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Introduction 
In modern avionics architectures, application 

software increasingly relies on services provided by 
a real-time operating system (RTOS). An 
application is typically structured in sets of 
processes that share common hardware resources 
via the RTOS. Such architectures present numerous 
advantages for software development by decoupling 
the application software from the specifics of the 
underlying hardware. However, they also present 
challenging certification problems. The RTOS is a 
highly criti cal component of the overall avionics 
system and must be certified to the highest levels of 
assurance. In addition, new software integration 
issues have to be addressed such as ensuring that 
the processes that share common resources will 
satisfy their performance requirements. 

Scheduling and synchronization services are 
among the most criti cal services an RTOS must 
provide. These services can be particularly subtle, 
and it is diff icult to obtain strong evidence that they 
will perform properly in all circumstances. Testing 
and inspection are not suff icient for this purpose. 
Aside from the pure problem of showing that the 
RTOS behaves as expected, a second issue is to 
determine whether an application that relies on the 
scheduling discipline and uses the communication 
services provided by the RTOS satisfies its timing 
requirements. 

A well -established theory of real-time 
scheduling does exist, that should provide a sound 
foundation to the development and validation of 
real-time system. Yet, the abundant theoretical 
work may not by itself provide the degree of 
assurance required in safety-criti cal domains such 
as avionics. The literature has traditionally relied on 
informal approaches, and proofs often rely more on 
intuiti ve explanations than precise, rigorous 
arguments. Since the problems are complex and 
subtle, there are examples of erroneous results and 
flawed proofs in the literature. In addition, real 
operating systems are often richer and more 

complex than considered in the literature. In 
integrated avionics, RTOS must provide strong 
partitioning guarantees to prevent interference 
between processes sharing common hardware 
resources. Complex systems relying on fault-
tolerant rate-monotonic scheduling are being built 
[1] or kernels employing a nontrivial mixing of 
static and priority-based scheduling are being 
considered [2]. The general theory rarely applies 
directly but often has to be adapted to a specific 
context. 

We examine how formal methods can help 
address these issues. Formal methods can be used to 
develop very precise, complete, and rigorous proofs 
that theoretical results are correct and properly 
applied to a particular context. Formal modeling 
and verification can provide very strong evidence 
that an RTOS satisfies criti cal scheduling and 
synchronization properties. As an ill ustration, we 
discuss the formalization and verification of the 
priority-ceiling protocol [3], a scheduling and 
synchronization protocol used in common real-time 
operating systems. We then discuss extensions of 
this work to more complex types of kernels and the 
benefits of formal methods in real-time scheduling 
problems. 

Real-Time Scheduling Issues in 
Safety-Cr itical Applications 

In traditional real-time systems, an application 
is decomposed into a set of processes or tasks that 
run concurrently on one of more processors. A 
scheduling policy determines how the processing 
resources are shared between the different tasks. 
Typical RTOSs use fixed-priority preemptive 
scheduling: each task is assigned a fixed priority, 
and, at all ti me, the task of highest priority that is 
ready to execute is allocated the processor. Other 
policies are also possible, such as earliest-deadline-
first scheduling, table-driven scheduling, or other 
more complex schemes. 

The fundamental problem in this context is to 
determine conditions under which a given set of 
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tasks satisfies its timing requirements. Many 
theoretical results provide such guarantees for 
different classes of systems, relying on different 
scheduling policies, and with different assumptions 
about tasks and timing constraints. In particular, 
fixed-priority preemptive scheduling has been 
extensively studied and schedulabilit y results are 
known for many types of task sets and timing 
constraints. 

A simple situation is when the tasks are 
independent and periodic. In such a case, n tasks 

nττ ,,1 �  are each characterized by a computation 

cost iC  and a period iT . Task iτ  is activated at 

successive times ii TtTtt 2,, 000 ++ , and so forth, 
and each invocation must terminate within a one- 
period interval. In other words, iτ must be allocated 

a total amount of iC  time units of processing time 

in every interval ),[ 00 iii TkTtkTt +++ . In fixed-
priority scheduling, it is known that, under the rate-
monotonic priority assignment1, the problem is 
feasible if the following condition is satisfied 
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Liu and Layland proved this property in 1973 [4]. 
They also established other important results, such 
as the fact that the rate-monotonic priority 
assignment is optimal. The condition above is based 
on a worst-case analysis and many task sets that do 
not satisfy the inequality are still feasible. A better 
analysis technique consists of computing the worst-
case response time of a task. The procedure is 
sketched in Figure 1, where iH  is the set of tasks 

of higher priority than iτ . The sequence )( k
iW  is 

computed until either it converges to a fixed point 

ii TW ≤  or it reaches a value k
iW that is greater than 

iT . In the former case, every invocation of task iτ is 

guaranteed to terminate within a delay iW . In the 

latter case, iτ  cannot be guaranteed to meet its 
deadlines. 

The approach sketched in Figure 1 (as well as 
other approaches) generalize to many other task 
models, including models where tasks can 
communicate with each other and where deadlines 
                                                      
1 The tasks with lower period are given higher priority. 

are different from the task periods [5,6]. With such 
analysis techniques, the theory of real-time 
scheduling, especially in the fixed-priority context, 
is now mature and applicable to real-world systems. 
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Figure 1. Computing the Worst-Case Response 
Time of a Task 

However, in safety-criti cal applications, high 
assurance is required, and the following issues have 
to be examined: 

• Which guarantees do we have that the results 
published in the literature are actually correct? 

• Which guarantees do we have that a given 
RTOS actually satisfies the assumptions of an 
abstract scheduling model? 

Correctness Issues 
Although the theory of real-time scheduling 

can be developed using rigorous mathematics, 
results are often presented less formally. The 
assumptions made are not always carefully 
specified. The proofs are often imprecise and based 
on intuiti ve explanations rather than rigorous 
arguments. As the problems are subtle and 
complex, there are examples of erroneous results, 
and incomplete or flawed proofs in the literature. 

Even Liu and Layland’s essential results rely 
on many properties that all l ook intuiti vely 
reasonable but are not rigorously proven [4]. More 
precise proofs of the same results have been given 
since, but there is an obvious risk in relying on 
properties whose proof is based on their authors’ 
intuition. This risk is exacerbated when one moves 
away from the simplest scheduling models. In many 
systems that are relevant for avionics, process 
scheduling interacts with other criti cal mechanisms, 
such as those supporting inter-process 
communication, partitioning, or fault-tolerance. In 
such contexts, our intuition is much more li kely to 
be wrong than in the basic, fixed-priority model. 
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For example, Ghosh et al. [7] present a 
scheduling approach intended to tolerate transient 
faults by reexecuting faulty tasks. Generalizing Liu 
and Layland’s results, they give conditions under 
which periodic tasks are feasible using this scheme. 
In a subsequent paper, the same authors found a 
flaw in their initial analysis and proposed a different 
fault-tolerant scheduling scheme [8]. Unfortunately, 
as discovered by Sinha and Suri [9], their analysis 
of the new scheme is also flawed; there are task sets 
that satisfy the conditions in Ghosh et al. [8], but 
where deadlines are not met if a fault occurs.  

This example ill ustrates the diff iculty of 
correctly analyzing complex scheduling policies 
using only informal models and proofs. It also 
shows that the informal review process used in 
academic research may fail to spot serious errors. 
The example is also very relevant to the avionics 
community since the fault-tolerant scheduling 
scheme of Ghosh et al. has been implemented in an 
RTOS specifically designed for avionics 
applications [1]. (The approach might work in this 
case because the RTOS in question only supports 
harmonic task sets.) 

Validity of Models 
Most results in real-time scheduling are 

developed using very abstract scheduler models. 
Typically, only a few assumptions are made about 
the scheduler, such as which job is active when 
several are ready to execute. To apply theoretical 
results in criti cal applications, one needs to ensure 
that the relevant assumptions are satisfied by the 
system at hand. This can be diff icult as there is 
usually a large gap between the abstract models 
used to derive scheduling results and the real 
scheduling algorithms used in an RTOS. Part of the 
diff iculties is due to the complex interaction 
between scheduling and other services provided by 
the RTOS. As a minimum, inter-process 
communication requires synchronization services 
that may cause a process to wait and be delayed by 
other processes. Other features of an RTOS, such as 
interrupt handling or its clock frequency also have 
an impact on task execution. 

Because of fault-tolerance requirements, 
RTOS for criti cal applications may also provide 
features, such as temporal partitioning [2], that 
impose constraints on how a processing time is 

allocated to tasks. Such systems do not follow 
exactly the simple priority-based allocation policy 
that is the most commonly studied in theory. 
Furthermore, because of limitations of the simple 
approaches, more complex scheduling strategies are 
being proposed. For example, maximal-urgency-
first scheduling [10] is a complex combination of 
priority-based and deadline-based scheduling. The 
approach intends to ensure that criti cal tasks never 
miss a deadline, while achieving high processor 
utili zation. This new approach has undeniable 
performance advantages over more classic 
scheduling strategies and may be adopted by 
practical systems, but it is also more complex to 
implement and to analyze. To the best of our 
knowledge, this approach has been evaluated only 
empirically [10,11]. 

Even though many types of scheduling 
disciplines and task sets have been investigated 
theoretically, real systems may not always match 
any of the theoretical models. Still , the literature 
provides general analysis methodologies that can 
often be adapted to new contexts. The problem is to 
obtain high assurance that such general methods 
have been properly applied to the given system. 

A Formal Analysis Methodology for 
Real-Time Scheduling 

The literature on real-time scheduling contains 
many results that should provide sound bases for 
the engineering of real-time systems. For such 
results to be applied in safety-criti cal applications, 
one must obtain very high confidence that they are 
correct. Furthermore, as new scheduling strategies 
are introduced, there is a need for rapidly adapting 
scheduling results to complex systems that do not 
necessaril y match traditional models.  

As discussed previously, very rigorous 
approaches are necessary to catch potential errors or 
omissions in models and in proofs. Formal methods 
and tool-assisted verification can provide the 
required degree of precision and rigor, and as 
discussed in the sequel, can be applied effectively 
to nontrivial examples. We propose a general 
methodology for modeling real-time schedulers, 
proving that they satisfy criti cal properties, and 
deriving scheduling properties for different types of 
tasks. Our objective is an approach that supports 
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both the verification of qualitative properties related 
to synchronization (e.g., the absence of deadlocks) 
and the derivation of high-level real-time results 
(e.g., conditions under which deadlines are met). 

To support the approach, we use the PVS 
theorem prover [12]. In particular, we have 
developed a large library of basic notions and 
results that are useful for modeling systems and 
verifying high-level scheduling properties. This 
PVS library also introduces the basic concepts that 
are central to real-time scheduling analysis. 
Application to a specific scheduling protocol 
consists of building a state-machine model of the 
scheduler, examining the execution traces of this 
model, and relating these traces to the basic notions 
and results provided by the library. 

Support for Timing Analysis 
Although scheduling algorithm can vary a lot, 

many generic notions and basic facts are useful for 
reasoning about different approaches. The literature 
also provides some general analysis techniques, 
such as computing worst-case response times, that 
are applicable in many contexts. To take advantage 
of these existing results, we have developed a 
library of PVS theories that formalize and prove 
many useful properties. 

The library is based on the basic concept of a 
discrete-time abstract schedule that represents the 
allocation of a single resource (e.g., a processor) to 
different jobs. Given a set of jobs J, a schedule is an 
infinite sequence 

�� ,,,, 10 tuuuu =  

where tu indicates which job, if any, owns the 

resource at time t. Either jut = and Jj ∈ is the job 

that is active at time t, or ⊥=tu  if there is no job 
active at that time. Analysis of timing properties 
can then be based on measuring how much time has 
been allocated to a particular job or sets of jobs 
during. Given a set ,JE ⊆  the PVS function 

process_time(u, t1, t2, E) 

gives the amount of time allocated to jobs of E in 
the interval ).,[ 21 tt  A similar function gives the 
amount of idle time in an interval. These basic 
notions and their properties are implicitl y used in 

many theoretical works on real-time scheduling. A 
set of PVS theories contains many useful properties 
of these basic functions. 

Another part of our PVS libraries introduces 
results that support timing analysis via the 
computation of worst-case response times. For 
example, we have formalized in PVS a 
generalization of the algorithm described in 
Figure 1. These results are very useful since they 
can be applied in general contexts. In particular 
they are applicable to many priority-based 
preemptive schemes. 

Modeling Schedulers  
To apply the results from the library to a 

particular system, the first step is to build a model 
of the scheduling algorithm used. A natural 
approach is to use state-machine models. Such 
models have the advantage of providing operational 
specifications and are easy to understand, thus 
reducing the gap between implementation and 
model. There are also well -known verification 
techniques (some of which can be fully automated) 
for proving properties of such automata-based 
models. 

It is also important for our purpose to obtain 
models that conveniently support timing analysis. 
Since timing results depend as much on task 
characteristics as on scheduler properties, we need 
the abilit y to introduce assumptions about sets of 
tasks. A common approach is to decompose a task 
into a succession of jobs, each job being 
characterized by attributes such as its dispatch time 
and duration. Timing characteristics of tasks can 
then be specified as constraints on the length of jobs 
and the delays between successive jobs. 

Our modeling approach follows the same 
general principles. We build a state-machine model 
that is parameterized by a fixed but arbitrary 
collection of jobs. All the job attributes are assumed 
fixed and known in advance to simpli fy the 
modeling. To obtain general models, we assume as 
littl e as possible about the jobs. This allows us to 
obtain results that are valid for very general classes 
of jobs and then largely independent of the type of 
tasks considered. For example, synchronization 
properties that are valid whatever the task 
characteristics can be established in this way. 
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For obtaining higher-level scheduling results 
that depend on the timing characteristics of tasks, 
the general models can be specialized by restricting 
attention to jobs that satisfy certain properties. This 
amounts to instantiating the state-machine model 
with specific parameters that satisfy adequate 
assumptions. Analysis of these specialized instances 
can still rely on the properties that are inherited 
from the generic model. 

From State Machines to Abstract Schedules 
Once a state-machine specification is 

constructed, we can study its real-time properties by 
examining its execution traces. More precisely, the 
state-machine model is parameterized by a set of 
jobs J with attributes such as their starting time, 
their priority, and their duration. The traces of the 
machine are sequences of state-transitions 
performed by the system for this particular set of 
jobs. From such traces, it is trivial to construct 
abstract schedules that can be analyzed using the 
support library. As previously, timing properties 
can be very general or valid only for special 
instances of the job parameters that satisfy relevant 
assumptions. 

An Example: The Pr ior ity-Ceili ng 
Protocol 

We have performed a full PVS formalization 
and verification of a nontrivial scheduling 
algorithm. This shows that precise and rigorous 
analysis of fairly complex scheduling approaches 
can be performed with modern theorem provers. 
Our case study was the priority-ceili ng protocol, 
introduced by Sha et al. [3]. This protocol is a 
synchronization algorithm for real-time systems 
that employ fixed-priority preemptive scheduling. 
In its basic form, the protocol is used to control 
access to common resources, such as shared 
variables or I/O devices, in mono-processor 
systems. Access to criti cal sections is controlled via 
binary semaphores. 

This protocol has many interesting properties: 
it ensures mutual exclusion and absence of 
deadlocks, and it guarantees that blocking delays 
are minimal. The latter property is essential in real-
time applications. It means that a process P 
requesting access to a resource S will wait only for 

a bounded time before S becomes available. The 
protocol is also important in practice: the priority-
ceili ng protocol or one of its variant is used in most 
commercial RTOSs. 

As is often the case in the literature, the 
description of the protocol given by its authors is 
quite informal and imprecise. The key properties 
are also proved in a fairly informal manner. As the 
protocol is subtle and relies on complex priority-
adjustment rules, an informal specification is open 
to misinterpretation. The priority-adjustment rules 
and the interactions between mutual exclusion and 
scheduling make the details of the protocol diff icult 
to understand and quite challenging to verify. 

Our objective was to develop complete and 
precise specifications of the protocol, and obtain 
rigorous proofs that the associated results are valid. 
We wanted to prove both key synchronization 
properties such as mutual exclusion and absence of 
deadlocks, and significant schedulabilit y results. 
Details of the PVS developments and verifications 
are available elsewhere [13]. We used the general 
methodology described previously:  

We constructed a parameterized state-machine 
model of the priority-ceili ng protocol that specifies 
how semaphores are allocated to jobs and how jobs 
can be activated in a given state. We then proved 
that all reachable states of the protocol satisfy 
invariant properties that ensure mutual exclusion, 
absence of deadlocks, and imply that at most one 
job can block another. The proofs use standard 
techniques based on induction. 

In a second step, we examined the execution 
traces and schedules that the protocol model can 
produce. From the basic state-invariant properties, 
we obtained general bounds on blocking delays and 
on the processing time allocated to jobs. These 
properties are valid for arbitrary collections of jobs 
and are the basis for further scheduling analysis. 
The proofs used the notion of schedules and the 
various results developed in the support library. 

We then applied the general results to derive a 
well -known schedulabilit y criterion for sporadic 
tasks [5,6]. A sporadic task can be thought of as a 
sequence of jobs of the same priority, separated by 
a minimal interarrival delay. Sporadic tasks are 
useful for modeling both strictly periodic 
computations and interrupt-driven activities with a 
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limited interrupt frequency. Knowing bounds on the 
length of each job of a task and the length of criti cal 
sections of other jobs, one can compute the worst-
case response time for jobs of a task iτ , using an 
iterative algorithm similar to the one of Figure 1. 
From this worst-case execution time, it is easy to 
determine if a task meet its deadlines. 

The case study shows that a full formal 
specification and verification of nontrivial 
scheduling mechanisms and properties is feasible. 
In the same framework, we established both low-
level synchronization properties and high-level 
schedulabilit y properties. All the developments 
were performed with tool support, using the PVS 
specification and verification system. This provides 
very high assurance of correctness and ensures a 
complete and rigorous analysis. The whole PVS 
formalization required between two and three 
person months of effort, part of which was spent on 
developing the general support libraries. The 
formalization contains 417 lemmas and theorems, 
for around 2500 lines of specifications. The support 
library and other reusable results that are 
independent of the priority-ceili ng protocol 
represent around 40% of the developments (1000 
lines). 

In addition to giving very strong evidence that 
the protocol and the associated scheduling test are 
correct, the formalization also provided other useful 
insights: 

• Our specification of the protocol is more 
precise and simpler than the traditional informal 
description. In particular, the protocol can be 
entirely specified without any priority 
adjustment by using a slightly modified rule for 
selecting active jobs. This may point to new 
ways of implementing the protocol and was 
essential for simpli fying the verification. 

• Some new results emerged from the analysis, 
such as the fact that the protocol works under 
weaker assumptions than originally made by its 
authors. Sha et al. assume that criti cal section 
are properly nested [3], but this requirement is 
actually unnecessary. All the important 
properties are satisfied even if criti cal sections 
overlap. 

• Our PVS proof of the schedulabilit y result for 
sporadic tasks is based on the notion of busy 

periods, but is simpler and more direct than the 
classic proofs. Many informal proofs of similar 
results refer to Liu and Layland’s theorem 1, 
which states that the worst-case response time 
for a task τ occurs when all tasks of higher 
priority than τ  are dispatched at the same time 
as τ [4]. The worst-case scenario is then when 
all tasks are released at the same time, called a 
criti cal instant. Informal proofs are usually 
based on finding the worst-case scenario for a 
given context and determining response times 
in this worst case. However, proving that the 
identified scenario is actually the worst possible 
case can be diff icult2. Our proof shows that 
looking for such worst-case scenarios is 
actually an unnecessary detour. 

Conclusion 
A sound theory of real-time scheduling is 

necessary to support the engineering of real-time 
software applications. Developing scheduling 
results using formal methods helps provide the high 
level of assurance required in safety-criti cal 
domains. We propose a formalization methodology 
relying on state-machine models and on a library of 
commonly applicable properties. A case study has 
shown that rigorous and a detailed verification of 
nontrivial scheduling results can be performed 
within reasonable time limits, using modern 
theorem-proving tools such as PVS. 

It is still necessary to develop and extend such 
verification efforts to the increasingly complex 
scheduling algorithms that may one day be used in 
safety-criti cal applications. Other aspects relevant 
to the avionics domain remain insuff iciently 
explored by the formal methods community. For 
example, littl e has been done in the analysis of 
distributed real-time systems, where diff icult 
problems mixing communication, processing, fault-
tolerance must be addressed. Formal methods are 
especially valuable in such complex settings, where 
informal proofs guided by intuition are insuff icient 
and where other validation approaches such as 
testing are incomplete. Formal methods should 
become an essential tool for validating the most 
criti cal aspects of real-time systems, such as the 

                                                      
2 The proof of theorem 1 given by Liu and Layland is 
particularly unconvincing. 
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partitioning mechanisms required for fault isolation 
in integrated avionics. 

Real-time scheduling problems are an ideal 
application area for formal methods since they are 
subtle and complex, must be certified to the highest 
degrees of assurance for supporting criti cal 
applications, and thus require very precise, detailed, 
and rigorous verification. 
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