
Chapter 14

FORMAL MODELING AND ANALYSIS OF
THE MODBUS PROTOCOL∗

Bruno Dutertre

Abstract Modbus is a communication protocol widely used in SCADA systems and dis-
tributed control applications. We present formal specifications of Modbus de-
veloped using PVS, a generic theorem prover, and SAL, a toolset for automatic
analysis of state-transition systems. Both formalizations are based on the Mod-
bus Application Protocol Specification [9], the application-layer part of the Mod-
bus standard, which specifies the format of Modbus command and response mes-
sages. The goal of the formal modeling was the study of automated methods for
systematic and extensive testing of Modbus devices.

Keywords: SCADA Protocol, Modbus, Test-case Generation, Formal Methods

1. Introduction
A distributed digital control system—sometimes called a SCADA system—

is a network of devices and computers for monitoring and controlling industrial
processes such as oil production and refining, electric power distribution, and
automated plants. The network requirements for these applications include
real-time constraints, resilience to electromagnetic noise, and reliability that
are different from those of traditional communication networks. Historically,
the manufacturers of control systems have developed specialized and often
proprietary networks and protocols, and kept them isolated from enterprise
networks and the Internet.

This historical trend is now being reversed. Distributed control applica-
tions are migrating to networking standards such as TCP/IP and Ethernet. This

∗This study was supported by the Institute for Information Infrastructure Protection (I3P) under grant 2003-
TK-TX-2003 from the Office of Domestic Preparedness of the U.S. Department of Homeland Security.
Points of view in this document are those of the author(s) and do not necessarily represent the official
position of the U.S. Department of Homeland Security or the Office of Domestic Preparedness.

2

migration is enabled by the increased sophistication of control devices. It pro-
vides increased bandwidth and functionality, and economical benefits. Control
systems are now using the same technologies and protocols as communication
networks, and the separation between control and other networks is disappear-
ing. SCADA systems are now largely connected to conventional enterprise
networks, which themselves are often linked to the Internet.

This interconnection increases the risk of remote attacks on industrial con-
trol systems, which could have devastating consequences. Intrusion detection
systems and firewalls may provide some protection, but in addition one would
hope that the end devices are reliable and resilient to attacks. Detecting and
removing vulnerabilities in control devices is essential to security.

Extensive testing is a useful approach to detecting vulnerabilities in soft-
ware. It has the advantage of being applicable without access to the source
code. As is well known, security vulnerabilities often reside in parts of the
software rarely exercised under normal conditions. Traditional testing meth-
ods, which attempt to check proper functionality under reasonable input, can
fail to detect such vulnerabilities. To be effective, security testing requires high
coverage. A large set of test cases must be used that covers not just normal con-
ditions but also input that is not likely to be observed in ordinary device use.
Flaws in handling of malformed or unexpected input have been the source of
many attacks on computer systems, such as buffer-overflow attacks.

A major challenge to such exhaustive testing is the generation of relevant
test cases. It is difficult and expensive to generate by hand a large number of
test cases that achieve sufficient coverage. An alternative is to generate test
cases automatically, using formal method techniques. This relies on construct-
ing test cases mechanically from a specification of the system under test and
a set of testing goals called test purposes. This idea has been applied to hard-
ware, networking, and software systems [1, 5–7, 12, 13]. This paper explores
the application of similar ideas to SCADA devices. More precisely, we target
control devices that support the Modbus Application Protocol [9], a protocol
widely used in distributed control systems.

Automated test-case generation for Modbus devices requires formal mod-
els of the protocol that serve as a reference, and algorithms for automatically
generating test cases from such models. We present two formal models to
satisfy these two goals. A first model is developed using the PVS specifica-
tion and verification system. This model captures the Modbus specifications
as defined in the Modbus standard [9]: it includes a precise definition of valid
Modbus requests and, for each request class, the specification of the accept-
able responses. The PVS model is executable and can be used as a reference
for validating responses from a device under test. Given a test request r and an
observed response m, one can determine whether the device passed or failed
this test by executing the PVS model with input r and m.

Dutertre 3

In addition, we present another model designed for automated test genera-
tion, that is, for the construction of Modbus requests that satisfy a test purpose.
This model was developed using the SAL environment for modeling and veri-
fying state transition systems. Using this model, test-case generation translates
to a state-reachability problem that can be solved using the model checking
tools available in SAL. This approach is more efficient and powerful than at-
tempting to generate test cases directly from the PVS specifications.

The Modbus standard is very flexible, and devices are highly configurable.
The standard allows for a Modbus-compliant device to support only a subset of
the defined functions, and for each function to support a subset of the possible
parameters. Several functions are left open as user definable. To be effective,
a testing strategy must then be tailored to the device at hand and specialized
to the functions and parameters this device supports. Special care has been
taken to address this need for flexibility. The formal models presented can be
easily modified and customized to take into account the features and different
configurations of Modbus devices.

2. An Overview of Modbus
Modbus is a communication protocol widely used in distributed control ap-

plications. Modbus was initially introduced in 1979 by Modicon (a company
now owned by Schneider Electric) as a serial-line protocol for communica-
tion between “intelligent” control devices. It has become a de facto standard
implemented by many manufacturers and used in a variety of industries.

The Modbus serial-line specifications describe physical and link-layer pro-
tocols for exchanging data [8]. Two main variants of the link-layer protocol
are defined and two different types of serial lines are supported. In addition,
the specifications define an application-layer protocol, known as the Modbus
Application Protocol, for controlling and querying devices [9].

Subsequently, Modbus was extended to support other types of buses or net-
works. The Modbus Application Protocol assumes an abstract communica-
tion layer that allows devices to exchange small packets. Serial-line Modbus
remains an option for implementing this communication layer, but other net-
works and protocols may be used. Nowadays, many Modbus systems imple-
ment the communication layer using TCP, as described in The Modbus over
TCP/IP specification [10].

2.1 Modbus over Serial Line
Figure 1 sketches the typical architecture of Modbus over serial lines. Sev-

eral devices are connected to a single bus (serial line) and communicate with
a central controller. Modbus uses a master-slave approach to control access to
the shared communication line and prevent message collisions. Communica-

4

Master

Slave Slave Slave

Figure 1. Modbus over Serial Line: Master/Slave Architecture

tion is initiated by the controller (master node), which issues commands on the
bus, usually destined for a single device. This device (slave node) may then ac-
cess the bus and begin transmission in response to the master command. Slave
nodes do not directly communicate with each other and do not transmit data
without a request from the master node.

The Modbus specification defines a physical layer and describes packet for-
matting, device addressing, error checking, and timing constraints. Several
design decisions have an impact on the Modbus Application Protocol and on
Modbus over TCP/IP.

The application protocol follows the same master-slave design as the
serial line protocol. Each transaction at the application layer is a sim-
ple query-response exchange initiated by the master and addressed to a
single device. Requests and responses fit in a single serial-line frame.

The maximal length of a Modbus frame is 256 bytes. One byte is the
device address and two bytes are used for CRC. The maximal length of
a query or response is 253 bytes.

2.2 Modbus over TCP/IP
Modbus over TCP/IP uses TCP as the communication layer, but attempts

to remain compatible as much as possible with the serial-line protocol. The
specification defines an embedding of Modbus packets into TCP frames and
assigns a specific IP port number (502) for the Modbus protocol. The frame
includes the usual IP and TCP headers, followed by a Modbus-specific header
and by the payload. To maintain compatibility with Modbus over serial lines,
the payload is limited to at most 253 bytes. Several fields of the Modbus header
are also inherited from Modbus over serial lines [10].

Supporting Modbus over TCP has economical advantages because of the
wide availability of TCP and TCP/IP compatible networks. It is also more
flexible. However, from a security perspective, migrating to TCP/IP probably
introduces vulnerabilities and adds considerable complexity. The master-slave

Dutertre 5

architecture illustrated in Figure 1 can be implemented by relatively simple
devices since most of the protocol control and functionality are implemented
in the master node. The situation is reversed in the TCP framework: the master
node is a TCP client and the devices are TCP servers. As far as networking is
concerned, devices that support Modbus over TCP/IP must implement all (or
a significant subset) of the features of a TCP/IP server. The TCP client/server
semantics is also more general than a simple master-slave model. For example,
multiple Modbus transactions can be sent concurrently to the same device and a
device may accept connections from different clients. The Modbus Messaging
on TCP/IP Implementation Guide [10] gives guidelines on these issues.

2.3 The Modbus Application Protocol
The common part of all variants of Modbus is the application protocol. As

mentioned earlier, this protocol was initially intended for the Modbus master-
slave protocol on serial lines. It is a very simple protocol: Almost all trans-
actions consist of a request sent by a node to a single device, followed by a
response from that device. The few exceptions are a small number of transac-
tions made of a single command with no response back.

The majority of the requests are commands to read or write registers in a
device. The Modbus standard defines four main classes of registers as follows:

Coils: single-bit, readable and writable

Discrete Input: single-bit, read-only

Holding: 16-bit, readable and writable

Input: 16-bit, read-only

Individual registers in each category are identified by a 16-bit address. There is
no guarantee or requirement for a device to support the full range of addresses
or the four types of registers. The four address spaces are allowed to overlap.
For example, a single control bit may have its own address as a coil and be part
of a 16-bit holding register.

Figure 2 shows the format of an example Modbus command and the associ-
ated responses. The first byte of the request identifies a specific command—in
this example, function code 0x02 for Read Discrete Inputs. The rest of the
request are parameters. The example command has two parameters: a start
address between 0x0000 and 0xFFFF (in hexadecimal) and the number of dis-
crete inputs to read stored as a 16-bit integer. The device may either reject
such a request and send an error packet or return the requested data in a single
packet. The format of a valid response is indicated in Figure 2: the first byte
is a copy of the function code in the request, the second byte contains the size
of the response (if n bits were requested, this byte is dn/8e), and the rest of

6

Request
Function code 1 byte 0x02
Start address 2 bytes from 0 to 0xFFFF
Quantity 2 bytes from 1 to 2000

Response
Function code 1 byte 0x02
Byte count 1 byte N
Data N bytes

Error
Error code 1 byte 0x82
Exception code 1 byte 01 to 04

Figure 2. Example Modbus Command and Associated Responses

the packet is the data itself. An error packet contains a copy of the request’s
function code with the high-order bit flipped and an exception code that indi-
cates the reason for the failure. The diagram of Figure 3 summarizes how the
request should be processed and how the exception code should be set in case
of failure.

Read and write commands are all similar to the example in Figure 2. Other
commands in the Modbus Application Protocol are related to device identi-
fication and diagnostic. Every command starts with a function code, which
is a single byte between 1 and 127. The command then contains parameters
that are specific to the function code (e.g., register addresses and quantity) and
optionally other data (e.g., values to write in registers). Correct execution is
indicated by sending back a response packet with the same first byte as the
command, and other data (e.g., response to a read command). Failure is indi-
cated by responding with a two-byte error packet.

The Modbus standard defines the meaning of 19 out of the 127 possible
function codes. Other function codes are either unassigned and reserved for
future use, or reserved for legacy products and not available, or user defined.
A device is allowed to support only a subset of the public functions, and within
each function code to support only a subset of the parameters. The only re-
quirement is for the device to return an appropriate error packet to signal that
a function is not supported or that an address is out of range.

The standard is very loose and flexible. Modbus-compliant devices may
vary widely in the functions, number of registers, and address spaces they sup-
port. The interpretation of user-defined function codes is not specified by the
standard and it is possible for different devices to assign different interpreta-
tions to the same user-defined code.

Dutertre 7

1 <= qty <= 2000

fcode supported ?

addresses within range ?

Process
Request

error ?

Send
Exception Response

Send
Response

yes

yes

yes

yes

no

no

no

no

code = 01

code = 03

code = 02

code = 04

Figure 3. Example Command: Processing and Error Reporting

3. Formal Specification
The formal models we have developed focus on the Modbus Application

Protocol. As summarized previously, all transactions in this protocol consist
of a single request followed by a single response. Both requests and responses
are small packets of at most 253 bytes in length. Because it is so simple,
the Modbus Application Protocol is not a good candidate for traditional for-
mal verification, whose goal is typically to prove some nonobvious but critical
property. Instead, our modeling and analysis work has focused on formal mod-
els that can be used for extensive testing of Modbus devices.

Given such models, we show how to automatically derive test scenarios,
that is, specific Modbus requests, and check whether the device answers prop-
erly. Because test cases can be generated automatically and the models can be
specialized for a given device, this approach enables extensive testing, beyond
checking for compliance with the Modbus standard. For example, the method
enables one to test how a device responds to a variety of malformed requests
that it may not be expected to receive in normal operation (e.g., requests too
long or too short, containing bad function codes or unsupported addresses).
Our goal is for this technology to help detect vulnerabilities in Modbus de-
vices, including buffer overflows and other bugs.

8

3.1 PVS Model
Our first formal model of Modbus was developed using the PVS specifica-

tion and verification system [11]. PVS is a general-purpose interactive the-
orem prover based on higher-order logic. Details on the PVS specification
language, theorem prover, and other features can be found on the PVS web-
site: http://pvs.csl.sri.com/.

Our full PVS specification of the Modbus Application Protocol is available
in an extended version of this paper [4]. The specification is a straightforward
formalization of the standard [9]. The PVS model defines the exact format of
the Modbus requests and, for each request type, it specifies the format of the
valid responses and possible error messages.

The definition of well-formed requests can be summarized as follows.

The type raw msg represents arbitrary packets (raw messages), which
are modeled as byte arrays of length from 1 to 253.

Correct formatting of requests is defined by a succession of predicates
and subtypes of raw msg:

Given a raw message m, standard fcode(m) holds if m’s function
code is one of the nineteen assigned codes. A pre request is a raw
message that satisfies predicate standard fcode.

Given a prerequest sr, acceptable length(sr) holds if the length
of sr is within the bounds specified by the standard for the function code
of sr. A request is a prerequest that satisfies acceptable length.

Given a request r, valid data(r) holds if r is well formed. This
predicate captures constraints on the number and ranges of request pa-
rameters that depend on the function code.

In summary, a valid request is a raw message that satisfies the three predicates
standard fcode, acceptable length, and valid data.

The definition of acceptable responses to a given request follows the same
general scheme and consists of a succession of PVS predicates. The main
predicate acceptable response(v, r) is true whenever r is a possi-
ble response to a valid request v. The definition takes into account the function
code and parameters of v and checks that the response r (a raw message) has
the appropriate format.

The predicates and types summarized so far are device neutral. They cap-
ture the general formatting requirements of Modbus [9]. Since devices are not
required to implement all the functions and since different devices may sup-
port different address ranges, it is useful to specialize the PVS specifications to
device characteristics and configurations. For this purpose, the PVS model is

Dutertre 9

parameterized and includes device-specific properties such as supported func-
tion codes and valid address ranges for coils, discrete inputs, holding regis-
ters, and input registers. Once these are specified, the final PVS definition is
the predicate modbus response(m, r) that captures both formatting and
device-specific constraints. The predicate holds when r is a response for the
given device to a properly formatted request m. Constraints on error reporting
are included in this definition.

3.2 Applications
The main utility of the PVS formalization is as an unambiguous and precise

specification of the Modbus Application Protocol. As it is written, the PVS
specification is executable, so it can be used as a reference implementation.
For example, one can check that the response to the bad requests [|0|] and
[|1|] is as specified in the standard:

modbus_resp([| 0 |], illegal_function(0));
==>
TRUE

modbus_resp([| 1 |], illegal_function(1));
==>
FALSE

modbus_resp([| 1 |], illegal_data_value(1));
==>
TRUE

Request [|0|] is a packet that contains the single byte 0, that is, a packet of
length 1 with invalid function code 0. The corresponding answer must be the
packet illegal function(0). For packet [|1|], the function code is
valid and supported by the device but the format is wrong. The error code in
such a case is required to be illegal data value(1).

The following examples illustrate responses to a read command:

modbus((: READ_COILS, 0, 10, 0, 8 :), (: READ_COILS, 1, 165 :));
==>
TRUE

modbus((: READ_COILS, 0, 10, 0, 8 :), (: READ_COILS, 10, 165 :));
==>
FALSE

modbus((: READ_COILS, 0, 10, 0, 8 :), (: READ_COILS, 2, 165, 182 :));
==>
FALSE

The read command above is a request for the value of 8 coils starting at address
10. A valid response must consist of a copy of the function code READ COILS,
followed by a byte count of 1, followed by an arbitrary 8-bit value (first line

10

above). The second line shows a badly formatted response: the byte count of
10 is incorrect. In the third line, the response is correctly formatted but it does
not match the request: it returns 16 rather than 8 coils.

4. Automated Test-Case Generation
Traditional software testing typically relies on exercising a piece of software

using hand-crafted input. This method does not scale well for any moderately
complex software, as the cost of generating interesting test cases by hand can
be prohibitive. In many cases, it is possible to automate the generation of test
cases from formal specifications. Here, we outline such an approach, devel-
oped to test devices that run the Modbus Application Protocol.

The general method employed by most test-case generation tools requires
a model of the expected behavior (such as the PVS specifications of Modbus
presented previously). The goal is to generate input data for the system under
test and check whether the system’s behavior in response to this input satisfies
the specifications. To guide the search, one can specify additional constraints
on the input data so that particular aspects of the system under test are exer-
cised. The extra constraints are often called test purposes or test goals. For
example, one may want to test the response of a device to a specific class of
commands by giving an adequate test purpose.

To some extent, PVS and the formal specifications presented previously can
be used for test-case generation. This can be done via PVS’s built-in mech-
anisms for finding counterexamples to postulated properties. This method is
explained in detail in [4]. However, test-case generation with PVS is limited
because it relies exclusively on random search. The PVS procedure we apply
works by randomly generating arrays of bytes of different lengths, and check-
ing these byte arrays one by one, until one is found that satisfies the test pur-
pose. For many test purposes, this naı̈ve random search has a low probability
of success.

To solve this, we have built a different model of Modbus that is specifically
intended for test-case generation. This model is described in the next section
and was developed using the SAL toolkit. SAL provides many more tools for
exploring models and searching for counterexamples than PVS, and is thus
better suited for test-case generation. In particular, a test purpose can be en-
coded as a Boolean satisfiability problem and test cases can be generated using
efficient satisfiability solvers.

4.1 SAL Model
SAL, the Symbolic Analysis Laboratory, is a framework for the specifica-

tion and analysis of concurrent systems modeled as state transition systems.
SAL is less general than PVS but it provides more automated forms of analy-

Dutertre 11

INPUT
b: byte

LOCAL
aux: byte,
stat: status,
pc: state,
len: byte,
fcode: byte,
byte_count: byte,
first_word: word,
second_word: word,
third_word: word,
fourth_word: word

Figure 4. Interface of the modbus Module in SAL

sis including several symbolic model checkers, a bounded model checker based
on SAT solving for finite systems, and a more general bounded model checker
for infinite systems. Descriptions of these tools and the SAL specification lan-
guage can be found in [2] and [3], and at http://sal.csl.sri.com/.

The full SAL model is given in [4]. The model is intended to support auto-
mated test-case generation by constructing Modbus requests that satisfy given
constraints (the test purposes). For this reason, and unlike the PVS formal-
ization discussed previously, the SAL model covers only half of the Modbus
Application Protocol, namely, the formatting of requests.

The SAL model relies on a simple observation: the set of well-formatted
Modbus requests is a regular language. It can then be defined by a finite-
state automaton. The SAL model is essentially such an automaton written
in the SAL notation. This automaton is defined as module modbus whose
state variables are shown in Figure 4. In SAL, module is a synonym for state-
transition system. The modbus module has a single input variable b, which is
a byte. Its internal state consists of the ten local variables given in Figure 4. All
these variables have a finite type, so the full module is a finite state machine.

The main state variables are pc and stat, which record the current con-
trol state of the module and a status flag. Informally, the SAL module reads a
Modbus request as a sequence of bytes on input variable b. Each input byte
is processed and checked according to the current control state pc. The check
depends on the position of the byte in the input sequence and on the preceding
bytes. If an error is detected, then a diagnostic code is stored in the stat vari-
able. Otherwise, the control variable pc is updated and the module proceeds to
read the next byte. Processing of a single packet terminates when a state with
pc = done is reached. At this point, we have stat=valid request
if the packet is well formed or stat has a diagnostic value that indicates
why the packet is not well formed. For example, the diagnostic value may
be length too short, fcode is invalid, invalid address, and

12

[] pc = read_first_word_byte1 -->
aux’ = b;
pc’ = read_first_word_byte2

[] pc = read_first_word_byte2 AND fcode = DIAGNOSTIC -->
first_word’ = 256 * aux + b;
stat’ = IF reserved_diagnostic_subcode(first_word’)

THEN diagnostic_subcode_is_reserved
ELSIF first_word’ = RETURN_QUERY_DATA
THEN valid_request
ELSE unknown
ENDIF;

aux’ = len - 3;
%% aux’ = number of extra bytes for RETURN_QUERY_DATA

pc’ = IF reserved_diagnostic_subcode(first_word’)
THEN done
ELSIF first_word’ = RETURN_QUERY_DATA
THEN read_rest
ELSE read_second_word_byte1
ENDIF

[] pc = read_first_word_byte2 AND fcode = READ_FIFO_QUEUE -->
first_word’ = 256 * aux + b;
stat’ = valid_request;
pc’ = done

[] pc = read_first_word_byte2 AND fcode /= DIAGNOSTIC AND
fcode /= READ_FIFO_QUEUE -->

first_word’ = 256 * aux + b;
pc’ = read_second_word_byte1

Figure 5. SAL Fragment: Reading the first word of a packet

so forth. In addition to computing the status variable, the SAL module extracts
and stores important attributes of the input packet such as the function code or
the packet length.

Figure 5 shows a fragment of the SAL specifications that extracts the first
word of a packet, that is, the 16-bit number that follows the function code. The
specification uses guarded commands, written cond --> assignment.
The condition refers to variables of current state and the assignment defines
the value of variables in the next state. The identifier X refers to the current
value of a variable X, and X’ refers to the value of X in the next state.

Default processing of the first word is straightforward: when control vari-
able pc is equal to read first word byte1 the first byte of the word is
read from input b and stored in an auxiliary variable aux. Then, pc is updated
to read first word byte2. On the next state transition, the full word
is computed from aux and b, and stored in variable first word. Special
checking is required if fcode is either DIAGNOSTIC or READ FIFO QUEUE.

Dutertre 13

Otherwise, control variable pc is updated to read the second word of the
packet. If the function code is DIAGNOSTIC additional checks are performed
on the first word and state variable stat is updated. An invalid word is in-
dicated by setting stat to diagnostic subcode is reserved. Oth-
erwise, stat is set either to valid request (to indicate that a full packet
was read with no errors) or to unknown (to indicate that more input must be
read and more checking must be performed).

Just like the PVS model discussed previously, our SAL model can be spe-
cialized to the features of a given Modbus device. For example, one may spec-
ify the exact set of function codes supported by the device and the valid address
ranges for each function.

4.2 Test-Case Generation Using SAL
By using a state-machine model to specify formatting of Modbus requests,

we have turned test-case generation into a state-reachability problem. Given an
input sequence of n bytes b1, . . . , bn, the SAL modbus machine will perform
n state transitions and reach a state sn. We can determine whether b1, . . . , bn

is a well-formed Modbus request by examining the values of variables pc and
status in state sn:

if pc = done and stat = valid request then b1, . . . , bn is a well-
formatted request

if pc = done and stat 6= valid request then b1, . . . , bn is an invalid
request

if pc 6= done then the status of b1, . . . , bn is not known yet. This means
that b1, . . . , bn is an incomplete packet that may extend to a valid request.

To generate an invalid Modbus request of length n, we can then search for a
sequence b1, . . . , bn that satisfies the second condition.

This problem can be solved using the SAL bounded model checkers. In gen-
eral, a bounded model checker searches for counterexamples of a fixed length
n to a property P . In SAL, given a state machine M , such a counterexample
is a finite sequence of n state transitions

s0 → s1 . . . → sn

such that s0 is an initial state of M and one of the states si violates P . To use
bounded model checking for test-case generation we just need to negate the
property. For example, to obtain an invalid packet, we search for a counterex-
ample to the following property:

test18: LEMMA modbus |- G(pc = done => stat /= invalid_data);

14

This lemma states that property pc = done ⇒ stat 6= invalid data is an
invariant of module modbus. In other words, it postulates that in all reachable
states of modbus, we have either pc 6= done or stat 6= invalid data. This
property is not true, and a counterexample is exactly what we need: a sequence
of bytes that reaches a state where pc = done and stat = invalid data.

Counterexamples to this property can be obtained by invoking SAL’s bounded
model checker as follows:

sal-bmc flat_modbus test18 -d 20

This searches for a counterexample to lemma test18 defined in input file
flat modbus.sal. The option -d 20 specifies a search depth of 20 steps.
The resulting counterexample, if any, will then be of length 20 or less. The
counterexample produced is the sequence of bytes [4, 128, 0, 254, 64] and the
state reached after that sequence is as follows

stat = invalid_data
pc = done
len = 5
fcode = 4
byte_count = 0
first_word = 32768
second_word = 65088

The values of pc and stat are as required and the other variables give more
information about the packet generated: its length is 5 bytes and the function
code is 4 (command read input register). For this command, the first word
is interpreted as the address of a register and the second word as the number
of registers to read. The second word is incorrect as the maximum number of
registers allowed in such commands is 125. As defined in the Modbus standard,
the answer to this command must be an error packet with a code corresponding
to “invalid data”. Property test18 is a test purpose designed to construct such
an invalid request. By modifying the property, one can search for test cases that
satisfy other constraints. For example, the lemma

test20: LEMMA modbus |-
G(pc = done AND stat = valid_request => len < 200);

is a test purpose for a valid request of at least 200 bytes. More complex variants
are possible. Examples are given in [4] for a variety of scenarios.

The search algorithm employed by the finite-state bounded model checker
is based on converting the problem into a boolean satisfiability (SAT) problem
and using a SAT solver. Any solution to the resulting SAT problem is then
converted back into a sequence of transitions, which forms a counterexample
or test case. Although SAT solving is NP-complete, modern SAT solvers can
routinely handle problems with millions of clauses and hundreds of thousands

Dutertre 15

of variables. This approach to test-case generation is much more efficient than
the random search that was used with PVS. In SAL, test-case generation is
guided by the test purpose. Because the SAT solver used by SAL is complete,
the method will find a solution whenever one exists. Given any satisfiable
test purpose, sal-bmc will generate a test case. For example, sal-bmc
can easily construct valid requests, which have a very low probability of being
generated by the PVS random search.

The time for generating test cases is typically short, usually a few seconds
when running sal-bmc on a 3 GHz Intel PC. However, the cost of the search
grows as the search depth increases, since the number of variables and clauses
in the translation to SAT grows linearly with the depth. Longer test cases
are then more expensive to construct than shorter ones. Still, the runtime re-
mains acceptable in most cases. For example, any counterexample to test20
must be at least 200 bytes long. Finding such a counterexample requires a
search depth at least as high; sal-bmc -d 204 finds such a solution in
80 s by solving a SAT problem with more than 500,000 boolean variables and
2,000,000 clauses. Overall, it is then possible to generate a large set of test
cases for many scenarios at little cost. This enables extensive testing of the
compliance of a device with the Modbus specifications as well as testing for
device vulnerabilities by generating a variety of malformed requests. It is also
possible to target a specific model or device configuration by modifying the
device-specific features of the SAL model. A large number of device-specific
test cases can be generated automatically in a few minutes of runtime.

5. Conclusion
We have presented a framework to support systematic, extensive testing of

control devices that implement the Modbus Application Protocol. Our aim is
to increase the robustness and security of these devices by detecting potential
vulnerabilities that conventional testing methods may easily miss. The frame-
work relies on two main components. A formal specification of the protocol
written in PVS serves as a reference to check whether the observed responses
to a test request satisfy the standard. A state-machine model of Modbus re-
quests serves as an automated test-case generator. Both models are designed to
accommodate the high variability in supported functions and parameters that
the Modbus standard allows. The models are parameterized and can be rapidly
specialized to the features of a device under test.

In future work, we plan to adapt the formal models presented here for online
monitoring. By monitoring online the requests and responses from a control
system, we hope to achieve accurate and high-coverage intrusion detection.
Our next goal is the automatic derivation of intrusion-detection sensors from

16

precise formal models of the expected function and behavior of Modbus de-
vices in a test-case environment.

References

[1] P. E. Ammann, P. E. Black, and W. Majurski, Using model checking to
generate tests from specifications, Second International Conference on
Formal Engineering Methods (ICFEM ’98), pp. 46–54, 1998.

[2] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, SAL 2, Computer-Aided Verification (CAV’04), LNCS 3114,
pp. 496–500, 2004.

[3] L. de Moura, S. Owre, and N. Shankar, The SAL language manual. Tech-
nical Report SRI-CSL-01-02, SRI International, 2003.

[4] B. Dutertre, Formal Modeling and Analysis of the Modbus Protocol,
Technical Report, SRI International, 2006.

[5] A. Gargantini and C. Heitmeyer, Using model checking to gener-
ate tests from requirements specifications, Software Engineering—
ESEC/FSE ’99, LNCS 1687, pp. 146–162, 1999.

[6] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolf-
sthal, Coverage-directed test generation using symbolic techniques, First
International Conference on Formal Methods in Computer-Aided Design
(FMCAD’96), LNCS 1166, pp 143–158, 1996.

[7] G. Hamon, L. de Moura, and J. Rushby, Generating efficient test sets with
a model checker, 2nd International Conference on Software Engineering
and Formal Methods, pp. 261–270, 2004.

[8] Modbus-IDA, Modbus over Serial Line: Specification and Implementa-
tion Guide V1.0, 2002.

[9] Modbus-IDA, Modbus Application Protocol Specification V1.1a, 2004.

[10] Modbus-IDA, Modbus Messaging on TCP/IP: Implementation
Guide V1.0a, 2004.

[11] S. Owre, J. Rushby, N. Shankar, and F. von Henke, Formal verification
for fault-tolerant architectures: prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, 1995.

[12] S Rayadurgam and M Heimdahl. Coverage based test-case generation
using model checkers, Eighth International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS), pp. 83–91, 2001.

[13] V. Rusu, L. du Bousquet, and T. Jéron, An approach to symbolic test
generation, 2nd International Workshop on Integrated Formal Method
(IFM’00), LNCS 1945, pp. 338–357, 2000.

