol s of L and each world w in

W an interpretation I(s; w) as follows:

{ if s is an n-ary function symbol, I(s; w) is a function from D

n

to D,

{ if s is an n-ary predicate symbol, I(s; w) is an n-ary relation on D,

and such that the interpretation of rigid symbols is the same in all worlds.

The only di�erence with models of classic modal logic is that the accessibility

relation is ternary. The pair (W;R) is called the frame and D the domain of

the model.

We consider n-ary relations as functions from D

n

to f0; 1g. Functions from

D

0

to any non-empty set E are identi�ed with elements of E. Hence, for an

individual constant a, I(a; w) is an element of D and similarly for a proposition

p, I(p; w) is either 0 or 1.

2.2.2 Interpretation of terms

Given a model M = (W;R;D; I), a meaning is associated in each world of W

to every term of L. This meaning is an element of D and depends on particular

values assigned to variables. We call an M-valuation (or simply a valuation

when the model considered is clear form the context) any mapping v which

assigns an element of D to every variable. Given a variable x, two valuations v

and v

0

are said to be x-equivalent if they agree on every variable except possibly

x: for any variable y distinct from x, v(y) = v

0

(y).

We denote by I

v

w

(t) the meaning of a term t in a world w under a valuation

v. The function I

v

w

is de�ned by induction on terms as follows:

1

These will be introduced in chapter 3.
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� for a constant symbol a, I

v

w

(a) = I(a; w),

� for a variable x, I

v

w

(x) = v(x),

� for a term t of the form �(t

1

; : : : ; t

n

),

I

v

w

(t) = I(�;w)(I

v

w

(t

1

); : : : ; I

v

w

(t

n

)):

It is clear that, for any rigid term t, I

v

w

(t) is the same in all the worlds w of the

model.

2.2.3 Satisfaction, validity

For a formula f , we denote by M; w; v j= f that f is satis�ed in the world w

of M under an M-valuation v. When there is no ambiguity about the model,

we simply write w; v j= f .

Satisfaction in a modelM = (W;R;D; I) is de�ned by the following rules:

� w; v j= p i� I(p; w) = 1;

� w; v j= �(t

1

; : : : ; t

n

) i� I(�; w)(I

v

w

(t

1

); : : : ; I

v

w

(t

n

)) = 1;

� w; v j= t

1

= t

2

i� I

v

w

(t

1

) = I

v

w

(t

2

):

� w; v j= f

1

^ f

2

i� w; v j= f

1

and w; v j= f

2

;

� w; v j= :f i� w; v 6j= f;

� w; v j= (9x)f i� there is a valuation v

0

, x-equivalent to v, and such

that w; v

0

j= f;

� w; v j= (f

1

; f

2

) i� there are two worlds w

1

and w

2

of W such that

w

1

; v j= f

1

; w

2

; v j= f

2

; and R(w

2

; w

2

; w):

Here again, it follows from the de�nition that, for a �xed valuation v, a rigid

formula is either true in all the worlds or false in all the worlds ofM.

A model M satis�es a formula f if there is a world w of M and an M-

valuation v such thatM; w; v j= f . This notion extends immediately to classes

of models: f is satis�able in a class C of models if it is satis�ed in some model

of C.

Given a set of formulas or sentences �, we say that M is a model of or

satis�es � if there is a world w and a valuation v such that for every formula f

of �, M; w; v j= f .

A formula f is valid in M if for any world w ofM and anyM-valuation v,

M; w; v j= f . f is valid in a class of models C if it is valid in all the members

of the class, and f is valid if it is valid in the class of all models.

For any formula f , possibly containing free variables, it is always possible

to �nd a sentence whose satis�ability or validity is equivalent to those of f : Let

x

1

; : : : ; x

n

be the free variables of f then
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� f is satis�able if and only if the existential closure (9x

1

) : : :(9x

n

)f is

satis�able,

� f is valid if and only if the universal closure (8x

1

) : : :(8x

n

)f is valid.

2.2.4 Examples of valid formulas

ITL can be considered as an extension of conventional �rst order logic with

equality. The semantics ensures that any chop-free formula which is valid in

�rst order logic is also valid in ITL. For example, if p is a unary predicate and

a a constant, the following formulas are all valid:

p(a)) (9x)p(x); (8x)p(x)) p(a); and x = a ^ p(a)) p(x):

The validity of these formulas is independent of the nature of the two symbols

p and a; they can be exible or rigid.

If p(x) is replaced by an arbitrary chop-free formula f(x) where x is free in

f(x) then the resulting formulas are still valid. This is no longer true in general

if f(x) contains the chop connective. On the other hand it is easy to check that

any ITL instance of a propositional tautology, such as

(p(x); q(x; a))^ q(y; x)) (p(x); q(x; a)) or (p(x); r)_ :(p(x); r)

is valid.

An important property of ITL is that chop distributes over disjunctions.

For arbitrary formulas f , g, h, the two following equivalences are valid

(f _ g; h), (f ; h) _ (g; h)

(f ; g _ h), (f ; g)_ (f ; h):

Due to the restriction on the interpretation of rigid symbols, the satisfaction

of rigid formulas is the same in all the worlds of a model. It follows that,

whatever the formula g, if f is a rigid formula then both (f ; g) ) f and

(g; f)) f are valid.

Finally, existential quanti�ers and chop can commute under certain con-

ditions. We have chosen a �xed domain semantics: there is only one global

domain D in a model and not a domain D

w

local to every world w as is some-

times done in modal logic [11, 18]. As a consequence, and because a valuation

is �xed for all worlds, a variant of Barcan formula [18] holds in ITL. Formulas

of the form

((9x)f(x); g)) (9x)(f(x); g) and (g; (9x)f(x))) (9x)(g; f(x))

are valid, provided x is not free in g.

The converse implications are also valid, as well as, more generally, the

formula

(9x)(f(x); g(x))) ((9x)f(x); (9x)g(x)):





Chapter 3

A �rst axiomatic system

In this chapter we de�ne a �rst deductive system S for ITL. This system will

be the most general presented in this document. All the other proof systems

will be extensions of S. The system S is intended to allow reasoning about a

general class C of models which contains all the traditional interval models. We

will show that S is adequate (i.e. sound and complete) for this purpose.

We �rst give the de�nition of C and of the proof system S, then we present

several examples of derivations of theorems in S, �nally we prove that S is

complete.

3.1 The system S

3.1.1 Models for S

In a logic such as ITL, reasoning about qualitative properties of real-time sys-

tems is based on a prede�ned measure or length of time intervals. This requires

the presence in the language of some symbolic representation of the length. In

the duration calculus, a particular symbol ` is provided for this purpose [14].

We adopt the same convention: from now on, all the ITL-languages considered

contain at least the exible individual constant `.

Of course, a function assigning a length to di�erent intervals is not arbitrary.

For example, it might seems reasonable to assume that the length of an interval

i is larger than the length of any of its sub-intervals. We will formalize some of

these assumptions in chapter 4 but �rst we consider the following property.

Assume an interval i can be split into a pre�x interval j and a su�x interval

j

0

as follows

j’j

i

then the pair (j; j

0

) is uniquely determined by either the length of j or the

length of j

0

. If i can be split into another pair of intervals (k; k

0

) distinct from

(j; j

0

) then the length of k must be di�erent from the length of j and the length

of k

0

from the length of j

0

.
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Although we have no precise de�nition of interval models yet, this property

can be expressed formally for possible worlds models. The models satisfying

this property are called S-models and the class of S-models is denoted by C.

De�nition 3.1 A model M = (W;R;D; I) for a language L (which includes

`) is an S-model if for any world w, w

1

, w

2

, w

0

1

, and w

0

2

of W such that

R(w

1

; w

2

; w) and R(w

0

1

; w

0

2

; w),

� if I(`; w

1

) = I(`; w

0

1

) then w

2

= w

0

2

and

� if I(`; w

2

) = I(`; w

0

2

) then w

1

= w

0

1

.

The de�nition implies a single decomposition property: given three worlds

w, w

1

, w

2

such that R(w

1

; w

2

; w), there is no world w

0

1

distinct from w

1

such

that R(w

0

1

; w

2

; w) and, symmetrically, there is no w

0

2

other than w

2

such that

R(w

1

; w

0

2

; w).

3.1.2 Proof system

We call S the deductive system which incorporates the following modal axioms:

A1:

(f ; g) ^ :(f ; h)) (f ; g ^ :h)

(f ; g) ^ :(h; g)) (f ^ :h; g)

R:

(f ; g)) f if f is a rigid formula

(f ; g)) g if g is a rigid formula

B:

((9x)f ; g)) (9x)(f ; g) if x is not free in g

(f ; (9x)g)) (9x)(f ; g) if x is not free in f

L1:

(` = x; f)) :(` = x;:f)

(f ; ` = x)) :(:f ; ` = x)

and the following inference rules

� modus ponens (MP):

f f ) g

g

,

� generalization (G):

f

(8x)f

,

� necessitation (N):

f

:(:f ; g)

and

f

:(g;:f)

,

� monotony (Mono):

f ) g

(f ; h)) (g; h)

and

f ) g

(h; f)) (h; g)

.

In addition, S contains �rst order and propositional axioms and axioms

of identity for L. The �rst order axioms can be chosen as in any axiomatic
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system for �rst order logic, except that some precaution must be taken in the

instantiation of universally quanti�ed formulas. For example, we can choose

the two following quanti�cation axioms:

Q1: (8x)f(x)) f(t)

if t is free for x in f(x) and t is rigid

or t is free for x in f(x) and f(x) is chop-free,

Q2: (8x)(f _ g)) ((8x)f) _ g if x is not free in g.

The restrictions on Q1 prevent the substitution, in di�erent modal contexts, of

a (rigid) variable which represents a single object by a exible term which may

have di�erent interpretations in di�erent contexts.

As identity axioms, we can choose the axioms of reexivity, symmetry, and

transitivity of =, together with the following axioms for every functional symbol

� and every predicate symbol � (see [6, 13, 5]).

I1: x

1

= y

1

^ : : :^ x

n

= y

n

) �(x

1

; : : : ; x

n

) = �(y

1

; : : : ; y

n

)

I2: x

1

= y

x

^ : : :^ x

n

= y

n

) (�(x

1

; : : : ; x

n

), �(y

1

; : : : ; y

n

)).

where n is the arity of � or � and x

1

; : : : ; x

n

; and y

1

; : : : ; y

n

are arbitrary

variables.

3.1.3 Soundness

The three pairs of axioms A1, R, and B are valid in ITL so they are also valid in

C. By the remarks of section 2.2.4 and the restriction on Q1, all the �rst order

axioms are also valid. It is also easy to check that the de�nition of S-models

ensures that L1 is valid in C.

The four inference rules all preserve validity. Given a modelM, it is readily

veri�ed that any formula obtained by one of the rules MP, G, N, or Mono from

formula(s) which are valid in M is also valid in M.

It follows that the proof system is sound: any theorem of S is valid in C.

3.2 Examples of theorems

In order to illustrate the use of the proof system, we give examples of theorems

of S. Some of them have been proposed as possible axioms for the duration

calculus or ITL [25, 21, 14] and others will be useful in the sequel for establishing

completeness results.

3.2.1 Chop-Or

In section 2.2.4 we have stated that chop distributes over disjunctions. This

can be derived in S. For example we show that (f _ g; h), (f ; h) _ (g; h) is a

theorem.

First, we derive the theorem (f _ g; h)) (f ; h) _ (g; h):
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1 (f _ g; h)^ :(f ; h)) ((f _ g) ^ :f ; h) A1

2 (f _ g) ^ :f ) g Tauto

3 ((f _ g) ^ :f ; h)) (g; h) Mono, 2

4 (f _ g; h)^ :(f ; h)) (g; h) PC, 1, 3

5 (f _ g; h)) (f ; h) _ (g; h) PC, 4

The converse implication is also a theorem:

6 f ) f _ g Tauto

7 (f ; h)) (f _ g; h) Mono, 6

8 g ) f _ g Tauto

9 (g; h)) (f _ g; h) Mono, 8

10 (f ; h) _ (g; h)) (f _ g; h) PC, 7, 9.

Then, the equivalence follows by propositional calculus. In the proof, PC and

Tauto refer to elementary manipulations of predicate calculus: formula 2 is a

tautology instance, formula 4 can be derived from 1 and 3 by MP and propo-

sition calculus, etc.

Of course, the mirror of formula 5 is also a theorem. We call T1 any instance

of the two following theorems:

T1:

(f _ g; h)) (f ; h) _ (g; h)

(f ; g _ h)) (f ; g)_ (f ; h).

In many existing proof systems, T1 is used as a fundamental axiom instead

of A1 [25, 21, 26]. It is equivalent to replace A1 by T1 in S since A1 can be

deduced from T1:

1 f ) (f ^ :g) _ g Tauto

2 (f ; h)) ((f ^ :g) _ g; h) Mono, 1

3 ((f ^ :g) _ g; h)) (f ^ :g; h) _ (g; h) T1

4 (f ; h)) (f ^ :g; h) _ (g; h) PC, 2, 3

5 (f ; h) ^ :(g; h)) (f ^ :g; h) PC, 4.

3.2.2 Quanti�cation

A large number of proofs of �rst order logic can be carried out as well in S. In

particular, variants of the quanti�cation axioms Q1 and Q2 are useful theorems.

If t is free for x in f(x), and t is rigid or f(x) chop-free, then the formula Q3

below is a theorem.

Q3: f(t)) (9x)f(x):

If x is not free in g, then the three following formulas are theorems.

Q4: (9x)(f ^ g)) (9x)f ^ g

Q5: (8x)(f ) g)) ((9x)f ) g)

Q6: (8x)(g ) f)) (g ) (8x)f).

From these can be derived the reverse of Barcan's formula:

T2: (9x)(f(x); g(x))) ((9x)f(x); (9x)g(x));
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for example, as follows,

1 f(x)) (9x)f(x) Q3

2 g(x)) (9x)g(x) Q3

3 (f(x); g(x))) ((9x)f(x); (9x)g(x)) Mono, 1,2

4 (8x)((f(x); g(x))) ((9x)f(x); (9x)g(x))) G, 3

5 (9x)(f(x); g(x))) ((9x)f(x); (9x)g(x)) Q5, 4, MP.

3.2.3 Chop-Neg

Several useful theorems involve combinations of negations and chop, with con-

ditions on length. A typical example is L1, from which follows immediately the

two theorems:

(` = x;:f)) :(` = x; f)

(:f ; ` = x)) :(f ; ` = x).

Another useful theorem is the following:

T3:

(` = x ^ f ; g)) :(` = x ^ :f ; h)

(f ; ` = x ^ g)) :(h; ` = x ^ :g)

where f , g, and h are arbitrary formulas.

These two formulas can be derived by introducing a variable y distinct from

x and not occurring in f nor g. For example, for the �rst half of T3:

1 g ) (` = y) _ :(` = y) Tauto

2 (` = x ^ f ; g)) (` = x ^ f ; (` = y) _ :(` = y)) Mono, 1

3 (` = x ^ f ; (` = y) _ :(` = y)))

(` = x ^ f ; ` = y) _ (` = x ^ f ;:(` = y)) T1

4 (` = x ^ f ; g)) (` = x ^ f ; ` = y)_

(` = x ^ f ;:(` = y)) PC, 2, 3

Both parts of the disjunction imply :(` = x ^ :f ; ` = y):

5 (` = x ^ f ; ` = y)) (f ; ` = y) PC, Mono

6 (f ; ` = y)) :(:f ; ` = y) L1

7 :(:f ; ` = y)) :(` = x ^ :f ; ` = y) PC, Mono

8 (` = x ^ f ; ` = y)) :(` = x ^ :f ; ` = y) PC, 5,6,7

9 (` = x ^ f ;:(` = y))) (` = x;:(` = y)) PC, Mono

10 (` = x;:(` = y))) :(` = x;::(` = y)) L1

11 :(` = x;::(` = y))) :(` = x ^ :f ; ` = y) PC, Mono

12 (` = x ^ f ;:(` = y))) :(` = x ^ :f ; ` = y) PC, 9,10,11

Then

13 (` = x ^ f ; g)) :(` = x ^ :f ; ` = y) PC, 4, 8, 12

14 (8y)((` = x ^ f ; g)) :(` = x ^ :f ; ` = y)) G, 13

15 (` = x ^ f ; g)) (8y):(` = x ^ :f ; ` = y) Q6, 14, MP

16 (` = x ^ f ; g)) :(9y)(` = x ^ :f ; ` = y) PC, 15.
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On the other hand,

17 h) (9y)(` = y) Ident, PC

18 (` = x ^ :f ; h)) (` = x ^ :f ; (9y)(` = y)) Mono, 17

19 (` = x^:f ; (9y)(` = y))) (9y)(` = x^:f ; ` = y) B

20 (` = x ^ :f ; h)) (9y)(` = x ^ :f ; ` = y) PC, 18, 19

and �nally:

21 (` = x ^ f ; g)) :(` = x ^ :f ; h) PC, 20, 16.

3.2.4 Chop-And

Chop does not distribute over conjunctions in general. However, various re-

stricted distributivity theorems can be derived for conjuncts of equal lengths.

The simplest one may be

T4:

(f ; ` = x) ^ (g; ` = x)) (f ^ g; ` = x)

(` = x; f) ^ (` = x; g)) (` = x; f ^ g).

A possible proof is given below.

1 (f ; ` = x)) :(:f ; ` = x) L1

2 (g; ` = x) ^ :(:f ; ` = x)) (g ^ ::f ; ` = x) A1

3 g ^ ::f ) f ^ g Tauto

4 (g ^ ::f ; ` = x)) (f ^ g; ` = x) Mono, 3

5 (f ; ` = x) ^ (g; ` = x)) (f ^ g; ` = x) PC, 1{4.

By similar derivations, the following theorems can also be obtained:

T5:

(f ; g ^ ` = x) ^ (h; ` = x)) (f ^ h; g ^ ` = x)

(f ^ ` = x; g)^ (` = x; h)) (f ^ ` = x; g ^ h)

T6:

(f ; g ^ ` = x) ^ (h; g ^ ` = x)) (f ^ h; g ^ ` = x)

(f ^ ` = x; g)^ (f ^ ` = x; h)) (f ^ ` = x; g ^ h)

T7: (` = x; f) ^ (g; `= y) ^ (` = x; ` = y)) (g ^ ` = x; f ^ ` = y).

For example, T5 can be proved as follows:

1 (f ; g ^ ` = x)) (f ; ` = x) Mono, PC

2 (f ; ` = x) ^ (h; ` = x)) (f ^ h; ` = x) T4

3 (f ; g ^ ` = x)) :(f ^ h;:g ^ ` = x) T3

4 (f ^ h; ` = x) ^ :(f ^ h;:g ^ ` = x))

(f ^ h; ` = x ^ :(:g ^ ` = x)) A1

5 (f ^ h; ` = x ^ :(:g ^ ` = x)))

(f ^ h; g ^ ` = x) Mono, PC

6 (f ; g ^ ` = x) ^ (h; ` = x)) (f ^ h; g ^ ` = x) PC, 1{5.

T6 and T7 can be easily derived from T4 and T5.

Finally, the most general distributivity property of chop over conjunctions

is given by the following theorem:
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T8:

(f ^ ` = x; g)^ (h ^ ` = x; k)) (f ^ h ^ ` = x; g ^ k)

(f ; g ^ ` = x) ^ (h; k ^ ` = x)) (f ^ h; g ^ k ^ ` = x).

This theorem can be derived as follows:

1 (h ^ ` = x; k)) (` = x; k) PC, Mono

2 (f ^ ` = x; g)^ (` = x; k)) (f ^ ` = x; g ^ k) T5

3 (h ^ ` = x; k)) :(:h ^ ` = x; g ^ k) T3

4 (f ^ ` = x; g ^ k) ^ :(:h ^ ` = x; g ^ k))

(f ^ h ^ ` = x; g ^ k) A1, PC, Mono

5 (f ^ ` = x; g)^ (h ^ ` = x; k)) (f ^ h ^ ` = x; g ^ k) PC, 1{4.

3.3 Completeness

In this section, we show that S is complete: any formula f valid in C is provable

in S. It is equivalent to show that any formula f such that :f is not a theorem

of S is satis�ed in a model of C. Our aim is to construct a model for any such

formula.

It is su�cient to give a construction in the case where f is a closed formula;

the general case will follow immediately. Also, instead of considering a single

sentence f , it is simpler to generalize the construction to consistent sets of

sentences, that is, roughly speaking, sets which do not contain contradictory

sentences.

The essential result is that, for any consistent set �

0

in a language L, we can

construct an S-modelM which satis�es �

0

. The construction uses classic tools

of �rst order and modal logic, namely maximal consistent sets and witnesses

[11, 1, 18, 13, 6].

3.3.1 Consistent sets

For a formula f of an arbitrary ITL-language L, `

S

f and 6`

S

f denote that f

is or is not a theorem of S, respectively.

Given an arbitrary ITL-language L, consistent and maximal consistent sets

of sentences are de�ned in a standard way (for example, see chapter 9 in [18]):

De�nition 3.2 Let � be a set of sentences of L,

� � is consistent (with respect to S) if there is no �nite subset ff

1

; : : : ; f

n

g

of � such that

`

S

:(f

1

^ : : :^ f

n

);

� � is maximal consistent if it is consistent and there is no consistent set

of sentences �

0

such that � � �

0

(strictly).

By propositional calculus, the following property is a straightforward conse-

quence of the de�nition.

Proposition 3.3 A consistent set of sentences � is maximal consistent if and

only if, for every sentence f of L exactly one of f and :f belongs to �.
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This implies that any maximal consistent set contains all the sentences which

are theorems of S. The following properties are also easy consequences of the

rules of propositional calculus.

Proposition 3.4 Let � be a maximal consistent set and f and g two sentences

of L then

� f ^ g 2 � i� both f 2 � and g 2 �,

� f _ g 2 � i� f 2 � or g 2 �,

� if f ) g 2 � and f 2 � then g 2 �.

In ITL, maximal consistent sets have supplementary properties involving

the chop operator:

Proposition 3.5 Let � be a maximal consistent set and f , g, h, and k be four

sentences of L.

� If (f ; g) 2 �, `

S

f ) h, and `

S

h) k then (h; k) 2 �.

� If (f ; g) 2 � then 6`

S

:f and 6`

S

:g.

Proof: The �rst part follows from the monotony rule: if both f ) h and g ) k

are theorems then, using Mono twice, `

S

(f ; g) ) (h; k); so (f ; g) ) (h; k)

belongs to �. If in addition (f ; g) 2 � then, by proposition 3.4, (h; k) 2 �.

For the second part, assume one of :f or :g is a theorem, for example

`

S

:f then by rule N, :(f ; g) is a theorem and if (f ; g) 2 �, � is inconsistent.

2

Finally, an essential property of consistent sets is given by Lidenbaum's

lemma:

Theorem 3.6 (Lidenbaum) For any consistent set � there is a maximal con-

sistent set �

?

such that � � �

?

.

Proof: See [13] for example. 2

3.3.2 Witnesses

In order to build a model for a consistent set �

0

, we add a new set of constants

to the language L. These constants will serve as witnesses (see chapter 2 in [6]).

More precisely, let B = fb

0

; b

1

; b

2

; : : :g be an in�nite, countable set of symbols

not occurring in the language L. We denote by L

+

the ITL-language obtained

by adding to L all the symbols of B as rigid individual constants. Hence, all

the function and predicate symbols of L are also present in L

+

with the same

arity, rigid symbols of L are rigid in L

+

, and exible symbols of L are exible

in L

+

.
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With the expanded language L

+

correspond new instances of the axioms of

S. In particular, since all the constants b

0

; b

1

; : : : are rigid, L

+

gives rise to new

instances of the rigidity axiom R. We denote by S

+

the extended proof system

and by `

S

+ provability in S

+

.

The model construction relies on the existence in L

+

of sets of sentences

which have the following property.

De�nition 3.7 A set � of sentences of L

+

is said to have witnesses in B if

for every sentence of � of the form (9x)f(x) where x is the only free variable

of f(x) there exists a constant b

i

of B such that f(b

i

) is also in �.

This is a slight variation on the de�nition of [6]. The concept of witnesses for

a set of sentences is also closely related to the notion of omega-complete sets

used in [11] or [1].

The following theorem states a fundamental property of consistent sets.

Theorem 3.8 If � is a consistent set of sentences of L, there is a set �

?

of

sentences of L

+

which satis�es the three following conditions:

� � � �

?

,

� �

?

is maximal consistent,

� �

?

has witnesses in B.

Proof: The set �

?

is obtained from � by the following standard construction

(for example see [11] or [18] for modal logic, or [6, 5] for �rst order logic).

Since the language L

+

contains countably many symbols, the set of sen-

tences of L

+

is countable. These sentences can then be enumerated in a se-

quence f

0

; f

1

; f

2

; : : :

We de�ne a sequence of sets of sentences �

0

;�

1

;�

2

; : : : where �

0

= � and

then �

i+1

is constructed from �

i

as follows.

1. If �

i

[ ff

i

g is not consistent then

�

i+1

= �

i

[ f:f

i

g;

2. If �

i

[ ff

i

g is consistent and f

i

is of the form (9x)g(x) then

�

i+1

= �

i

[ ff

i

; g(b

j

)g;

where b

j

is a constant of B not occurring in any sentence of �

i

.

3. If �

i

[ ff

i

g is consistent and f

i

is not of the above form then

�

i+1

= �

i

[ ff

i

g:
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In case 2, it is always possible to �nd an adequate constant b

j

since only a �nite

number of constants of B can occur in �

i

.

By induction, all the sets �

i

can be shown to be consistent. This is true

of �

0

= � by assumption. By propositional calculus if �

i

is consistent then

�

i

[ff

i

g and �

i

[f:f

i

g cannot be both inconsistent, so in case 1 and (trivially)

in case 3, �

i+1

is consistent. In the remaining case, �

i

[ ff

i

g = �

i

[ f(9x)g(x)g

is consistent. Assume �

i+1

is not, then there are sentences h

1

; : : : ; h

n

in �

i

such

that

`

S

+ :(h

1

^ : : :^ h

n

^ (9x)g(x) ^ g(b

j

)):

In a proof of this sentence, we can replace every occurrence of b

j

by a variable

y which is not already present, this yields a proof of the formula

:(h

1

^ : : :^ h

n

^ (9x)g(x)^ g(y)):

Then, by the generalization rule G,

`

S

+ (8y):(h

1

^ : : :^ h

n

^ (9x)g(x)^ g(y)):

The term x is rigid and free for y in the above formula, so by Q1 and MP,

`

S

+ :(h

1

^ : : :^ h

n

^ (9x)g(x) ^ g(x));

using G again,

`

S

+ (8x):(h

1

^ : : :^ h

n

^ (9x)g(x)^ g(x));

and, by PC,

`

S

+ :(h

1

^ : : :^ h

n

^ (9x)g(x)^ (9x)g(x));

`

S

+ :(h

1

^ : : :^ h

n

^ (9x)g(x)):

This contradicts the consistency of �

i

[ ff

i

g so �

i+1

must be consistent.

Let �

?

be the union of all the sets �

i

, �

?

is consistent since any �nite subset

of �

?

is a subset of some �

i

. It is also clear by construction that � � �

?

, that

for any sentence f = f

i

of L

+

either f

i

or :f

i

belongs to �

?

and that �

?

has

witnesses in B. Hence �

?

satis�es the three conditions of the theorem. 2

3.3.3 Model construction

By the preceding theorem, if �

0

is a consistent set of sentences of L, there is a

maximal consistent set �

?

0

of sentences of L

+

which has witnesses in B and such

that �

0

� �

?

0

. We denote by � the set of rigid sentences of �

?

0

. We construct

a modelM = (W;R;D; I) where the worlds are sets of sentences of L

+

which

have certain desirable features and the domain is built from B and the set �.
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Frame

We introduce the following notation: given two sets of sentences �

1

and �

2

,

�

1

� �

2

denotes the set of sentences (f

1

; f

2

) with f

1

in �

1

and f

2

in �

2

. Then

the frame (W;R) is de�ned as follows.

� The set of worlds W is the set of all maximal consistent sets � of L

+

which have witnesses in B and such that � � �.

� The relation R is de�ned by

R(�

1

;�

2

;�) i� �

1

��

2

� �;

for all �

1

, �

2

and � of W . In other words, a world � of W can be

decomposed into a pair of worlds (�

1

;�

2

) if and only if for any f

1

of �

1

and f

2

of �

2

the sentence (f

1

; f

2

) is in �.

By construction, it is easy to see that the rigid sentences of any set � of W

are exactly the elements of �. To show this, assume � contains a rigid sentence

f which is not in �. Then f is not in �

?

0

either and, since �

?

0

is maximal

consistent, :f is in �

?

0

. But :f is a rigid sentence and belongs to �. Since

� � � this contradicts the consistency of �.

Domain

On the set B we de�ne a binary relation � as follows: for b

i

and b

j

of B,

b

i

� b

j

i� (b

i

= b

j

) 2 �:

By the axioms of identity, � is an equivalence relation on B. For example, to

show that � is transitive, assume b

i

� b

j

and b

j

� b

k

. By de�nition, (b

i

= b

j

)

and (b

j

= b

k

) are two sentences of � and then of �

?

0

. By the axioms of identity,

`

S

+ (b

i

= b

j

) ^ (b

j

= b

k

)) (b

i

= b

k

):

Since �

?

0

is maximal consistent it follows by proposition 3.4 that (b

i

= b

k

)

belongs to �

?

0

. This sentence is rigid, so (b

i

= b

k

) 2 �, that is, b

i

� b

k

.

Symmetry an reexivity can be proved in a similar way (see [6]).

For any constant b

i

of B, we denote by [b

i

] the equivalence class of b

i

and

we de�ne the domain D of M by:

D = f [b

i

] j b

i

2 B g:

The domain of M is then the set of the equivalence classes of �.

Interpretation function

It remains to de�ne the interpretation function I . In an arbitrary world �, the

interpretation of a symbol of L

+

is de�ned as in [6], chapter 2.

For a proposition symbol p, we simply set

I(p;�) = 1 i� p 2 �:
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For an n-ary predicate symbol �, let b

i

1

; : : : ; b

i

n

and b

i

0

1

; : : : ; b

i

0

n

be constants

of B. By the axioms of identity,

`

S

+ (b

i

1

= b

i

0

1

) ^ : : :^ (b

i

n

= b

i

0

n

)) (�(b

i

1

; : : : ; b

i

n

), �(b

i

0

1

; : : : ; b

i

0

n

)):

If [b

i

1

] = [b

i

0

1

]; : : : ; [b

i

n

] = [b

i

0

n

]; all the sentences (b

i

1

= b

i

0

1

); : : : ; (b

i

n

= b

i

0

n

) are

in �. Since � � �, they are also in � and since � is maximal consistent,

�(b

i

1

; : : : ; b

i

n

), �(b

i

0

1

; : : : ; b

i

0

n

)

is a sentence of �. Then, by proposition 3.4,

�(b

i

1

; : : : ; b

i

n

) 2 � i� �(b

i

0

1

; : : : ; b

i

0

n

) 2 �:

This equivalence makes it possible to de�ne I(�;�) as the n-ary relation on D

such that,

I(�;�)([b

i

1

]; : : : ; [b

i

n

]) = 1 i� �(b

i

1

; : : : ; b

i

n

) 2 �

for any constants b

i

1

; : : : ; b

i

n

of B.

For an individual constant a, by the axioms of identity and predicate cal-

culus, we have

`

S

+ (9x)(a = x):

The sentence (9x)(a = x) is then in � and, since � has witnesses in B, there

is a constant b

j

of B such that (a = b

j

) is in �. The interpretation of a in � is

de�ned by I(a;�) = [b

j

]. This is independent of a particular choice of b

j

for, if

b

j

0
is another constant of B, we have

`

S

+ (a = b

j

) ^ (a = b

j

0

)) (b

j

= b

0

j

):

Hence, for any constant b

j

of B,

I(a;�) = [b

j

] i� (a = b

j

) 2 �:

For an n-ary function symbol �, let b

i

1

; : : : ; b

i

n

be n constants of B. By the

axioms of identity,

`

S

+
(9x)(�(b

i

1

; : : : ; b

i

n

) = x)

and, as previously, there is a constant b

j

such that �(b

i

1

; : : : ; b

i

n

) = b

j

belongs

to �. We set

I(�;�)([b

i

1

]; : : : ; [b

i

n

]) = [b

j

]

and this is again independent of the choice of class representatives. For any

constant b

i

1

; : : : ; b

i

n

and b

j

of B, the de�nition ensures that

I(�;�)([b

i

1

]; : : : ; [b

i

n

]) = [b

j

] i� (�(b

i

1

; : : : ; b

i

n

) = b

j

) 2 �:

Since the rigid sentences of all the worlds � ofW are the same, the function

I is correctly de�ned: all the rigid symbols have the same interpretation in all

the worlds.
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3.3.4 Completeness theorem

The preceding construction yields a model M from any consistent set �

0

of

sentences of L. We have to verify that M is a model of �

0

and that M is an

S-model.

By construction, a proposition p of L

+

is satis�ed in a world � of M if

and only if p belongs to �. This also holds for atomic formulas of the form

�(b

i

1

; : : : ; b

i

n

). The proof that M satis�es �

0

relies on a generalization of the

latter property: an arbitrary sentence f is satis�ed in a world � if and only if

f belongs to �. This is shown by classic means (see [18, 11]) the only di�culty

is the case of chop formulas.

The main lemmas

The main step is to show that, if a chop formula (f

1

; f

2

) belongs to a world

� of M, there are two worlds �

1

and �

2

such that f

1

2 �

1

, f

2

2 �

2

, and

�

1

� �

2

� �. In order to establish this property, we will use the following

notations. Given a non-empty set of sentences �, we denote by

b

� and � the

two sets:

b

� = fh

1

^ : : :^ h

m

j m > 1; h

1

2 �; : : : ; h

m

2 �g;

� = fh j `

S

+ (f ) h) for some f 2

b

�g:

b

� is the set of conjunctions of sentences of � and � the set of consequences of

sentences of �. We always have � �

b

� � � and � is consistent if and only if �

is not the set of all sentences of L

+

. If � is maximal consistent then � =

b

� = �.

Let � be a maximal consistent set and �

1

and �

2

be two non-empty sets of

sentences. We will show that if

c

�

1

�

c

�

2

� � there are two maximal consistent

sets �

?

1

and �

?

2

such that �

1

� �

?

1

, �

2

� �

?

2

and �

?

1

� �

?

2

� �. The idea is

to construct from �

1

and �

2

two maximal consistent sets �

?

1

and �

?

2

in such

a way that for any sentence :(f

1

; f

2

) of �, :f

1

is in �

?

1

or :f

2

is in �

?

2

. The

construction relies on the two following lemmas.

Lemma 3.9 If �

1

and �

2

are non-empty and

c

�

1

�

c

�

2

� � then �

1

and �

2

are

consistent and �

1

� �

2

� �.

Proof: Assume one of �

1

or �

2

is inconsistent, say �

1

, then there are sentences

f

1

; : : : ; f

n

of �

1

such that

`

S

+ :(f

1

^ : : :^ f

n

):

Let g be a sentence of �

2

; by the necessity rule N,

`

S

+
:(f

1

^ : : :^ f

n

; g):

Since � is consistent, the sentence (f

1

^ : : : ^ f

n

; g) cannot be in � and this

contradicts the assumption that

c

�

1

�

c

�

2

� �.
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For the second part of the lemma, let f and g be two sentences of �

1

and

�

2

, respectively. By de�nition, there are f

1

; : : : ; f

n

in �

1

and g

1

; : : : ; g

m

in �

2

such that

`

S

+
(f

1

^ : : :^ f

n

)) f and `

S

+
(g

1

^ : : : ^ g

m

)) g:

Using Mono twice,

`

S

+ (f

1

^ : : :^ f

n

; g

1

^ : : :^ g

m

)) (f ; g):

By assumption, (f

1

^ : : :^ f

n

; g

1

^ : : :^ g

m

) belongs to � therefore (f ; g) is also

a sentence of �. 2

The second lemma uses the two following functions de�ned for arbitrary

sets of sentences �, �

1

, and �

2

:

�

1

(�;�

1

) = f:gj:(f ; g) 2 �; f 2 �

1

g;

�

2

(�;�

2

) = f:f j:(f ; g) 2 �; g 2 �

2

g:

Lemma 3.10 Given a maximal consistent set � and two non-empty sets �

1

and �

2

such that

c

�

1

�

c

�

2

� �, let �

0

1

and �

0

2

be de�ned as follows:

�

0

1

= �

1

[ �

2

(�;�

2

) and �

0

2

= �

2

[ �

1

(�;�

1

);

then

�

0

1

� �

2

� � and �

1

� �

0

2

� �:

Proof: The two cases are symmetrical, we show the inclusion for �

0

1

.

Let f

0

1

; : : : ; f

0

n

be n sentences of �

0

1

and g

1

; : : : ; g

l

be l sentences of �

2

. If

all the formulas f

0

1

; : : : ; f

0

n

are in �

1

then (f

0

1

^ : : :^ f

0

n

; g

1

^ : : :^ g

l

) is in � by

assumption.

Otherwise, some of the sentences f

0

1

; : : : ; f

0

n

come from �

2

(�;�

2

). Without

loss of generality, we can assume that these sentences are f

0

1

; : : : ; f

0

m

for some

m 6 n.

By de�nition of �

2

, there are formulas f

1

; : : : ; f

m

and h

1

; : : : ; h

m

such that,

for i = 1; : : : ; m,

� f

0

i

is the sentence :f

i

,

� h

i

belongs to �

2

,

� :(f

i

; h

i

) belongs to �.

Let g be the conjunction g

1

^ : : :^ g

l

^ h

1

^ : : :^ h

m

. We can derive

1 g ) h

i

Tauto

2 (f

i

; g)) (f

i

; h

i

) Mono, 1

3 :(f

i

; h

i

)) :(f

i

; g) PC, 2,
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thus, since � is maximal consistent, all the sentences :(f

i

; g) are in �.

If m < n, let f be the sentence f

0

m+1

^ : : : ^ f

0

n

else let f be an arbitrary

sentence of �

2

. g is a conjunction of sentences of �

2

and f a conjunction of

sentences of �

1

therefore (f ; g) is in �.

The following theorem

`

S

+ (f ; g)^ :(f

1

; g)^ : : :^ :(f

m

; g)) (f ^ :f

1

^ : : :^ :f

m

; g)

can be derived using A1 repeatedly. It follows that the sentence

(f ^ :f

1

^ : : :^ :f

m

; g)

belongs to �. By construction, we have

`

S

+ f ^ :f

1

: : :^ :f

m

) f

0

1

^ : : :^ f

0

n

and `

S

+ g ) g

1

^ : : :^ g

l

;

so, by proposition 3.5, (f

0

1

^ : : :^ f

0

n

; g

1

^ : : :^ g

l

) is in �. 2

We can now show the essential result, stated by the following theorem.

Theorem 3.11 If � is maximal consistent and �

1

and �

2

are two non-empty

sets of sentences such that

c

�

1

�

c

�

2

� � then there are two maximal consistent

sets �

?

1

and �

?

2

such that

� �

1

� �

?

1

,

� �

2

� �

?

2

,

� �

?

1

� �

?

2

� �.

Proof: We construct recursively two sequences �

(n)

1

and �

(n)

2

of sets of sen-

tences. �

(0)

1

and �

(0)

2

are de�ned by

�

(0)

1

= �

1

and �

(0)

2

= �

2

and �

(n+1)

1

and �

(n+1)

2

are obtained from �

(n)

1

and �

(n)

2

as follows:

� for n even,

�

(n+1)

1

= �

(n)

1

[ �

2

(�;�

(n)

2

) and �

(n+1)

2

= �

(n)

2

;

� for n odd,

�

(n+1)

1

= �

(n)

1

and �

(n+1)

2

= �

(n)

2

[ �

1

(�;�

(n)

1

):

By assumption,

c

�

1

�

c

�

2

� �, so, by lemma 3.9, �

(0)

1

� �

(0)

2

� �. By induction

and lemma 3.10 we have, for all n,

�

(n)

1

� �

(n)

2

� �:
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Let �

!

1

and �

!

2

be the unions of the sets �

(n)

1

and �

(n)

2

, respectively. If f

1

; : : : ; f

m

are in �

!

1

and g

1

; : : : ; g

l

in �

!

2

then there is an index n such that

ff

1

; : : : ; f

m

g � �

(n)

1

and fg

1

; : : : ; g

l

g � �

(n)

2

:

It follows that �

!

1

� �

!

2

� � and, by lemma 3.9, both �

!

1

and �

!

2

are consistent.

By Lidenbaum's lemma (theorem 3.6), there exists a maximal consistent set �

?

1

such that �

!

1

� �

?

1

.

Consider a sentence g of �

!

2

and an arbitrary sentence f such that :(f ; g)

is in �. There is an index n such that g 2 �

(n)

2

and then :f 2 �

2

(�;�

(n)

2

). This

clearly implies that :f is in �

!

1

and also in �

?

1

. Hence for any sentence f of �

?

1

and any g of �

!

2

we have (f ; g) 2 �, that is,

�

?

1

� �

!

2

� �:

Since �

?

1

is maximal consistent,

c

�

?

1

= �

?

1

. By construction, �

!

2

=

c

�

!

2

= �

!

2

, thus

c

�

?

1

�

c

�

!

2

� �:

Let �

0

2

be the set �

!

2

[ �

1

(�;�

?

1

). By lemma 3.10,

�

?

1

� �

0

2

� �

and, by lemma 3.9, �

0

2

is consistent. By Lidenbaum's lemma, there is a maximal

consistent extension �

?

2

of �

0

2

. As previously, if f is in �

?

1

and g is a sentence

such that :(f ; g) belongs to � then :g is in �

1

(�;�

?

1

) and also in �

0

2

and �

?

2

.

For any sentence f of �

?

1

and g of �

?

2

the sentence (f ; g) is then in �, hence

�

?

1

� �

?

2

� �:

By construction, it is clear that �

1

� �

?

1

and �

2

� �

?

2

; �

?

1

and �

?

2

satisfy the

three required conditions. 2

Finally, the following lemma gives a su�cient condition for two maximal

consistent sets �

?

1

and �

?

2

to be worlds ofM.

Lemma 3.12 Let � be a world ofM and �

?

1

and �

?

2

be two maximal consistent

sets of sentences of L

+

. If the following three conditions are satis�ed:

� �

?

1

� �

?

2

� �,

� there is an element b

i

of B such that (` = b

i

) is a sentence of �

?

1

,

� there is an element b

j

of B such that (` = b

j

) is a sentence of �

?

2

then �

?

1

and �

?

2

are two worlds of M.

Proof: We have to show that � is included in �

?

1

and �

?

2

and that the two sets

have witnesses in B.

Let f be a sentence of �. f is a rigid sentence and its negation is also rigid.

By axiom R,

`

S

+ (:f ; ` = b

j

)) :f:
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Assume f does not belong to �

?

1

then :f is in �

?

1

and, since �

?

1

� �

?

2

� �,

(:f ; ` = b

j

) 2 �

then :f is in � too. But this contradicts the assumption that � is maximal

consistent and contains �. Hence, every sentence of � must be in �

?

1

and,

symmetrically, in �

?

2

.

Let (9x)f(x) be a sentence of �

?

1

then ((9x)f(x); ` = b

j

) 2 �:

The formula ` = b

j

does not contain x so by Barcan's formula,

`

S

+ ((9x)f(x); `= b

j

)) (9x)(f(x); `= b

j

):

Then (9x)(f(x); ` = b

j

) is in � and since � has witnesses in B there is a

constant b

k

such that

(f(b

k

); ` = b

j

) 2 �:

By L1,

`

S

+ (f(b

k

); ` = b

j

)) :(:f(b

k

); ` = b

j

);

therefore :(:f(b

k

); ` = b

j

) is a sentence of �. As a consequence, :f(b

k

) cannot

be in �

?

1

and f(b

k

) belongs to �

?

1

. Hence �

?

1

has witnesses in B. A symmetrical

proof shows that �

?

2

also has witnesses in B. 2

M satis�es �

0

The following two theorems state properties ofM which will ensure thatM is

actually a model of �

0

.

Theorem 3.13 Let t(x

1

; : : : ; x

n

) be a term with variables among x

1

; : : : ; x

n

.

Let b

i

1

; : : : ; b

i

n

be n constants of B and v be an M-valuation such that

v(x

1

) = [b

i

1

]; : : : ; v(x

n

) = [b

i

n

];

then for any b

j

of B and any world � of W ,

I

v

�

(t(x

1

; : : : ; x

n

)) = [b

j

] i� (t(b

i

1

; : : : ; b

i

n

) = b

j

) 2 �:

Proof: The proof is by induction on terms.

� If t(x

1

; : : : ; x

n

) is an individual constant a then

I

v

�

(t(x

1

; : : : ; x

n

)) = I(a;�)

and by construction of the interpretation function, I(a;�) = [b

j

] if and

only if (a = b

j

) is a sentence of �.

� If t(x

1

; : : : ; x

n

) is a variable x

k

(1 6 k 6 n) then

I

v

�

(t(x

1

; : : : ; x

n

) = v(x

k

) = [b

i

k

]:

By de�nition of � we have

[b

i

k

] = [b

j

] i� (b

i

k

= b

j

) 2 �

and by construction ofM, this is equivalent to (b

i

k

= b

j

) 2 �.
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� If t(x

1

; : : : ; x

n

) is of the form �(t

1

(x

1

; : : : ; x

n

); : : : ; t

m

(x

1

; : : : ; x

n

)) for a

function symbol � of arity m then

I

v

�

(t(x

1

; : : : ; x

n

)) = I(�;�)(I

v

�

(t

1

(x

1

; : : : ; x

n

)); : : : ; I

v

�

(t

m

(x

1

; : : : ; x

n

)))

and the equivalence follows by induction and de�nition of I(�;�) (see

[6]).

2

Theorem 3.14 Let f(x

1

; : : : ; x

n

) be a formula of L

+

with free variables among

x

1

; : : : ; x

n

. For any world � of W , any M-valuation v and any constants

b

i

1

; : : : ; b

i

n

such that

v(x

1

) = [b

i

1

]; : : : ; v(x

n

) = [b

i

n

];

we have,

M;�; v j= f(x

1

; : : : ; x

n

) i� f(b

i

1

; : : : ; b

i

n

) 2 �:

Proof: The proof is by induction on f(x

1

; : : : ; x

n

).

� For atomic formulas, the equivalence follows from the de�nition of the

interpretation function I and theorem 3.13.

� If f(x

1

; : : : ; x

n

) is of the form f

1

^f

2

or :f

1

then the equivalence is shown

by induction and the properties of maximal consistent sets (see [13] for

example).

� For formulas f(x

1

; : : : ; x

n

) of the form (9x

n+1

)g(x

1

; : : : ; x

n+1

) the result

is true because every world � has witnesses in B:

If M;�; v j= f(x

1

; : : : ; x

n

), there is a valuation v

0

such that

v(x

1

) = v

0

(x

1

); : : : ; v(x

n

) = v

0

(x

n

); and M;�; v

0

j= g(x

1

; : : : ; x

n+1

):

Let b

i

1

; : : : ; b

i

n+1

be elements of B such that

v

0

(x

1

) = [b

i

1

]; : : : ; v

0

(x

n+1

) = [b

i

n+1

];

then by the induction hypothesis,

g(b

i

1

; : : : ; b

i

n+1

) 2 �:

Since b

i

n+1

is rigid, Q3 yields

`

S

+ g(b

i

1

; : : : ; b

i

n+1

)) (9x

n+1

)g(b

i

1

; : : : ; b

i

n

; x

n+1

)

then, since � is maximal consistent,

(9x

n+1

)g(b

i

1

; : : : ; b

i

n

; x

n+1

) 2 �;

that is f(b

i

1

; : : : ; b

i

n

) 2 �.
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Conversely, let b

i

1

; : : : ; b

i

n

be n constants of B such that

v(x

1

) = [b

i

1

]; : : : ; v(x

n

) = [b

i

n

]

and assume the sentence (9x

n+1

)g(b

i

1

; : : : ; b

i

n

; x

n+1

) is in �. Since � has

witnesses in B there is a constant b

i

n+1

such that

g(b

i

1

; : : : ; b

i

n

; b

i

n+1

) 2 �:

Let v

0

be an M-valuation such that

v

0

(x

1

) = [b

i

1

]; : : : ; v

0

(x

n+1

) = [b

i

n+1

];

then by the induction hypothesis,

M;�; v

0

j= g(x

1

; : : : ; x

n+1

)

and

M;�; v j= (9x

n+1

)g(x

1

; : : : ; x

n+1

):

� For chop formulas (g(x

1

; : : : ; x

n

); h(x

1

; : : : ; x

n

)) the proof relies on theo-

rem 3.11. Let b

i

1

; : : : ; b

i

n

be n constants such that

v(x

1

) = [b

i

1

]; : : : ; v(x

n

) = [b

i

n

]:

If M;�; v j= (g(x

1

; : : : ; x

n

); h(x

1

; : : : ; x

n

)), there are two worlds �

1

and

�

2

such that

M;�

1

; v j= g(x

1

; : : : ; x

n

);

M;�

2

; v j= h(x

1

; : : : ; x

n

);

�

1

��

2

� �:

By the induction hypothesis, this implies that

g(b

i

1

; : : : ; b

i

n

) 2 �

1

and h(b

i

1

; : : : ; b

i

n

) 2 �

2

and, since �

1

��

2

� �,

(g(b

i

1

; : : : ; b

i

n

); h(b

i

1

; : : : ; b

i

n

)) 2 �:

Conversely, assume

(g(b

i

1

; : : : ; b

i

n

); h(b

i

1

; : : : ; b

i

n

)) 2 �:

Let g

0

and h

0

denote the sentences g(b

i

1

; : : : ; b

i

n

) and h(b

i

1

; : : : ; b

i

n

), re-

spectively, and let x and y be two variables, we can derive

1 g

0

) (9x)(g

0

^ ` = x) PC

2 h

0

) (9y)(h

0

^ ` = y) PC

3 (g

0

; h

0

)) ( (9x)(g

0

^ ` = x) ; (9y)(h

0

^ ` = y) ) Mono, 1, 2

4 ((9x)(g

0

^ ` = x); (9y)(h

0

^ ` = y)))

(9x)(9y)(g

0

^ ` = x; h

0

^ ` = y) B

5 (g

0

; h

0

)) (9x)(9y)(g

0

^ ` = x; h

0

^ ` = y) PC, 3, 4
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Then the sentence (9x)(9y)(g

0

^ ` = x; h

0

^ ` = y) belongs to �. Since �

has witnesses in B there are two constants b

i

and b

j

such that

(g

0

^ ` = b

i

; h

0

^ ` = b

j

) 2 �:

Let �

1

and �

2

be the two following sets of sentences:

�

1

= fg

0

; ` = b

i

g

�

2

= fh

0

; ` = b

j

g:

It is clear that

c

�

1

�

c

�

2

� �, we can then apply theorem 3.11: there are

two maximal consistent sets �

?

1

and �

?

2

such that

�

1

� �

?

1

; �

2

� �

?

2

; and �

?

1

� �

?

2

� �:

By lemma 3.12 the two sets �

?

1

and �

?

2

are worlds of M. By induction,

since g

0

2 �

?

1

and h

0

2 �

?

2

,

M;�

?

1

; v j= g(x

1

; : : : ; x

n

) and M;�

?

2

; v j= h(x

1

; : : : ; x

n

);

and then

M;�; v j= (g(x

1

; : : : ; x

n

); h(x

1

; : : : ; x

n

)):

2

Corollary 3.15 M is a model of �

0

.

Proof: By construction, there is a set �

0

of M such that �

0

� �

0

. If f is a

sentence of �

0

, theorem 3.14 shows that f is satis�ed in �

0

under any valuation

v. 2

M is an S-model

The following proposition states that M satis�es the conditions of de�nition

3.1:

Proposition 3.16 Let �, �

1

, �

2

, �

0

1

, and �

0

2

, be worlds of M such that

�

1

��

2

� � and �

0

1

��

0

2

� �:

The two following conditions are satis�ed:

� If I(`;�

1

) = I(`;�

0

1

) then �

2

= �

0

2

� If I(`;�

2

) = I(`;�

0

2

) then �

1

= �

0

1

.

Proof: The two cases are symmetrical, we show the �rst part of the proposi-

tion:

Assume there is a constant b

i

of B such that I(`;�

1

) = I(`;�

0

1

) = [b

i

] then,

by construction,

(` = b

i

) 2 �

1

and (` = b

i

) 2 �

0

1

:

Consider a sentence f of �

2

; since �

1

��

2

� �, (` = b

i

; f) is a sentence of �.

By axiom L1, it follows that :(` = b

i

;:f) is also in �. Therefore, :f cannot

be in �

0

2

, so f belongs to �

0

2

. Hence �

2

� �

0

2

. By symmetry, we also have

�

0

2

� �

2

and the two sets �

2

and �

0

2

are equal. 2
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S is complete

The completeness of S is now a straightforward consequence of corollary 3.15

and proposition 3.16.

Theorem 3.17 If a formula f of L is valid in C, it is a theorem of S.

Proof: Consider a formula f which is not provable in S and let g be the

universal closure of f . g is not provable either, otherwise by Q1 and MP, f could

be deduced from g. Let �

0

be the set f:gg. �

0

is consistent, the construction

of section 3.3.3 can be used. This yields a model M which satis�es :g (by

corollary 3.15) and which belongs to the class C (by proposition 3.16). Strictly

speaking,M is a model for the language L

+

but we can easily transformM to

a model for L by restricting the interpretation function I to symbols of L. The

satisfaction of sentences of L is not changed. Since :g is satis�ed in a world

�

0

of M, the sentence g is not valid in M and f is not valid either. 2





Chapter 4

Time intervals

In the previous chapter, we have considered a class C of models for ITL de�ned

by a constraint on the \length" of worlds. The proof system S has been shown

to be complete for this class. In the present chapter, we de�ne a new class

of models where worlds are time intervals and the length of intervals is their

duration. The two basic ingredients for constructing such models are a notion of

temporal domain for de�ning frames and an abstract measure function assigning

a duration to intervals. The class K of interval models is de�ned in section 4.1;

it is a strict sub-class of C.

In section 4.2 we present a new proof system S

0

for reasoning about interval

models. This system is obtained from S by adding a few axioms expressing

properties of the measure function and intervals. We give a few example theo-

rems derived by S

0

.

In the last section of this chapter, we establish the completeness of the

axiomatization. Any formula valid in K is provable in S

0

. The proof relies on

the completeness of S. Any set of sentences � consistent relatively to S

0

is also

consistent relatively to S and is then satis�ed by an S-model M

0

. We show

that, provided the additional axioms of S

0

are valid in M

0

, an interval model

of � can be constructed fromM

0

.

4.1 Interval models

4.1.1 Temporal domains and intervals

Intuitively, a temporal interval can be considered as an uninterrupted stretch

of time delimited by two instants t and t

0

such that t

0

is posterior to t. This

assumes that time is a set of instants, equipped with an order relation. Various

additional assumptions can be made about the structure of time: the order can

be total or partial, dense or discrete, etc. We only assume linear time and we

call a particular time representation a temporal domain.

De�nition 4.1 A temporal domain is a pair (T;6) where T is a non-empty

set and 6 a total order relation on T .

We will usually denote a temporal domain simply by T , letting the order relation

implicit.
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Assuming a temporal domain T is given, we de�ne the intervals on T as

pairs of elements (t; t

0

) of T such that t 6 t

0

. Such pairs are denoted by [t; t

0

].

Then we can derive from T a frame (W;R) called an interval frame as follows:

� W is the set of intervals on T ,

� R is the ternary relation on W de�ned by the rule

R([t

1

; t

0

1

]; [t

2

; t

0

2

]; [t; t

0

]) i� t = t

1

; t

0

1

= t

2

; t

0

2

= t;

for any intervals [t

1

; t

0

1

], [t

2

; t

0

2

], and [t; t

0

] ofW . In other words, an interval

[t; t

0

] can be split into any pair of intervals [t; u], [u; t

0

] such that t 6 u 6 t

0

.

This corresponds to the intuitive idea of \chopping" the interval [t; t

0

] in

two sub-intervals.

Classic examples of temporal domains are the set R

+

of non-negative real

numbers used to model dense time, or the set N of natural numbers for discrete

time.

4.1.2 Measure

Let T be an arbitrary temporal domain and W be the set of intervals on T . We

want to assign a length to every interval [t; t

0

] of W . This length will be given

by a function m we call a measure.

For the two usual temporal domains T = N or T = R

+

, a natural choice for

the measure m is to set

m[t; t

0

] = t

0

� t;

hence m is a function from W to T . However, there is no reason to assume

that this is always the case, instants and durations are two di�erent concepts

and do not have to be represented by elements of the same set. So, in general,

we assume that some set D is given whose elements are possible lengths or

durations of intervals and m will be a function from W to D.

Constraints on m

In order to capture a \reasonable" notion of measure, the function m has to

satisfy a few intuitive properties.

One of them has already been presented in the de�nition of S-models (cf

section 3.1.1). Two distinct pre�xes [t; u] and [t; u

0

] or two distinct su�xes [u; t

0

]

and [u

0

; t

0

] of an interval [t; t

0

] cannot have the same length.

We also assume that the length of point intervals is null. So, we need a

distinguished element 0 of D and we require m[t; t] = 0 for any instant t 2 T .

We require additivity of lengths. We assume that a binary operation + is

available on D and that we have m[t; u] +m[u; t

0

] = m[t; t

0

] for t 6 u 6 t

0

.
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Our �nal requirement form is the converse of the previous one. If an interval

[t; t

0

] has length x + y then it has a pre�x [t; u] of length x and for this u, the

su�x [u; t

0

] is of length y.

In summary,m is a function from W to a set D with a binary operation +

and a distinguished element 0, and the measure is required to satisfy the four

following conditions.

M1: if m[t; u] = m[t; u

0

] then u = u

0

and

if m[u; t] = m[u

0

; t] then u = u

0

M2: m[t; t] = 0 for any instant t 2 T .

M3: m[t; u] +m[u; t

0

] = m[t; t

0

] for t 6 u 6 t

0

.

M4: if m[t; t

0

] = x+ y, there is u 2 T such that

t 6 u 6 t

0

, m[t; u] = x, and m[u; t

0

] = y.

Note that combining M1 and M2 implies that only point intervals are of

length 0: if m[t; t

0

] = 0 then t = t

0

.

These requirements are generalizations to abstract measures of properties

satis�ed by the usual notions of lengths of intervals. For example, the natural

measure de�ned by m[t; t

0

] = t

0

� t for the temporal domain T = N is easily

seen to satisfy conditions M1 to M4. It is also the case for T = R

+

if D is the

set of non-negative reals, but condition M4 does not hold if m is considered as

a function from W to R (for x or y can be negative).

Duration domains

We have assumed thatD was equipped with a binary operation + and contained

at least one element 0, but so far, no particular assumptions on the behaviour

of + or 0 in D have been made. However, if there is a function m from W to

D which satis�es M1 to M4 then + and 0 must obey classic algebraic laws.

Indeed, let D be an arbitrary set, 0 an element of D and + a binary oper-

ation on D and assume there is a function m from W to D which satis�es the

conditions M1 to M4. If m is surjective, it is easy to check that

� + is associative,

� 0 is a neutral element for +,

� the left and right cancellation laws hold,

� if x+ y = 0 then x = 0 and y = 0.

These properties follow from M1{M4, and the de�nition of intervals on T .

In general, it is possible that the above properties do not hold everywhere

in D. For example, there can be two non-null elements x and y such that
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x + y = 0 provided m does not assign x or y to any interval [t; t

0

]. However,

these properties always hold in the sub-algebra (m(W );+; 0) where m(W ) � D

is the image of W by m.

Other subsets of D are constrained to satisfy another important property.

Consider an arbitrary instant t of T and let E be the subset of D de�ned by

x 2 E i� there is t

0

> t s.t. m[t; t

0

] = x:

In other words, E is the set of measures of the intervals [t; t

0

] of W . Let

x = m[t; t

0

] and y = m[t; t

00

] be two elements of E. Since T is totally ordered,

we have either x+m[t

0

; t

00

] = y or y+m[t

00

; t

0

] = x. Hence for any two elements

x and y of E there is some z of D such that x+ z = y or y + z = x.

Symmetrically, if x and y are measures or two intervals [t

0

; t] and [t

00

; t] then

there is a z of D such that z + x = y or z + y = x.

Hence, the existence of a function m fromW to D which satis�es conditions

M1{M4 imposes some constraints on the algebra (D;+; 0). The properties

above must hold in subsets of D. We will only consider structures (D;+; 0)

where these properties are satis�ed on D as a whole. Such structures will be

called duration domains .

Duration domains can then be characterized in �rst order logic as the models

of the following formulas:

D1: (x+ y) + z = x+ (y + z)

D2:

x+ 0 = x

0 + x = x

D3:

x+ y = x+ z ) y = z

y + x = z + x) y = z

D4: x+ y = 0) x = 0 ^ y = 0

D5:

(9z)(x+ z = y _ y + z = x)

(9z)(z + x = y _ z + y = x):

Measure functions for T can now be de�ned precisely as the functions from

the set of intervals W to some duration domain D and such that the four

constraints M1 to M4 are satis�ed.

A similar axiomatic approach for de�ning time delays and associated oper-

ations can be found in [22]. All the traditional ways of assigning a length to

intervals conform to the de�nition of duration domains. In the duration calcu-

lus or in dense ITL lengths of intervals are positive real numbers [14, 8] and it

is clear that all the axioms D1 to D5 are satis�ed. For discrete ITL, lengths are

natural numbers and D1{D5 also hold [21].
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4.1.3 The class K

The basic notions of time domain, measure and duration domain are funda-

mental in the study of existing systems of ITL used for real-time reasoning.

Combined together, the three elements allow us to de�ne the class of interval

models.

Languages for such models are required to contain, in addition to the exible

constant `, two rigid symbols + and 0. These symbols will be interpreted as

the addition and neutral element in a duration domain and provide a minimal

set of operators for expressing real-time constraints. An ITL-language L which

includes these three symbols, is called an interval language.

Let T be a temporal domain, m a measure for T with duration domain

(D;+; 0) and L an arbitrary interval language. The three components T , m,

and D can serve as a basis for constructing models M for L in the following

way:

� the frame ofM is the frame (W;R) de�ned by T ,

� the domain ofM is the set D,

� the interpretation in M of the symbols `, +, and 0 is such that

1

I(`; [t; t

0

]) = m[t; t

0

];

I(0; [t; t

0

]) = 0;

I(+; [t; t

0

]) = +;

for any interval [t; t

0

] of W .

A model constructed in this way is called an interval model . The class of interval

models is denoted by K.

Note that the interpretation of symbols of L other than `, + or 0 is free.

There can be di�erent interval modelsM constructed from the same basis and

for a same language L.

For an interval model M the semantics can be rephrased in terms of the

underlying time domain and measure. In particular, for chop formulas, the rule

can be rewritten:

[t; t

0

]; v j= (f

1

; f

2

) i� there is u 2 T ,

8

>

<

>

:

t 6 u 6 t

0

[t; u]; v j= f

1

[u; t

0

]; v j= f

2

:

This is how the semantics of ITL or the duration calculus is traditionally pre-

sented [14, 21]; possible worlds are not mentioned and the semantics is given

directly in terms of intervals. In the two cases, time domains are �xed a priori .

In the duration calculus, time is represented by R

+

. In traditional ITL the

temporal domain is T = N [21] and a a densed-time semantics is also proposed

in [14] (with T = R

+

). The standard models of ITL and the duration calculus

are then included in our notion of interval models.

1

On the left side of the equations, + and 0 are symbols of L, and the right side the same

notations are used for the addition operation and the zero element of D.
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4.1.4 Formulas valid in interval models

By de�nition of measures, it is clear that any interval model is also an S-model;

this follows immediately from M1. The class K is then a sub-class of C and all

the formulas valid in C are also valid in K. On the other hand, the construction

of a frame from a temporal domain induces new properties of the accessibility

relation R. As a consequence many sentences valid in interval models are not

valid in C. In other words, K is a strict sub-class of C.

For example, it is easy to check that, for interval models, chop is associative:

for any formulas f , g, h, the following equivalence is valid in K

((f ; g);h), (f ; (g; h)):

But, it is not di�cult to construct an S-model in which this formula is not

valid. For example, let W be a set of �ve worlds w

1

; : : : ; w

5

and let R be the

ternary relation on W such that R(w

2

; w

3

; w

1

) and R(w

4

; w

5

; w

2

) only. Then

(W;R) forms a frame which can be depicted as follows.

�

� @

@

�

� @

@

w

1

w

2

w

3

w

5

w

4

Any ITL model built from this frame is necessarily an S-model since the two

worlds w

1

and w

2

can only de decomposed in one way and the other worlds

cannot be decomposed at all. But, in any such model chop is not associative:

if f is a tautology and v any valuation,

w

1

; v j= ((f ; f); f) but w

1

; v 6j= (f ; (f ; f)):

and then

w

1

; v 6j= ((f ; f); f), (f ; (f ; f)):

Since the operations + on D and the element 0 of D are represented by

rigid symbols in an interval model, the �rst order formulas D1{D5 which are

satis�ed by any duration domain are also valid in any interval model. More

generally, any �rst order formula satis�ed by all the duration domains, i.e. any

formula f which can be proved in �rst order logic with equality from D1{D5,

is valid in K.

Various formulas which combine additions of lengths and chop are also valid

in interval models. For example, the following formulas hold due to the con-

straints M1{M4 on measures and to properties of interval frames:

(` = x; ` = y), ` = x+ y; f , (f ; ` = 0); f , (` = 0; f)
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4.2 A proof system for interval models

4.2.1 New axioms

In order to reason formally about intervals, we extend the system S by adding

new axioms expressing properties of interval frames and relations between

lengths and chop. These axioms are present in various existing proof systems

proposed both for ITL or the duration calculus. The resulting system is called

S

0

.

The new modal axioms are the following:

A2: ((f ; g);h), (f ; (g; h))

L2: ` = x+ y , (` = x; ` = y)

L3:

f ) (f ; ` = 0)

f ) (` = 0; f).

A2 is the associativity of chop, L2 corresponds to the additivity of measure and

L3 expresses that an interval can always be split into itself and a point interval.

The other new axioms of S

0

are the formulas D1{D5 describing properties

of the addition in duration domains.

D1: (x+ y) + z = x+ (y + z)

D2:

x+ 0 = x

0 + x = x

D3:

x+ y = x+ z ) y = z

y + x = z + x) y = z

D4: x+ y = 0) x = 0 ^ y = 0

D5:

(9z)(x+ z = y _ y + z = x)

(9z)(z + x = y _ z + y = x):

4.2.2 Soundness and examples of theorems

Since all the new axioms of S

0

are valid in interval models, the proof system

is sound. Any formula f provable in S

0

is valid in K. As before, `

S

0

f will be

used to denote that f is a theorem of S

0

.

As an example, we can show that for any formula f of an interval language,

the equivalence f , (f ; ` = 0) is a theorem of S

0

. The implication

f ) (f ; ` = 0)

is axiom L2 and the reverse implication can be derived as follows:



40 TIME INTERVALS

1 (f ; ` = 0)) :(:f ; ` = 0) L1

2 :f ) (:f ; ` = 0) L3

3 :(:f ; ` = 0)) f PC, 2

4 (f ; ` = 0)) f PC, 1, 3.

Other important theorems can be derived by �rst order calculus from the

axioms D1{D5, such as the three following:

O1: (9z)(x+ z = x)

O2: (9z)(x+ z = y) ^ (9z)(y + z = x)) x = y

O3: (9z)(x+ z = y) ^ (9z)(y + z = u)) (9z)(x+ z = u).

These three theorems show that D can always be equipped with an order rela-

tion 6 de�ned by x 6 y if there is z 2 D such that x + z = y. This relation is

also a total order, by axiom D5. We will call it the natural order on D.

4.3 Completeness

In this section, we show the completeness of S

0

. If L is an arbitrary interval

language then any formula f of L which is valid in interval models is a theorem

of S

0

. As in the case of S, the principle is to show that any set �

0

of sentences

of L which is consistent with respect to S

0

is satis�ed by an interval model.

Since S

0

is an extension of S, the model construction of section 3.3.3 can be

applied to �

0

and yields an S-modelM

0

of �

0

. We can construct fromM

0

an

interval modelM which also satis�es �

0

.

For this, we �rst study properties of M

0

due to the validity of the new

axioms A2 and L3. In a second step, we will construct a temporal domain

T based on M

0

. An essential property of T is the existence of a mapping �

from intervals of T to worlds ofM

0

which preserve the frame structure (� is a

homomorphism). Finally, we de�ne an interval model M based on T and the

fact thatM is a model of �

0

is an easy consequence of the properties of �.

4.3.1 The modelM

0

Let L be an interval language and �

0

a set of sentences of L. De�nition 3.2

extends in a natural way to the system S

0

so we say that �

0

is consistent with

respect to S

0

if there is no �nite subset ff

1

; : : : ; f

n

g (n > 1) of �

0

such that

`

S

0

:(f

1

^ : : : ^ f

n

). The notion of maximal consistent sets extends similarly.

The model construction given in 3.3.3 is based on consistent and maximal

consistent sets with respect to S. It requires that all the instances of axioms

A1, L1, R, and B be present in any consistent set. Since S

0

is an extension of S,

the model construction also works for sets of sentences consistent with respect

to S

0

.

As before, L

+

denotes a new interval language obtained by adding to L a

new set of rigid constants B. If �

0

is a consistent set of sentences with respect
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to S

0

then it can be extended to a set �

?

0

of sentences of L

+

which is maximal

consistent with respect to S

0

and has witnesses in B. We denote by �

0

the set

of rigid sentences of �

?

0

. The construction of section 3.3.3 yields an S-model

M

0

= (W

0

; R

0

; D

0

; I

0

) where

� W

0

is the set of sentences � such that � is maximal consistent with

respect to S

0

and has witnesses in B and such that �

0

is included in �.

� R

0

is the relation de�ned by

R

0

(�

1

;�

2

;�) i� �

1

��

2

� �:

� D

0

is the set of equivalence classes of the relation � on B de�ned by

b

i

� b

j

i� (b

i

= b

j

) 2 �

0

:

�

?

0

is one of the worlds of W

0

and in this world all the sentences of �

0

are

satis�ed.

4.3.2 Properties of M

0

In the remainder of this section, consistent always mean consistent with respect

to S

0

.

All the instances of axioms A2, L2, and L3 are present in any world � of

W

0

since they must be in any maximal consistent set. This imposes various

properties on the accessibility relation R

0

.

Lemma

In order to establish these properties, we will need the following lemma. Recall

that the two functions �

1

and �

2

are de�ned by:

�

1

(�;�

1

) = f:gj:(f ; g) 2 �; f 2 �

1

g;

�

2

(�;�

2

) = f:f j:(f ; g) 2 �; g 2 �

2

g:

for arbitrary sets of sentences �, �

1

, and �

2

.

Lemma 4.2 Let �, �

1

, and �

2

be three worlds of W

0

and �

1

and �

2

be two

maximal consistent sets of sentences of L

+

.

� If �

1

(�;�

1

) � �

2

then �

2

belongs to W

0

and R

0

(�

1

;�

2

;�).

� If �

2

(�;�

2

) � �

1

then �

1

belongs to W

0

and R

0

(�

1

;�

2

;�).

Proof: For the �rst half of the lemma, assume �

1

(�;�

1

) � �

2

and let f and g

be two sentences of �

1

and �

2

, respectively. If :(f ; g) is in � then by de�nition

of �

1

, :f must be in �

2

this yields a contradiction. Hence we have �

1

��

2

� �,

that is R

0

(�

1

;�

2

;�). By lemma 3.12 this implies that �

2

is a world of W

0

.

The proof is similar for the other half of the lemma. 2
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Associativity

The validity of A2 in M

0

implies the following property of R

0

.

Proposition 4.3 Given four worlds �, �

1

, �

2

, and �

3

of W

0

, the two fol-

lowing propositions are equivalent.

� There is a world �

0

such that R

0

(�

1

;�

2

;�

0

) and R

0

(�

0

;�

3

;�).

� There is a world �

00

such that R

0

(�

1

;�

00

;�) and R

0

(�

2

;�

3

;�

00

).

Proof: We show that the �rst part of the proposition implies the second. The

converse implication follows by symmetry.

Assume there is a world �

0

of W

0

such that

R

0

(�

1

;�

2

;�

0

) and R

0

(�

0

;�

3

;�);

that is,

�

1

��

2

� �

0

and �

0

��

3

� �:

By construction of W

0

there are constants b

1

, b

2

, and b

3

of B such that

(` = b

1

) 2 �

1

; (` = b

2

) 2 �

2

; and (` = b

3

) 2 �

3

:

In order to establish the existence of �

00

, it is su�cient to show that the following

set of sentences is consistent

A = f(` = b

2

; ` = b

3

)g [ �

1

(�;�

1

):

Indeed, ifA is consistent, then it can be extended to a maximal consistent set �

00

by Lidenbaum's lemma. By lemma 4.2, �

00

is a world ofW

0

and R

0

(�

1

;�

00

;�).

If h

2

and h

3

are two sentences of �

2

and �

3

, respectively, then we have

(` = b

1

; h

2

) 2 �

0

and ((` = b

1

; h

2

); h

3

) 2 �:

By axioms A2 and L1, it follows that

(` = b

1

; (h

2

; h

3

)) 2 � and :(` = b

1

;:(h

2

; h

3

)) 2 �:

Then ::(h

2

; h

3

) is in �

1

(�;�

1

) and this implies that (h

2

; h

3

) 2 �

00

. Hence, we

have �

2

��

3

� �

00

, that is, R

0

(�

2

;�

3

;�

00

).

In order to show that A is consistent, consider n sentences f

0

1

; : : : ; f

0

n

of

�

1

(�;�

1

). By de�nition of �

1

there are formulas f

1

; : : : ; f

n

and g

1

; : : : ; g

n

such

that, for i = 1; : : : ; n,

� f

0

i

is :f

i

,

� g

i

belongs to �

1

,

� :(g

i

; f

i

) belongs to �.
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Let g be the conjunction g

1

^ : : :^ g

n

. g is in �

1

and for all i, :(g; f

i

) is in �

(cf. lemma 3.10). On the other hand, since �

1

��

2

� �

0

and �

0

��

3

� �, we

have

(g; `= b

2

) 2 �

0

and ((g; ` = b

2

); ` = b

3

) 2 �:

then, by A2,

(g; (`= b

2

; ` = b

3

)) 2 �:

Using A1 repeatedly yields

`

S

0

(g; (` = b

2

; ` = b

3

))^ :(g; f

1

) ^ : : :^ :(g; f

n

))

(g; (` = b

2

; ` = b

3

) ^ :f

1

^ : : :^ :f

n

);

then the sentence (g; (`= b

2

; ` = b

3

) ^ :f

1

^ : : :^ :f

n

) is also in �. Hence, for

arbitrary f

0

1

; : : : ; f

0

n

of �

1

(�;�

1

) there is a sentence g such that

(g; (` = b

2

; ` = b

3

) ^ f

0

1

^ : : :f

0

n

) 2 �:

We cannot have

`

S

0

:((` = b

2

; ` = b

3

) ^ f

0

1

^ : : :f

0

n

)

otherwise, the necessity rule would yield

`

S

0

:(g; (`= b

2

; ` = b

3

) ^ f

0

1

^ : : : f

0

n

)

and this would contradict the consistency of �. Hence, for any f

0

1

; : : : ; f

0

n

of

�

1

(�;�

1

) we have,

6`

S

0

:((` = b

2

; ` = b

3

) ^ f

0

1

^ : : : f

0

n

):

This means that A is consistent. 2

The latter property states a form of associativity of � in W

0

:

(�

1

��

2

) ��

3

� � i� �

1

� (�

2

��

3

) � �:

Anticipating on further results, we will represent �, �

1

, �

2

, and �

3

as if they

were intervals. Property 4.3 can then be depicted as follows.

�

3

�

�

2

�

1

�

0

�

00

Note also that sinceM

0

is an S-model the two worlds �

0

and �

00

, if they exist,

are unique.
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Reexivity

The next property of R

0

is a consequence of axiom L3: any world � can be

split into itself and a world of length 0.

Proposition 4.4 For any � in W

0

there are two worlds �

1

and �

2

such that

� R

0

(�

1

;�;�) and (` = 0) 2 �

1

,

� R

0

(�;�

2

;�) and (` = 0) 2 �

2

.

Furthermore �

1

and �

2

are unique.

Proof: The two cases are symmetrical, we only show the existence of �

1

.

The proof is very similar to that of proposition 4.3. We �rst show that the

set A de�ned by

A = f(` = 0)g [ �

2

(�;�)

is consistent. For this, let f

0

1

; : : : ; f

0

n

be n sentences of �

2

(�;�). There are then

f

1

; : : : ; f

n

and g

1

; : : : ; g

n

such that,

� f

0

i

is :f

i

,

� g

i

and :(f

i

; g

i

) belong to �.

Let g be the conjunction g

1

^ : : :^ g

n

then we have, as above,

g 2 � and :(f

i

; g) 2 �:

By L3, the sentence (` = 0; g) must also be in � and, by the same mechanism

as in the previous proposition,

(` = 0 ^ :f

1

^ : : :^ :f

n

; g) 2 �:

Then we cannot have

`

S

0

:(` = 0 ^ f

0

1

^ : : :^ f

0

n

);

and A is consistent.

Now let �

1

be a maximal consistent extension of A; we have (l = 0) 2 �

1

and, by lemma 4.2, �

1

is a world of W

0

and �

1

� � � �. Since M

0

is an

S-model, �

1

is unique. 2

This proposition can be interpreted as a form of \reexivity" of R

0

: any

world � is both its own \pre�x" and its own \su�x".

4.3.3 Temporal domain obtained from M

0

The two previous propositions show thatM

0

shares two properties with interval

models. These two properties only required the validity of A2 and L3 in M

0

.

In this part we show further similarities between M

0

and interval models. We

construct fromM

0

a temporal domain T in such a way that the interval frame

de�ned by T is homomorphic to a sub-frame ofM

0

. This relies on the properties

of duration domains and on axiom L2.
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De�nition of T

By construction of M

0

, there is a world �

?

0

of W

0

which satis�es �

0

. The

satisfaction of formulas of L

+

in �

?

0

does not depend on the worlds ofW

0

which

are not related by R to �

?

0

. So we can restrict our attention to the sub-frame

2

de�ned by the worlds related to �

?

0

.

Our objective is to construct a temporal domain T such that every interval

of W can be associated to a world in this sub-frame by a mapping � preserving

the properties of R

0

. We want

� R

0

(�[t; t

0

]; �[t

0

; t

00

]; �[t; t

00

]) for all t, t

0

and t

00

of T such that t 6 t

0

6 t

00

,

� conversely, if R

0

(�

1

;�

2

; �[t; t

0

]) there must be a point u of T such that

t 6 u 6 t

0

, �[t; u] = �

1

, and �[u; t

0

] = �

2

.

If such a mapping exists, it is not hard to construct an interval modelM based

on T and such that an interval [u; u

0

] satis�es the same formulas in M as the

world �[u; u

0

] in M

0

.

Starting from this idea, we want � to map an interval ofW , say [t

0

; t

0

0

], to the

world �

?

0

. Then for any pair of worlds (�

1

;�

2

) such that R

0

(�

1

;�

2

;�

?

0

) there

must be a unique instant u in T such that t

0

6 u 6 t

0

0

and the two sub-intervals

[t

0

; u] and [u; t

0

1

] are associated with �

1

and �

2

respectively. Conversely, every

instant u such that t

0

6 u 6 t

0

0

uniquely de�nes two worlds �

1

and �

2

such

that R

0

(�

1

;�

2

;�

?

0

) as illustrated in the following �gure.

�

?

0

�

1

�

2

u

t

0

t

0

0

Hence, there must be a bijection between the pairs of worlds (�

1

;�

2

) of W

0

such that R

0

(�

1

;�

2

;�

?

0

) and the set of instants u of T such that t

0

6 u 6 t

0

0

.

There are di�erent possibilities to �nd a temporal domain T satisfying the

latter requirement. A possible choice is to de�ne the set T as exactly the set of

pairs (�

1

;�

2

) such that R

0

(�

1

;�

2

;�

?

0

), that is,

T = f (�

1

;�

2

) j �

1

��

2

� �

?

0

g:

A relation 6 can be de�ned on T by

(�

1

;�

2

) 6 (�

0

1

;�

0

2

) if there are b

i

and b

j

in B s.t.

(

(` = b

i

) 2 �

1

(` = b

i

+ b

j

) 2 �

0

1

;

and the following property shows that (T;6) is actually a temporal domain.

2

Formally, this is the frame (W

1

; R

1

) where W

1

is the smallest subset of W

0

containing �

?

0

and such that, whenever � 2W

1

, all the worlds �

1

and �

2

satisfying R

0

(�

1

;�

2

;�) are also

in W

1

and R

1

is the restriction of R

0

to W

1

.
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Proposition 4.5 The relation 6 is a total order on T .

Proof: Let (�

1

;�

2

) and (�

0

1

;�

0

2

) be two elements of T . The previous de�ni-

tion is easily seen to be equivalent to the following relation

(�

1

;�

2

) 6 (�

0

1

;�

0

2

) i� there are b

i

and b

j

s.t.

8

>

<

>

:

(` = b

i

) 2 �

1

(` = b

j

) 2 �

0

1

;

(9z)(b

i

+ z = b

j

) 2 �

0

:

By theorems O1, O2, and O3, this implies that 6 is an order relation on T and,

by axiom D5, it is total. Note that this implicitly relies also on axioms D1-D4

which are used to derive O1, O2, and O3. 2

Informally, the de�nition of 6 simply means that the instant (�

1

;�

2

) is

anterior to the instant (�

0

1

;�

0

2

) if and only if the length of �

1

is smaller than

the length of �

0

1

for the natural order on D.

Properties of T

The temporal domain T has been chosen to satisfy a necessary condition. We

will now de�ne a mapping � from the set W of intervals of T to the set W

0

of

worlds of M

0

and we will show that � behaves as expected. The fundamental

property is the following.

Proposition 4.6 Let (�

1

;�

2

) and (�

0

1

;�

0

2

) be two elements of T such that

(�

1

;�

2

) 6 (�

0

1

;�

0

2

) then there is a unique world � of W

0

such that

R

0

(�

1

;�;�

0

1

) and R

0

(�;�

0

2

;�

2

):

Proof: There are two constants b

1

and b

2

of B such that

(` = b

1

) 2 �

1

and (` = b

2

) 2 �

2

:

Similarly, there are b

0

1

and b

0

2

such that

(` = b

0

1

) 2 �

0

1

and (` = b

0

2

) 2 �

0

2

:

Since (�

1

;�

2

) 6 (�

0

1

;�

0

2

), there is also a constant b of B such that

(b

1

+ b = b

0

1

) 2 �

0

and by construction of M

0

the sentence (b

1

+ b = b

0

1

) belongs to all the worlds

of W

0

, in particular to �

0

1

.

The proof follows the same principle as in propositions 4.3 and 4.4. We

de�ne a set of sentences A as follows:

A = f` = bg [ �

1

(�

0

1

;�

1

) [ �

2

(�

2

;�

0

2

);

then we show that A is consistent. The set � can be taken to be a maximal

consistent extension of A and it will satisfy the two required conditions.
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We �rst prove that A is consistent. Consider n formulas :f

1

; : : : ;:f

n

of

�

1

(�

0

1

;�

1

), and m formulas :g

1

; : : : ;:g

m

of �

2

(�

2

;�

0

2

). There are sentences

f

0

1

; : : : ; f

0

n

and g

0

1

; : : : ; g

0

m

such that

f

0

i

2 �

1

; :(f

0

i

; f

i

) 2 �

0

1

; g

0

j

2 �

0

2

; and :(g

j

; g

0

j

) 2 �

2

;

for all i in 1; : : : ; n and all j in 1; : : : ; m. Let f

0

and g

0

be the two sentences

(f

0

1

^ : : :^ f

0

n

) and (g

0

1

^ : : : ^ g

0

m

). As �

1

and �

0

2

are maximal consistent sets,

we have

(f

0

^ ` = b

1

) 2 �

1

and (g

0

^ ` = b

0

2

) 2 �

0

2

:

Also, as in proposition 4.3 and 4.4, we have, for all i and all j,

:(f

0

^ ` = b

1

; f

i

) 2 �

0

1

and :(g

j

; g

0

^ ` = b

0

2

) 2 �

2

:

By de�nition of T ,

�

1

��

2

� �

?

0

and �

0

1

��

0

2

� �

?

0

;

this implies that

(f

0

^ ` = b

1

; :(g

1

; g

0

^ ` = b

0

2

) ^ : : :^ :(g

m

; g

0

^ ` = b

0

2

)) 2 �

?

0

(4.1)

and

(:(f

0

^ ` = b

1

; f

1

) ^ : : :^ :(f

0

^ ` = b

1

; f

n

) ; g

0

^ ` = b

0

2

) 2 �

?

0

: (4.2)

On the other hand,

`

S

0

` = b

0

1

^ b

1

+ b = b

0

1

) ` = b

1

+ b

and by axiom L2,

`

S

0

` = b

1

+ b ) (` = b

1

; ` = b):

It follows that the sentence (` = b

1

; ` = b) belongs to �

0

1

. Then we have

((` = b

1

; ` = b) ; g

0

^ ` = b

0

2

) 2 �

?

0

and, by A2,

(` = b

1

; (` = b; g

0

^ ` = b

0

2

)) 2 �

?

0

: (4.3)

At this point, we need theorem T5 established in section 3.2.4:

T5: (h

1

^ ` = x; h

2

) ^ (` = x; h

3

)) (h

1

^ ` = x; h

2

^ h

3

).

From this theorem and relations 4.1 and 4.3, it follows that

(f

0

^ ` = b

1

;

:(g

1

; g

0

^ ` = b

0

2

) ^ : : : ^ :(g

m

; g

0

^ ` = b

0

2

) ^ (` = b; g

0

^ ` = b

0

2

)) 2 �

?

0

:

But, by iterated applications of A1,

`

S

0
:(g

1

; g

0

^ ` = b

0

2

) ^ : : :^ :(g

m

; g

0

^ ` = b

0

2

)

^ (` = b; g

0

^ ` = b

0

2

) ) (` = b ^ :g

1

^ : : :^ :g

m

; g

0

^ ` = b

0

2

);
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so, by Mono,

(f

0

^ ` = b

1

; (` = b ^ :g

1

^ : : :^ :g

m

; g

0

^ ` = b

0

2

)) 2 �

?

0

:

and, by A2,

((f

0

^ ` = b

1

; ` = b ^ :g

1

^ : : :^ :g

m

) ; g

0

^ ` = b

0

2

) 2 �

?

0

: (4.4)

We now use theorem T6 (section 3.2.4):

T6: (h

1

; h

2

^ ` = x) ^ (h

3

; h

2

^ ` = x)) (h

1

^ h

3

; h

2

^ ` = x).

From T6 and relations 4.2 and 4.4, the sentence

((f

0

^ ` = b

1

; ` = b ^ :g

1

^ : : :^ :g

m

) ^

:(f

0

^ ` = b

1

; f

1

) ^ : : :^ :(f

0

^ ` = b

1

; f

n

) ; g

0

^ ` = b

0

2

)

belongs to �

?

0

. Using once again A1 and Mono yields

((f

0

^ ` = b

1

; ` = b ^ :g

1

^ : : :^ :g

m

^ :f

1

^ : : :^ :f

n

) ; g

0

^ ` = b

0

2

) 2 �

?

0

:

As a consequence, the sentence

` = b ^ :g

1

^ : : :^ :g

m

^ :f

1

^ : : :^ :f

n

is consistent, otherwise two applications of the necessity rule N would yield a

contradiction. This shows that A is consistent.

Now let � be a maximal consistent set which includes A. By lemma 4.2,

since both

�

1

(�

0

1

;�

1

) � � and �

2

(�

2

;�

0

2

) � �;

the set � is a world of W

0

and

R

0

(�

1

;�;�

0

1

) and R

0

(�;�

0

2

;�

2

):

Uniqueness is due to the fact thatM

0

is an S-model (cf. proposition 3.16). 2

The con�guration of the worlds involved of this proposition is illustrated by

the following �gure.

u�

1

�

2

�

�

0

2

�

0

1

u

0

�

?

0
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For two elements u = (�

1

;�

2

) and u

0

= (�

0

1

;�

0

2

) of T such that u 6 u

0

, � is

the unique world of W

0

such that

�

1

�� � �

0

1

and � ��

0

2

� �

2

:

We can then de�ne a function � from the set W of intervals [u; u

0

] of T to the

set of worlds W

0

such that �[u; u

0

] is the world � given by proposition 4.6.

The two following properties establish a close link between the two accessi-

bility relations R

0

and R. The �rst one means that � is a homomorphism from

(W;R) to (W

0

; R

0

).

Proposition 4.7 Given three points u, u

0

, and u

00

of T such that u 6 u

0

6 u

00

(i.e. R([u; u

0

]; [u

0

; u

00

]; [u; u

00

]) then R

0

(�[u; u

0

]; �[u

0

; u

00

]; �[u; u

00

]).

Proof: The points u, u

0

, and u

00

are three pairs of worlds (�

1

;�

2

), (�

0

1

;�

0

2

),

and (�

00

1

;�

00

2

) respectively and we have, by de�nition of �,

� R

0

(�

1

; �[u; u

0

];�

0

1

),

� R

0

(�

0

1

; �[u

0

; u

00

];�

00

1

),

� R

0

(�

1

; �[u; u

00

];�

00

1

),

that is,

�

1

� �[u; u

0

] � �

0

1

; �

0

1

� �[u

0

; u

00

] � �

00

1

; and �

1

� �[u; u

00

] � �

00

1

:

We have to show that �[u; u

0

] � �[u

0

; u

00

] � �[u; u

00

]. Let then f and g be two

sentences of �[u; u

0

] and �[u

0

; u

00

] respectively. There is a constant b of B such

that (` = b) belongs to �

1

and then

(` = b; f) 2 �

0

1

and ((` = b; f); g) 2 �

00

1

:

By A2, this implies

(` = b; (f ; g)) 2 �

00

1

and, by L1,

:(` = b;:(f ; g)) 2 �

00

1

Since (` = b) 2 �

1

and �

1

� �[u; u

00

] � �

00

1

, this means that (f ; g) must be in

�[u; u

00

]. Therefore, we have �[u; u

0

] � �[u

0

; u

00

] � �[u; u

00

] as expected. 2

A converse link exists between the relations R

0

and R.

Proposition 4.8 Let u and u

00

be two points of T such that u 6 u

00

and let

�

1

and �

2

be two worlds of W

0

such that R

0

(�

1

;�

2

; �[u; u

00

]); then there is an

element u

0

of T such that u 6 u

0

6 u

00

and �[u; u

0

] = �

1

, �[u

0

; u

00

] = �

2

.
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Proof: The points u and u

00

are two pairs (�

1

;�

2

) and (�

00

1

;�

00

2

) respectively.

By de�nition of T , we have

�

1

��

2

� �

?

0

and �

00

1

��

00

2

� �

?

0

and, by de�nition of �,

�

1

� �[u; u

00

] � �

00

1

and �[u; u

00

] ��

00

2

� �

2

:

Consider two worlds �

1

and �

2

such that R

0

(�

1

;�

2

; �[u; u

00

]),

�

1

� �

2

� �[u; u

00

]:

By the associativity property (proposition 4.3), there is a world �

0

1

such that

�

1

� �

1

� �

0

1

and �

0

1

� �

2

� �

00

1

and, similarly, there is a world �

0

2

such that

�

1

��

0

2

� �

2

and �

2

��

00

2

� �

0

2

:

The con�guration of all these worlds can be depicted as follows:

�

?

0

�

1

�

00

1

u

�

00

2

�

2

u

00

�

1

�

2

�

0

1

�

0

2

We have to show that u

0

= (�

0

1

;�

0

2

) is an element of T and that u 6 u

0

6 u

00

.

By proposition 4.6 it will follow immediately that

�[u; u

0

] = �

1

and �[u

0

; u

00

] = �

2

:

There exist constants b

1

, b

00

2

, c

1

, and c

2

of B such that

(` = b

1

) 2 �

1

; (` = b

00

2

) 2 �

00

2

; (` = c

1

) 2 �

1

; and (` = c

2

) 2 �

2

:

Let f and g be two sentences of �

0

1

and �

0

2

respectively. We have, on the one

hand, (f ; ` = c

2

) 2 �

00

1

and

((f ; ` = c

2

); ` = b

00

2

) 2 �

?

0

:

On the other hand, (` = c

1

; g) 2 �

2

and

(` = b

1

; (` = c

1

; g)) 2 �

?

0

:

We also have (` = c

1

; ` = c

2

) 2 �[u; u

00

], (` = b

1

; (` = c

1

; ` = c

2

)) 2 �

00

1

, and

((` = b

1

; (` = c

1

; ` = c

2

)); ` = b

00

2

) 2 �

?

0

:
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Using axioms A2 and L2 and the rule MONO yields

(f ; ` = c

2

+ b

00

2

) 2 �

?

0

;

(` = b

1

+ c

1

; g) 2 �

?

0

;

(` = b

1

+ c

1

; ` = c

2

+ b

00

2

) 2 �

?

0

:

Then, by the following theorem (cf. section 3.2.4),

T7: (` = x; h

1

) ^ (h

2

; ` = y) ^ (` = x; ` = y)) (h

2

^ ` = x; h

1

^ ` = y),

we obtain

(f ^ ` = b

1

+ c

1

; g ^ ` = c

2

+ b

0

2

) 2 �

?

0

and this implies that (f ; g) is a sentence of �

?

0

. Hence, �

0

1

��

0

2

� �

?

0

, that is,

u

0

= (�

0

1

;�

0

2

) is an element of T .

It is easily checked that u 6 u

0

6 u

00

. Since �

1

� �

1

� �

0

1

, the sentence

(` = b1 + c

1

) belongs to �

0

1

; this means that u 6 u

0

. Since �

0

1

� �

2

� �

00

1

, the

sentence (` = b

1

+ (c

1

+ c

2

)) belongs to �

00

1

and this implies that u

0

6 u

00

. 2

4.3.4 Construction of M

Using the temporal domain T and the mapping � de�ned previously, we can

now construct an model M = (W;R;D; I). M is obtained from the initial

modelM

0

= (W

0

; R

0

; D

0

; I

0

) as follows:

� (W;R) is the interval frame de�ned by T ,

� the domain D is the same as D

0

,

� the interpretation function I is de�ned by

I(s; [u; u

0

]) = I

0

(s; �[u; u

0

]);

for any symbol s of L and any interval [u; u

0

] of W .

Since the domains of M and M

0

are the same, an M-valuation v is also

an M

0

-valuation. Under such a valuation, the interpretation of terms and the

satisfaction of formulas of L in the two models are linked by the following

theorem. To avoid confusion, the functions assigning values to terms in the two

models are denoted I

v

[u;u

0

]

for M and J

v

�

forM

0

.

Theorem 4.9 Let [u; u

0

] be an interval of W and let t be a term and f a

formula of L then

I

v

[u;u

0

]

(t) = J

v

�[u;u

0

]

(t)

M; [u; u

0

]; v j= f i� M

0

; �[u; u

0

]; v j= f:
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Proof: The �rst part is shown by an easy induction on terms. The second

relation is proved by induction on formulas. The case of atomic propositions,

propositional connectives and existential formulas is straightforward. Proper-

ties 4.7 and 4.8 complete the induction in the case of chop formulas. 2

The following properties implies that M is a model of �

0

.

Proposition 4.10 There is an interval [u; u

0

] of W such that �[u; u

0

] = �

?

0

.

Proof: By reexivity (proposition 4.4), there are two worlds �

1

and �

2

of W

0

such that

�

1

� �

?

0

� �

?

0

and �

?

0

��

2

� �

?

0

with, in addition, (` = 0) 2 �

1

and (` = 0) 2 �

2

. Then both (�

1

;�

?

0

) and

(�

?

0

;�

2

) are elements of T . We can then set

u = (�

1

;�

?

0

) and u

0

= (�

?

0

;�

2

):

There is a constant b such that (` = b) belongs to �

?

0

then by D3, (` = 0+b) 2 �

?

0

this means that u 6 u

0

. By de�nition of �, it is clear that �

?

0

= �[u; u

0

] (see

proposition 4.6). 2

M is then a model based on the interval frame (W;R) de�ned by T . By

the preceding two propositions, �

0

is satis�ed in an interval [u; u

0

] of W . It

remains to show thatM is actually an interval model. That is, we have to �nd

a duration domain (D;+; 0) and a measure m such that T , D, and m form a

basis forM as de�ned in 4.1.3. This is straightforward.

The rigid symbol + of L in M de�nes a binary operation we also denote

by + in D. Similarly, the interpretation of the rigid constant 0 is an element 0

of D. All the formulas D1{D5 are valid in M

0

so by theorem 4.9 they are also

valid in M. This clearly implies that (D;+; 0) is a duration domain.

The only possible de�nition for the measure m is to set

m[u; u

0

] = I(`; [u; u

0

]);

for any interval [u; u

0

] of W . Due to the validity of L1, L2, and L3, the con-

straints M1{M4 are satis�ed.

4.3.5 S

0

is complete

The two following theorems summarize the essential result of this chapter.

Theorem 4.11 If �

0

is a consistent set of sentences with respect to S

0

then �

0

has an interval model M.

Proof: By completeness of S, there is an S-modelM

0

which satis�es �

0

. An

interval modelM can be derived fromM

0

as indicated before and M satis�es

�

0

. 2
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Theorem 4.12 If a formula f of L is valid in K then it is a theorem of S

0

.

Proof: Consider a formula f which is not provable in S

0

and let g be the

universal closure of f . As in theorem 3.17, g is not provable either. Then the

set �

0

= f:gg is consistent. By the preceding theorem, �

0

is satis�ed in an

interval model M. The formula :g is then satis�ed in K, so g and f are not

valid in interval models. 2

4.4 Notes

The results presented in section 4.3 rely on a particular choice for the construc-

tion of the temporal domain T from the S-modelM

0

and the state �

?

0

. Yet, the

completeness result itself can be established similarly with di�erent de�nition

of T . For example, T can be chosen as the set of the elements of D smaller

in the natural order than the length of �

?

0

. There are also di�erent possible

equivalent de�nition for the order on T .

However, all these various constructions rely on the fundamental proposi-

tions 4.6, 4.7 and 4.8 (with possibly minor variations). The two properties of

associativity and reexivity (propositions 4.3 and 4.4) are also essential.

In section 4.1, interval models are built from a domain D where axioms

D1 to D5 are valid. This constraint can be relaxed somewhat. It is su�cient

to require that D contains a subset where D1{D5 are valid, in other words D

includes a duration domain. It is possible to adapt S

0

to this generalization of

models using relativization.

For this we can introduce a new rigid one place predicate symbol d. In-

tuitively d(x) can be interpreted as \x is a possible duration". Then we can

replace D1{D5 with the following axioms:

D1': d(x) ^ d(y) ^ d(z)) (x+ y) + z = x+ (y + z)

D2':

d(x)) x+ 0 = x

d(x)) 0 + x = x

D3':

d(x) ^ d(y) ^ d(z)) (x+ y = x+ z ) y = z)

d(x) ^ d(y) ^ d(z)) (y + x = z + x) y = z)

D4': d(x) ^ d(y)) (x+ y = 0) x = 0 ^ y = 0)

D5':

d(x) ^ d(y)) (9z)(d(z) ^ (x+ z = y _ y + z = x))

d(x) ^ d(y)) (9z)(d(z) ^ (z + x = y _ z + y = x));

and add the axioms D0

0

which speci�es that 0 is a possible duration:

D0': d(0):

In the same way, the modal axiom L2 has to be modi�ed:

L2': d(x) ^ d(y)) (` = x+ y , (` = x; ` = y))
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and we need to specify that ` is always a duration:

L0': d(`):

Then the new proof system can be shown to be complete for the extended class

of interval models. It su�ces to adapt the construction of the order on T . The

interpretation of the rigid symbol d de�nes a subset E of D such that (E;+; 0)

is a duration domain.

If �

0

is a consistent set of sentences with respect to S

0

, theorem 4:11 shows

that �

0

is satis�ed by an interval model M. This result can be re�ned by

examining the construction of M

0

and of M:

� both the duration domain and the temporal domain ofM are countable,

� the temporal domain T of M has a smallest element t

min

and a largest

element t

max

and �

0

is satis�ed in the interval [t

min

; t

max

].



Chapter 5

Examples of applications

5.1 Extensions of S

0

In this chapter, we give examples of applications and extensions of the preceding

completeness results. In order to simplify the presentation, we use standard

abbreviations:

� true denotes an arbitrary tautology,

� (x 6= y) stands for :(x = y),

� 3f for ((true; f); true) and

� 2f for :3:f .

Informally, 3 and 2 can be interpreted as \in some sub-interval" and \in all

sub-interval" respectively (see [14]).

We will consider several extensions of S

0

obtained by adding new axioms.

If S

00

is such a proof system then S

00

is consistent if no contradiction can be

derived in S

00

: there is no sentence f such that

`

S

00

f and `

S

00

:f:

If S

00

is consistent, we can consider sets of sentences which are consistent or

maximal consistent with respect to S

00

.

Assume then S

00

is consistent. In this case, any set �, consistent w.r.t. S

00

,

can be extended to a set �

?

maximal consistent w.r.t. S

00

. The set �

?

is also

consistent with respect to S

0

and by theorem 4.11 there is an interval modelM

which satis�es �

?

. Furthermore, this model can be obtained so that

� it is based on a countable temporal domain T ,

� T has a smallest t

min

and a largest t

max

element,

� �

?

is satis�ed in [t

min

; t

max

].
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In any proof system which includes the necessity rule N, we have

if ` f then ` 2f;

for any formula f . This holds for S

0

and all its extensions, in particular for S

00

.

By construction, all the theorems of S

00

must be in �

?

then for any theorem

f of S

00

, [t

min

; t

max

] satis�es 2f . It follows easily that f is satis�ed in any

sub-interval [t; t

0

] of [t

min

; t

max

], that is in any interval of the modelM.

In summary, if S

00

is a consistent axiomatic system which extends S

0

and �

is a set of sentences consistent w.r.t. S

00

, then � is satis�ed in an interval model

M where all the theorems of S

00

are valid.

This result will be used in the sequel to show completeness of proof sys-

tems corresponding to various sub-classes of interval models. First, we consider

classes of interval models based on dense temporal domains.

5.2 Axiomatizations of dense time

A temporal domain (T;6) is dense if 6 is a dense order on T : for any instants

t and t

0

of T such that t < t

0

there exists an instant u such that t < u < t

0

. We

denote by K

dense

the class of interval models based on dense temporal domains.

The addition of a single axiom to S

0

provides an adequate proof system for

K

dense

. This axiom is a modal one, similar to L1{L3. It relates the chop

operator with the length of intervals.

From another point of view, it is possible to express density assumptions

as �rst-order properties of the duration domain. Due to constraint M4 on

measures and the presence of axiom L2 in the proof system, the addition on

a duration domain D and the order on the associated temporal domain T are

tightly related. Any interval model where the natural order on D is dense must

also have a dense temporal domain.

5.2.1 Dense temporal domains

Let M be an interval model based on a dense temporal domain (T;6). It is

clear that the following sentence is valid in M:

L4: ` 6= 0) (` 6= 0 ; ` 6= 0).

This simply says that any non-point interval [t; t

0

] can be split into two non-

point intervals [t; u] and [u; t

0

]. Note that the converse of L4 holds in any interval

model and can be proved in S

0

using D4 and L2.

Let S

0

+L4 be the new proof system obtained by adding L4 to S

0

. This new

system is sound for dense-timed interval models. This also means that S

0

+L4

is consistent. Using the preceding remark it is easy to show that S

0

+ L4 is

complete for K

dense

. If � is consistent w.r.t S

0

+ L4 there is an interval model

M where � is satis�ed and where axiom L4 is valid. This implies immediately

that the temporal domain T of M is dense and M is in the class K

dense

. By

the same argument as in theorem 4.12 S

0

+ L4 is complete for K

dense

.
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5.2.2 Dense duration domains

We can add to the proof system S

0

the following axiom

D6: (8x)(x 6= 0) (9y)(9z)(x = y + z ^ y 6= 0 ^ z 6= 0)).

If a duration domain D satis�es this axiom every non null duration is the sum

of two non-null durations. As a consequence, the natural order on D is a dense

ordering. We say that a duration domain which satis�es D6 is dense. We denote

by K

0

dense

the class of interval models based on a dense duration domain, that

is where D6 is valid. As previously, S

0

+D6 is the axiomatic system obtained

by adding D6 to S

0

.

K

0

dense

is a sub-class of K

dense

. This is a consequence of constraint M4 on

measures and can be shown by deriving L4 in S

0

+D6:

1 ` = x+ y ) (` = x; ` = y) L2, PC

2 (x = 0; ` = y)) x = 0 R

3 x 6= 0) :(x = 0; ` = y) PC, 2

4 (` = x; ` = y) ^ :(x = 0; ` = y))

(` = x ^ x 6= 0; ` = y) A1

5 ` = x ^ x 6= 0) ` 6= 0 PC, Ident

6 (` = x; ` = y) ^ x 6= 0) (` 6= 0; ` = y) Mono, PC, 3{5

7 (` 6= 0; ` = y) ^ y 6= 0) (` 6= 0; ` 6= 0) Same as 2{6

8 ` = x+ y ^ x 6= 0 ^ y 6= 0) (` 6= 0; ` 6= 0) PC, 1, 6, 7

9 (9x)(9y)(` = x+ y ^ x 6= 0 ^ y 6= 0)) (` 6= 0; ` 6= 0) G, 8, PC

10 ` 6= 0) (9x)(9y)(` = x+ y ^ x 6= 0 ^ y 6= 0) D6, Q2

11 ` 6= 0) (` 6= 0; ` 6= 0) PC, 9, 10.

The use of Q2 at line 10 is permitted because the formula is chop-free.

On the other hand, D6 is not provable in S

0

+ L4. It is not di�cult to

construct an interval model where the temporal domain is dense and the dura-

tion domain is not. For example, it su�ces to consider a temporal domain T

reduced to a single point and take D = N. T is trivially dense but D is not.

Hence, K

0

dense

is a strict sub-class of K

dense

.

Obviously, S

0

+D6 is complete and sound for K

0

dense

. Any set of sentences

consistent w.r.t S

0

+D6 is satis�ed in a interval model where all the theorems

of S

0

+ D6 are valid, in particular D6 is valid. By de�nition, such a model

belongs to K

0

dense

.

More generally, various assumptions on duration domains can be considered.

If these assumptions can be expressed in �rst order logic, they can be added

as �rst-order axioms to D1{D5. This forms a �rst order theory D and a class

K

D

of interval models can be associated with D in a natural way. An interval
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model M belongs to K

D

if its duration domain is a �rst-order model of D or,

equivalently, if all the axioms of D are valid in M.

Provided D is consistent as a �rst order theory, K

D

is non-empty. The proof

system S

0

+ D obtained by adding to S

0

all the new assumptions on duration

domains is consistent. It is also trivially sound and complete for K

D

.

5.3 Towards traditional ITL

5.3.1 From states to intervals

Our notion of interval model may seem a bit awkward to represent real real-

time systems. A more intuitive and commonly adopted view is to introduce a

notion of state which represent an instantaneous observation of a system and

to specify how the state can evolve with time.

For example, assume one observes a simple system which consists of two

variables X

1

and X

2

taking values in a set E. The instantaneous state of the

system at an instant t is then the pair of values (x

1

; x

2

) of the two variables X

1

and X

2

. The behaviour of the system over a period of time [0; t] is completely

determined by two functions:

�

X

1

: [0; t]! E and

�

X

2

: [0; t]! E;

where

�

X

j

(u) is the value of the variable X

j

at instant u.

In its traditional form [21], ITL adopts a similar point of view:

� A system is composed of a collection of variables fX

j

j j 2 Jg.

� A state is an instantaneous observation of the values carried by these

variables.

� An evolution of the system over a period [0; t] is given by a collection of

functions f

�

X

j

j j 2 Jg from [0; t] to some set E

1

.

In order to specify such systems in an interval-based formalism, traditional ITL

adopts a simple semantic convention: the interpretation of a variable X

j

in an

interval [u; v] is its value at the beginning of the interval, namely

�

X

j

(u). This

is similar to [25].

5.3.2 Interval models based on states

We now consider a new class K

states

of interval models which obey this seman-

tical constraint. A simple extension of S

0

provides a complete and proof system

for K

states

.

For simplicity, we assume that the state of a system is represented by a

countable collection of boolean values. We consider an interval language L

1

In traditional ITL time is discrete and a �nite sequence s

0

; : : : ; s

t

of states is used instead

of a collection of functions [21].
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which includes a countable set of variables fX

j

j j 2 Jg as exible propositional

symbols. The proposition X

j

are called state variables .

Let M = (W;R;D; I) be an interval model for L based on a temporal do-

main T . The above semantical convention translates to the following constraint

on I : for any interval [t; t

0

] and any state variable X

j

,

I(X

j

; [t; t

0

]) = I(X

j

; [t; t]): (5.1)

With such a constraint, the function

�

X

j

representing the evolution of the vari-

able X

j

can be simply de�ned by

�

X

j

(t) = I(X

j

; [t; t]):

In other word, we have identi�ed the instant t with the point interval [t; t].

We call state-based model any interval modelM which satis�es constraint

5.1 and we denote by K

states

the class of state-based models.

5.3.3 Associated proof system

A new proof system for K

states

is obtained by adding to S

0

the following axioms:

A3:

(X

j

; true) ) X

j

(:X

j

; true) ) :X

j

for every state variable X

j

. These new axioms allow us to derive various theo-

rems. For example, the two following ones

X

j

, (X

j

^ ` = 0; true) and :X

j

, (:X

j

^ ` = 0; true)

which correspond directly to constraint 5.1.

Before deriving these formulas, we �rst show that the sentence (` = 0; true)

is a theorem of S

0

:

1 ` = x) ` = 0+ x PC, D2

2 ` = 0 + x) (` = 0; ` = x) L2

3 ` = x) (` = 0; true) Mono, PC, 1, 2

4 (8x)(` = x) (` = 0; true)) G, 3

5 (9x)(` = x)) (` = 0; true) PC, 4

6 (9x)(` = x) Ident, PC

7 (` = 0; true) MP, 5, 6

We can use this theorem to derive the equivalence X

j

, (X

j

^ ` = 0; true):

8 X

j

^ ` = 0) X

j

Tauto

9 (X

j

^ ` = 0; true)) (X

j

; true) Mono, 8

10 (X

j

; true)) X

j

A3

11 (X

j

^ ` = 0; true)) X

j

PC, 9, 10

12 (:X

j

; true)) :X

j

A3

13 X

j

) :(:X

j

; true) PC, 12

14 :(:X

j

; true) ^ (` = 0; true)) (X

j

^ ` = 0; true) A1, PC, Mono

15 X

j

) (X

j

^ ` = 0; true) PC, 7, 13, 14

16 X

j

, (X

j

^ ` = 0; true) PC, 11, 15.
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The other equivalence can be derived in the same way, by replacing X

j

with

:X

j

in the proof.

We call state formula any formula built from state variables and proposi-

tional connectives. For example, X

1

^ :X

2

, X

3

^ X

4

) :X

1

_ X

2

are state

formulas. By an easy induction, axiom A3 generalizes to any state formula Y :

`

S

0

+A3

(Y ; true)) Y and `

S

0

+A3

(:Y ; true)) :Y:

Re-using the same derivation as above with Y instead of X

j

shows that the two

following sentences are theorems of K

states

:

Y , (Y ^ ` = 0; true) and :Y , (:Y ^ ` = 0; true):

Hence, state formulas behave just like state variables and a function

�

Y can

be associated with any state formula Y in the same way as

�

X

j

is associated

with the state variable X

j

. If M is an interval model of K

states

with temporal

domain T then for any instant t,

�

Y (t) = 1 i� [t; t] j= Y .

5.3.4 Soundness and completeness

If an interval model M satis�es condition 5.1, then A3 is valid in M. Indeed,

if [t; t

0

] is an arbitrary interval of M such that

[t; t

0

] j= (X

j

; true)

then there is a point u such that

t 6 u 6 t

0

and [t; u] j= X

j

;

that is I(X

j

; [t; u]) = 1. Then I(X

j

; [t; t]) = 1 and I(X

j

; [t; t

0

]) = 1, hence

[t; t

0

] j= X

j

:

The validity of the other half of A3 is as straightforward. Hence, S

0

+ A3 is

sound for the class K

states

.

Any set of sentences � consistent w.r.t. S

0

+ A3 is satis�ed in an interval

model M where axiom A3 is valid. It is routine to check that condition 5.1 is

satis�ed by M.

Let X

j

be a state variable and [t; t

0

] an interval of M. If I(X

j

; [t; t

0

]) = 1

then [t; t

0

] satis�es X

j

. By the equivalence above,

[t; t

0

] j= (` = 0 ^X

j

; true);

this implies that I(X

j

; [t; t]) = 1. Similarly if I(X

j

; [t; t

0

]) = 0 then [t; t

0

] satis�es

:X

j

,

[t; t

0

] j= (` = 0 ^ :X

j

; true);

and I(X

j

; [t; t]) = 0. We can conclude that S

0

+ A3 is complete; M is a state-

based model.
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5.4 Compactness and �nite variability

Another consequence of theorem 4.11 is a property analogous to the compact-

ness theorem of �rst order logic [6]. As an application of this theorem we study

the problem of expressing �nite variability in ITL.

5.4.1 Compactness

The compactness theorem for ITL is the following.

Theorem 5.1 Let L be an ITL language and � be a set of sentences of L.

� has an interval model if and only if every �nite subset of � has an interval

model.

Proof: One direction of the theorem is obvious. If M is an interval model of

� then every �nite subset of � is satis�ed in M.

For the other direction, let � = ff

1

; : : : ; f

n

g be a �nite subset of �. Since

� has an interval model, the conjunction (f

1

^ : : :^ f

n

) is satis�able in K. This

means that

6`

S

0

:(f

1

^ : : :^ f

n

)

for S

0

is sound for interval models. Then � is consistent with respect to S

0

and,

by theorem 4.11, � has an interval model. 2

5.4.2 Finite variability

Most formalisms proposed for modelling and reasoning about real-time systems

are dedicated to digital systems . The temporal behaviour of such systems is not

continuous but consist of a succession of discrete steps representing a change

in the state of the system. Commonly, real-time formalisms assume �nite vari-

ability

2

: only a �nite number of steps can be performed within a �nite period

of time [8, 22, 2]. So called Zeno's behaviours [2] where a system performs an

in�nite sequence of steps while time advances closer and closer to a limit are

then rejected.

In the duration calculus [8, 14], �nite variability ensures that the concept

of duration is well de�ned. A variant proposed in [15] achieves the same e�ect

with a less stringent condition.

In this section, we investigate the relation between �nite variability and

ITL. Various strong forms of the assumption can be expressed in ITL, such has

having variability n or at least n. However �nite variability itself cannot be

expressed in ITL. This can be shown using the compactness theorem.

Finite variability in interval models

Our starting point is the class of K

states

of state-based models based on a

countable set fX

j

j j 2 Jg of state variables. Syntactically X

j

is a exible

proposition in an interval language L.

2

Terminology varies. Finite variability is called divergence in [16] whereas divergence des-

ignate systems which violate �nite variability in [15].



62 EXAMPLES OF APPLICATIONS

Let M be a model of K

states

with temporal domain T . By de�nition, the

interpretation function I of M is such that,

I([t; t

0

]; X

j

) = I([t; t]; X

j

)

and we can associate with X

j

a function

�

X

j

: T ! f0; 1g de�ned by

�

X

j

(t) = I([t; t]; X

j

):

For any natural number n, we say that X

j

has variability n in an interval

[t; t

0

] ofM if [t; t

0

] can be decomposed in n+1 sub-intervals where the function

�

X

j

is constant and has di�erent values in successive intervals. In other words,

the value of

�

X

j

changes exactly n times in [t; t

0

]. We also say that X

j

has

variability at least n in [t; t

0

] if the value of

�

X

j

changes at least n times in [t; t

0

].

More formally, X

j

has variability n in [t; t

0

] if there exist n + 2 elements

t

0

; : : : ; t

n+1

of T such that

� t = t

0

< t

1

< : : : < t

n

< t

n+1

= t

0

,

� for all i in 0; : : : ; n,

�

X

j

(u) =

�

X

j

(t

i

) if t

i

6 u < t

i+1

.

� for all i in 1; : : : ; n,

�

X

j

(t

i�1

) 6=

�

X

j

(t

i

).

X

j

has variability at least n if there are n elements t

1

; : : : ; t

n

of T such that

� t 6 t

1

< t

2

< : : : < t

n

< t

0

,

� for all i in 1; : : : ; n� 1,

�

X

j

(t

i

) 6=

�

X

j

(t

i+1

).

Previously, intervals were only considered as pairs of instants. In the above

de�nitions, we have adopted a slightly di�erent point of view: [t; t

0

] is inter-

preted as the set of instants u such that t 6 u < t

0

. We then say that u is

in [t; t

0

] if t 6 u < t

0

. Point-intervals [t; t] are then empty and X

j

has not

variability n in [t; t].

A state variableX

j

is said to have �nite variability in [t; t

0

] if it has variability

n for some natural number n. If X

j

has variability at least n, then either X

j

has �nite variability m for m > n or X

j

has in�nite variability in [t; t

0

].

Further distinction can be made between di�erent forms of in�nite variabil-

ity (see [15]). An extreme case is where

�

X

j

\changes everywhere", for example

if

�

X

j

is the the function from the real interval [0; 1] to f0; 1g which assigns 1 to

rational numbers and 0 to irrational numbers. In other situations, X

j

can have

in�nite variability in [t; t

0

] but �nite variability in every strict pre�x or su�x of

[t; t

0

].
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Expressing variability constraints

The properties \X

j

has variability n

00

and \X

j

has variability at least n" can

be expressed in ITL for any �xed n. There are formulas A

n

(X

j

) and B

n

(X

j

)

such that for any interval [t; t

0

] of a model M of K

states

,

� [t; t

0

] j= A

n

(X

j

) i� X

j

has variability n in [t; t

0

] and

� [t; t

0

] j= B

n

(X

j

) i� X

j

has variability at least n in [t; t

0

].

In order to de�ne A

n

(X

j

) we use the following abbreviation. For an arbi-

trary state formula Y , we set

dY e , ` 6= 0 ^ :(true ; :Y ^ ` 6= 0):

Let M be a model of K

states

and [t; t

0

] be an interval of M, then [t; t

0

] satis�es

dY e if and only if [t; t

0

] is non-empty and for any u in [t; t

0

], [u; t

0

] satis�es Y .

Therefore, if [t; t

0

] satis�es dY e,

�

Y (u) is equal to 1 (i.e. true) for any u such

that t 6 u < t

0

.

X

j

has variability 0 on [t; t

0

] if it is either true everywhere or false everywhere

on [t; t

0

]. This can be expressed by the formula

dX

j

e _ d:X

j

e:

Similarly,X

j

has variability 1 on [t; t

0

] if there is an instant u in [t; t

0

] such that

either X

j

is constantly true on [t; u] and false on [u; t

0

] or, conversely, constantly

false on [t; u] and true and [u; t

0

]. This can be formalized as

(dX

j

e ; d:X

j

e) _ (d:X

j

e ; dX

j

e):

The formula for \X

j

has variability n" is obtained in the same way as a dis-

junction of two chop-formulas where d:X

j

e and dX

j

e altern.

More precisely, the fact thatX

j

has variability n is expressed by the formula

A

n

(X

j

) de�ned by

A

n

(X

j

) , A

+

n

(X

j

) _ A

�

n

(X

j

);

where A

+

n

(X

j

) and A

�

n

(X

j

) are constructed recursively as follows:

A

+

0

(X

j

) , dX

j

e

A

�

0

(X

j

) , d:X

j

e

A

+

n+1

(X

j

) , (dX

j

e ; A

�

n

(X

j

))

A

�

n+1

(X

j

) , (d:X

j

e ; A

+

n

(X

j

)):

For expressing thatX

j

has variability at least n on [t; t

0

], it su�ces to specify

that [t; t

0

] can be divided in n+ 1 successive intervals where X

j

is alternatively

true and false. For example, variability at least two is expressed by

(X

j

; (:X

j

; X

j

))_ (:X

j

; (X

j

; :X

j

)):
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The sentences B

n

(X

j

) are de�ned in the same way as A

n

(X

j

):

B

n

(X

j

) , B

+

n

(X

j

) _ B

�

n

(X

j

);

where B

+

n

(X

j

) and B

�

n

(X

j

) are constructed recursively as follows:

B

+

0

(X

j

) , X

j

B

�

0

(X

j

) , :X

j

B

+

n+1

(X

j

) , (X

j

; B

�

n

(X

j

))

B

�

n+1

(X

j

) , (:X

j

; B

+

n

(X

j

)):

It is clear that variability n implies variability at least n, the sentence

A

n

(X

j

) ) B

n

(X

j

) is valid in K

states

. This can be derived using the proof

system S

0

+A3 (in fact S

0

is su�cient).

For any state formula Y we have

`

S

0

+A3

dY e ) Y:

The derivation sketched below uses the fact that (` = 0; true) is a theorem.

1 :(true;:Y ^ ` 6= 0)) :(` = 0;:Y ^ ` 6= 0) PC, Mono

2 :(` = 0;:Y ^ ` 6= 0) ^ (` = 0; true)) (` = 0; Y _ ` = 0) A1, etc.

3 (` = 0; Y _ ` = 0)) Y _ ` = 0 L3

4 dY e ) Y PC, 1-3.

Using this theorem with X

j

and :X

j

for Y and the monotonicity rule yields:

`

S

0

+A3

A

n

(X

j

)) B

n

(X

j

):

Of course, we also have

`

S

0

+A3

B

m

(X

j

)) B

n

(X

j

);

provided n 6 m.

Finite variability is not expressible in ITL

Although variability n where n is �xed can be expressed in ITL, �nite variability

itself cannot. This is a consequence of the following proposition.

Proposition 5.2 Let L be an ITL language with state variables fX

j

j j 2 Jg,

X

k

a state variable of L and � a set of sentences of L. If for any natural number

n, there exists a state-based model M

n

and an interval [t; t

0

] of M

n

such that

� � is satis�ed in [t; t

0

],

� X

k

has variability m for some m > n,

then there is a state-based model M and an interval [t; t

0

] of M such that

� � is satis�ed in [t; t

0

],
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� X

k

has in�nite variability in [t; t

0

].

Proof: Consider the set of sentences �

0

obtained by adding to � all the in-

stances of axiom A3:

A3:

(X

j

; true) ) X

j

(:X

j

; true) ) :X

j

and all the sentences B

m

(X

k

) for m 2 N.

Let � be a �nite subset of �

0

and let n be the greatest index such that

B

n

(X

k

) belongs to �. By assumption there is a state-based modelM

n

and an

interval [t; t

0

] ofM

n

such that � is satis�ed in [t; t

0

], X

k

has �nite variabilitym

in [t; t

0

], and m > n. Then,

� � � � is satis�ed in [t; t

0

],

� any instance of A3 is satis�ed in [t; t

0

] since A3 is valid in state-based

models,

� all the sentences of the form B

p

(X

k

) for p 6 m are satis�ed in [t; t

0

].

As a consequence, [t; t

0

] satis�es �.

Using the compactness theorem 5.1, we can conclude that �

0

has an interval

model M. Since every instance of A3 is in �

0

, M belongs to the class K

states

.

Let [t; t

0

] be an interval ofM which satis�es �

0

. Since all the formulas B

n

(X

k

)

are in �

0

, X

k

has variability at least n for arbitrary large n. Therefore X

k

has

in�nite variability in [t; t

0

]. Obviously � is satis�ed in [t; t

0

] 2

Roughly speaking, the previous proposition means that any set of sentences

� which is satis�ed by intervals where X

k

has arbitrarily large �nite variability

is also satis�ed by some interval where X

k

has in�nite variability. The only way

to forbid in�nite variability is to put a bound on the variability of X

k

. This

means that �nite variability cannot be expressed in ITL.

The situation is somewhat similar to �rst-order logic. There is no set of

sentences of �rst-order logic whose models are precisely all the �nite models.

Our proposition 5.2 above is the counterpart of a well-known result: if a �rst

order theory has arbitrarily large �nite models that it has an in�nite model

(Corollary 2.1.5, page 65 in [6]).





Chapter 6

Conclusion

In this report, we have presented two completeness results for �rst order interval

temporal logic. These results are quite general and extend to various axiomatic

systems for ITL as illustrated in chapter 5. They also allow us to prove a

fundamental limitation of ITL: its inability to express �nite variability.

We hope to extend the techniques developed to formal systems for the du-

ration calculus. This requires to generalize the integration of real functions to

functions de�ned on arbitrary (dense) temporal domain T .

The axiomatic systems S and S

0

are intended to be relatively close to ex-

isting proof systems presented in the literature [21, 26]. The completeness of

S

0

for interval models delimitates the power of these proof systems. However,

the construction does not guarantee completeness for the standard semantics of

ITL or the duration calculus. These semantics are based on a particular choice

of temporal domain T and of duration domain D. The techniques presented in

this document do not apply easily to such cases.

However, the kind of construction developed could �nd some interesting ap-

plications, for example does the suppression of L1 from S provide a complete

proof systems for ITL in general, that is, for the class of all possible worlds

models. Also, variants of the system S

0

could permit to consider in�nite inter-

vals of the form [t;1). This would enrich considerably the expressive power of

ITL in particular by allowing liveness and fairness property to be speci�ed.
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