
 1

FORMAL ANALYSIS FOR REAL-TIME SCHEDULING

Bruno Dutertre and Victoria Stavridou, SRI International, Menlo Park, CA

Introduction
In modern avionics architectures, application

software increasingly relies on services provided by
a real-time operating system (RTOS). An
application is typically structured in sets of
processes that share common hardware resources
via the RTOS. Such architectures present numerous
advantages for software development by decoupling
the application software from the specifics of the
underlying hardware. However, they also present
challenging certification problems. The RTOS is a
highly criti cal component of the overall avionics
system and must be certified to the highest levels of
assurance. In addition, new software integration
issues have to be addressed such as ensuring that
the processes that share common resources will
satisfy their performance requirements.

Scheduling and synchronization services are
among the most criti cal services an RTOS must
provide. These services can be particularly subtle,
and it is diff icult to obtain strong evidence that they
will perform properly in all circumstances. Testing
and inspection are not suff icient for this purpose.
Aside from the pure problem of showing that the
RTOS behaves as expected, a second issue is to
determine whether an application that relies on the
scheduling discipline and uses the communication
services provided by the RTOS satisfies its timing
requirements.

A well -established theory of real-time
scheduling does exist, that should provide a sound
foundation to the development and validation of
real-time system. Yet, the abundant theoretical
work may not by itself provide the degree of
assurance required in safety-criti cal domains such
as avionics. The literature has traditionally relied on
informal approaches, and proofs often rely more on
intuiti ve explanations than precise, rigorous
arguments. Since the problems are complex and
subtle, there are examples of erroneous results and
flawed proofs in the literature. In addition, real
operating systems are often richer and more

complex than considered in the literature. In
integrated avionics, RTOS must provide strong
partitioning guarantees to prevent interference
between processes sharing common hardware
resources. Complex systems relying on fault-
tolerant rate-monotonic scheduling are being built
[1] or kernels employing a nontrivial mixing of
static and priority-based scheduling are being
considered [2]. The general theory rarely applies
directly but often has to be adapted to a specific
context.

We examine how formal methods can help
address these issues. Formal methods can be used to
develop very precise, complete, and rigorous proofs
that theoretical results are correct and properly
applied to a particular context. Formal modeling
and verification can provide very strong evidence
that an RTOS satisfies criti cal scheduling and
synchronization properties. As an ill ustration, we
discuss the formalization and verification of the
priority-ceiling protocol [3], a scheduling and
synchronization protocol used in common real-time
operating systems. We then discuss extensions of
this work to more complex types of kernels and the
benefits of formal methods in real-time scheduling
problems.

Real-Time Scheduling Issues in
Safety-Cr itical Applications

In traditional real-time systems, an application
is decomposed into a set of processes or tasks that
run concurrently on one of more processors. A
scheduling policy determines how the processing
resources are shared between the different tasks.
Typical RTOSs use fixed-priority preemptive
scheduling: each task is assigned a fixed priority,
and, at all ti me, the task of highest priority that is
ready to execute is allocated the processor. Other
policies are also possible, such as earliest-deadline-
first scheduling, table-driven scheduling, or other
more complex schemes.

The fundamental problem in this context is to
determine conditions under which a given set of

 2

tasks satisfies its timing requirements. Many
theoretical results provide such guarantees for
different classes of systems, relying on different
scheduling policies, and with different assumptions
about tasks and timing constraints. In particular,
fixed-priority preemptive scheduling has been
extensively studied and schedulabilit y results are
known for many types of task sets and timing
constraints.

A simple situation is when the tasks are
independent and periodic. In such a case, n tasks

nττ ,,1 � are each characterized by a computation

cost iC and a period iT . Task iτ is activated at

successive times ii TtTtt 2,, 000 ++ , and so forth,
and each invocation must terminate within a one-
period interval. In other words, iτ must be allocated

a total amount of iC time units of processing time

in every interval),[00 iii TkTtkTt +++ . In fixed-
priority scheduling, it is known that, under the rate-
monotonic priority assignment1, the problem is
feasible if the following condition is satisfied

)12(/1

1

−≤∑
=

n
n

i i

i n
T

C
.

Liu and Layland proved this property in 1973 [4].
They also established other important results, such
as the fact that the rate-monotonic priority
assignment is optimal. The condition above is based
on a worst-case analysis and many task sets that do
not satisfy the inequality are still feasible. A better
analysis technique consists of computing the worst-
case response time of a task. The procedure is
sketched in Figure 1, where iH is the set of tasks

of higher priority than iτ . The sequence)(k
iW is

computed until either it converges to a fixed point

ii TW ≤ or it reaches a value k
iW that is greater than

iT . In the former case, every invocation of task iτ is

guaranteed to terminate within a delay iW . In the

latter case, iτ cannot be guaranteed to meet its
deadlines.

The approach sketched in Figure 1 (as well as
other approaches) generalize to many other task
models, including models where tasks can
communicate with each other and where deadlines

1 The tasks with lower period are given higher priority.

are different from the task periods [5,6]. With such
analysis techniques, the theory of real-time
scheduling, especially in the fixed-priority context,
is now mature and applicable to real-world systems.

∑
∈

+












+=

=

iHj j

k
j

ji
k

i

ii

T

W
CCW

CW

1

0

Figure 1. Computing the Worst-Case Response
Time of a Task

However, in safety-criti cal applications, high
assurance is required, and the following issues have
to be examined:

• Which guarantees do we have that the results
published in the literature are actually correct?

• Which guarantees do we have that a given
RTOS actually satisfies the assumptions of an
abstract scheduling model?

Correctness Issues
Although the theory of real-time scheduling

can be developed using rigorous mathematics,
results are often presented less formally. The
assumptions made are not always carefully
specified. The proofs are often imprecise and based
on intuiti ve explanations rather than rigorous
arguments. As the problems are subtle and
complex, there are examples of erroneous results,
and incomplete or flawed proofs in the literature.

Even Liu and Layland’s essential results rely
on many properties that all l ook intuiti vely
reasonable but are not rigorously proven [4]. More
precise proofs of the same results have been given
since, but there is an obvious risk in relying on
properties whose proof is based on their authors’
intuition. This risk is exacerbated when one moves
away from the simplest scheduling models. In many
systems that are relevant for avionics, process
scheduling interacts with other criti cal mechanisms,
such as those supporting inter-process
communication, partitioning, or fault-tolerance. In
such contexts, our intuition is much more li kely to
be wrong than in the basic, fixed-priority model.

 3

For example, Ghosh et al. [7] present a
scheduling approach intended to tolerate transient
faults by reexecuting faulty tasks. Generalizing Liu
and Layland’s results, they give conditions under
which periodic tasks are feasible using this scheme.
In a subsequent paper, the same authors found a
flaw in their initial analysis and proposed a different
fault-tolerant scheduling scheme [8]. Unfortunately,
as discovered by Sinha and Suri [9], their analysis
of the new scheme is also flawed; there are task sets
that satisfy the conditions in Ghosh et al. [8], but
where deadlines are not met if a fault occurs.

This example ill ustrates the diff iculty of
correctly analyzing complex scheduling policies
using only informal models and proofs. It also
shows that the informal review process used in
academic research may fail to spot serious errors.
The example is also very relevant to the avionics
community since the fault-tolerant scheduling
scheme of Ghosh et al. has been implemented in an
RTOS specifically designed for avionics
applications [1]. (The approach might work in this
case because the RTOS in question only supports
harmonic task sets.)

Validity of Models
Most results in real-time scheduling are

developed using very abstract scheduler models.
Typically, only a few assumptions are made about
the scheduler, such as which job is active when
several are ready to execute. To apply theoretical
results in criti cal applications, one needs to ensure
that the relevant assumptions are satisfied by the
system at hand. This can be diff icult as there is
usually a large gap between the abstract models
used to derive scheduling results and the real
scheduling algorithms used in an RTOS. Part of the
diff iculties is due to the complex interaction
between scheduling and other services provided by
the RTOS. As a minimum, inter-process
communication requires synchronization services
that may cause a process to wait and be delayed by
other processes. Other features of an RTOS, such as
interrupt handling or its clock frequency also have
an impact on task execution.

Because of fault-tolerance requirements,
RTOS for criti cal applications may also provide
features, such as temporal partitioning [2], that
impose constraints on how a processing time is

allocated to tasks. Such systems do not follow
exactly the simple priority-based allocation policy
that is the most commonly studied in theory.
Furthermore, because of limitations of the simple
approaches, more complex scheduling strategies are
being proposed. For example, maximal-urgency-
first scheduling [10] is a complex combination of
priority-based and deadline-based scheduling. The
approach intends to ensure that criti cal tasks never
miss a deadline, while achieving high processor
utili zation. This new approach has undeniable
performance advantages over more classic
scheduling strategies and may be adopted by
practical systems, but it is also more complex to
implement and to analyze. To the best of our
knowledge, this approach has been evaluated only
empirically [10,11].

Even though many types of scheduling
disciplines and task sets have been investigated
theoretically, real systems may not always match
any of the theoretical models. Still , the literature
provides general analysis methodologies that can
often be adapted to new contexts. The problem is to
obtain high assurance that such general methods
have been properly applied to the given system.

A Formal Analysis Methodology for
Real-Time Scheduling

The literature on real-time scheduling contains
many results that should provide sound bases for
the engineering of real-time systems. For such
results to be applied in safety-criti cal applications,
one must obtain very high confidence that they are
correct. Furthermore, as new scheduling strategies
are introduced, there is a need for rapidly adapting
scheduling results to complex systems that do not
necessaril y match traditional models.

As discussed previously, very rigorous
approaches are necessary to catch potential errors or
omissions in models and in proofs. Formal methods
and tool-assisted verification can provide the
required degree of precision and rigor, and as
discussed in the sequel, can be applied effectively
to nontrivial examples. We propose a general
methodology for modeling real-time schedulers,
proving that they satisfy criti cal properties, and
deriving scheduling properties for different types of
tasks. Our objective is an approach that supports

 4

both the verification of qualitative properties related
to synchronization (e.g., the absence of deadlocks)
and the derivation of high-level real-time results
(e.g., conditions under which deadlines are met).

To support the approach, we use the PVS
theorem prover [12]. In particular, we have
developed a large library of basic notions and
results that are useful for modeling systems and
verifying high-level scheduling properties. This
PVS library also introduces the basic concepts that
are central to real-time scheduling analysis.
Application to a specific scheduling protocol
consists of building a state-machine model of the
scheduler, examining the execution traces of this
model, and relating these traces to the basic notions
and results provided by the library.

Support for Timing Analysis
Although scheduling algorithm can vary a lot,

many generic notions and basic facts are useful for
reasoning about different approaches. The literature
also provides some general analysis techniques,
such as computing worst-case response times, that
are applicable in many contexts. To take advantage
of these existing results, we have developed a
library of PVS theories that formalize and prove
many useful properties.

The library is based on the basic concept of a
discrete-time abstract schedule that represents the
allocation of a single resource (e.g., a processor) to
different jobs. Given a set of jobs J, a schedule is an
infinite sequence

�� ,,,, 10 tuuuu =

where tu indicates which job, if any, owns the

resource at time t. Either jut = and Jj ∈ is the job

that is active at time t, or ⊥=tu if there is no job
active at that time. Analysis of timing properties
can then be based on measuring how much time has
been allocated to a particular job or sets of jobs
during. Given a set ,JE ⊆ the PVS function

process_time(u, t1, t2, E)

gives the amount of time allocated to jobs of E in
the interval).,[21 tt A similar function gives the
amount of idle time in an interval. These basic
notions and their properties are implicitl y used in

many theoretical works on real-time scheduling. A
set of PVS theories contains many useful properties
of these basic functions.

Another part of our PVS libraries introduces
results that support timing analysis via the
computation of worst-case response times. For
example, we have formalized in PVS a
generalization of the algorithm described in
Figure 1. These results are very useful since they
can be applied in general contexts. In particular
they are applicable to many priority-based
preemptive schemes.

Modeling Schedulers
To apply the results from the library to a

particular system, the first step is to build a model
of the scheduling algorithm used. A natural
approach is to use state-machine models. Such
models have the advantage of providing operational
specifications and are easy to understand, thus
reducing the gap between implementation and
model. There are also well -known verification
techniques (some of which can be fully automated)
for proving properties of such automata-based
models.

It is also important for our purpose to obtain
models that conveniently support timing analysis.
Since timing results depend as much on task
characteristics as on scheduler properties, we need
the abilit y to introduce assumptions about sets of
tasks. A common approach is to decompose a task
into a succession of jobs, each job being
characterized by attributes such as its dispatch time
and duration. Timing characteristics of tasks can
then be specified as constraints on the length of jobs
and the delays between successive jobs.

Our modeling approach follows the same
general principles. We build a state-machine model
that is parameterized by a fixed but arbitrary
collection of jobs. All the job attributes are assumed
fixed and known in advance to simpli fy the
modeling. To obtain general models, we assume as
littl e as possible about the jobs. This allows us to
obtain results that are valid for very general classes
of jobs and then largely independent of the type of
tasks considered. For example, synchronization
properties that are valid whatever the task
characteristics can be established in this way.

 5

For obtaining higher-level scheduling results
that depend on the timing characteristics of tasks,
the general models can be specialized by restricting
attention to jobs that satisfy certain properties. This
amounts to instantiating the state-machine model
with specific parameters that satisfy adequate
assumptions. Analysis of these specialized instances
can still rely on the properties that are inherited
from the generic model.

From State Machines to Abstract Schedules
Once a state-machine specification is

constructed, we can study its real-time properties by
examining its execution traces. More precisely, the
state-machine model is parameterized by a set of
jobs J with attributes such as their starting time,
their priority, and their duration. The traces of the
machine are sequences of state-transitions
performed by the system for this particular set of
jobs. From such traces, it is trivial to construct
abstract schedules that can be analyzed using the
support library. As previously, timing properties
can be very general or valid only for special
instances of the job parameters that satisfy relevant
assumptions.

An Example: The Pr ior ity-Ceili ng
Protocol

We have performed a full PVS formalization
and verification of a nontrivial scheduling
algorithm. This shows that precise and rigorous
analysis of fairly complex scheduling approaches
can be performed with modern theorem provers.
Our case study was the priority-ceili ng protocol,
introduced by Sha et al. [3]. This protocol is a
synchronization algorithm for real-time systems
that employ fixed-priority preemptive scheduling.
In its basic form, the protocol is used to control
access to common resources, such as shared
variables or I/O devices, in mono-processor
systems. Access to criti cal sections is controlled via
binary semaphores.

This protocol has many interesting properties:
it ensures mutual exclusion and absence of
deadlocks, and it guarantees that blocking delays
are minimal. The latter property is essential in real-
time applications. It means that a process P
requesting access to a resource S will wait only for

a bounded time before S becomes available. The
protocol is also important in practice: the priority-
ceili ng protocol or one of its variant is used in most
commercial RTOSs.

As is often the case in the literature, the
description of the protocol given by its authors is
quite informal and imprecise. The key properties
are also proved in a fairly informal manner. As the
protocol is subtle and relies on complex priority-
adjustment rules, an informal specification is open
to misinterpretation. The priority-adjustment rules
and the interactions between mutual exclusion and
scheduling make the details of the protocol diff icult
to understand and quite challenging to verify.

Our objective was to develop complete and
precise specifications of the protocol, and obtain
rigorous proofs that the associated results are valid.
We wanted to prove both key synchronization
properties such as mutual exclusion and absence of
deadlocks, and significant schedulabilit y results.
Details of the PVS developments and verifications
are available elsewhere [13]. We used the general
methodology described previously:

We constructed a parameterized state-machine
model of the priority-ceili ng protocol that specifies
how semaphores are allocated to jobs and how jobs
can be activated in a given state. We then proved
that all reachable states of the protocol satisfy
invariant properties that ensure mutual exclusion,
absence of deadlocks, and imply that at most one
job can block another. The proofs use standard
techniques based on induction.

In a second step, we examined the execution
traces and schedules that the protocol model can
produce. From the basic state-invariant properties,
we obtained general bounds on blocking delays and
on the processing time allocated to jobs. These
properties are valid for arbitrary collections of jobs
and are the basis for further scheduling analysis.
The proofs used the notion of schedules and the
various results developed in the support library.

We then applied the general results to derive a
well -known schedulabilit y criterion for sporadic
tasks [5,6]. A sporadic task can be thought of as a
sequence of jobs of the same priority, separated by
a minimal interarrival delay. Sporadic tasks are
useful for modeling both strictly periodic
computations and interrupt-driven activities with a

 6

limited interrupt frequency. Knowing bounds on the
length of each job of a task and the length of criti cal
sections of other jobs, one can compute the worst-
case response time for jobs of a task iτ , using an
iterative algorithm similar to the one of Figure 1.
From this worst-case execution time, it is easy to
determine if a task meet its deadlines.

The case study shows that a full formal
specification and verification of nontrivial
scheduling mechanisms and properties is feasible.
In the same framework, we established both low-
level synchronization properties and high-level
schedulabilit y properties. All the developments
were performed with tool support, using the PVS
specification and verification system. This provides
very high assurance of correctness and ensures a
complete and rigorous analysis. The whole PVS
formalization required between two and three
person months of effort, part of which was spent on
developing the general support libraries. The
formalization contains 417 lemmas and theorems,
for around 2500 lines of specifications. The support
library and other reusable results that are
independent of the priority-ceili ng protocol
represent around 40% of the developments (1000
lines).

In addition to giving very strong evidence that
the protocol and the associated scheduling test are
correct, the formalization also provided other useful
insights:

• Our specification of the protocol is more
precise and simpler than the traditional informal
description. In particular, the protocol can be
entirely specified without any priority
adjustment by using a slightly modified rule for
selecting active jobs. This may point to new
ways of implementing the protocol and was
essential for simpli fying the verification.

• Some new results emerged from the analysis,
such as the fact that the protocol works under
weaker assumptions than originally made by its
authors. Sha et al. assume that criti cal section
are properly nested [3], but this requirement is
actually unnecessary. All the important
properties are satisfied even if criti cal sections
overlap.

• Our PVS proof of the schedulabilit y result for
sporadic tasks is based on the notion of busy

periods, but is simpler and more direct than the
classic proofs. Many informal proofs of similar
results refer to Liu and Layland’s theorem 1,
which states that the worst-case response time
for a task τ occurs when all tasks of higher
priority than τ are dispatched at the same time
as τ [4]. The worst-case scenario is then when
all tasks are released at the same time, called a
criti cal instant. Informal proofs are usually
based on finding the worst-case scenario for a
given context and determining response times
in this worst case. However, proving that the
identified scenario is actually the worst possible
case can be diff icult2. Our proof shows that
looking for such worst-case scenarios is
actually an unnecessary detour.

Conclusion
A sound theory of real-time scheduling is

necessary to support the engineering of real-time
software applications. Developing scheduling
results using formal methods helps provide the high
level of assurance required in safety-criti cal
domains. We propose a formalization methodology
relying on state-machine models and on a library of
commonly applicable properties. A case study has
shown that rigorous and a detailed verification of
nontrivial scheduling results can be performed
within reasonable time limits, using modern
theorem-proving tools such as PVS.

It is still necessary to develop and extend such
verification efforts to the increasingly complex
scheduling algorithms that may one day be used in
safety-criti cal applications. Other aspects relevant
to the avionics domain remain insuff iciently
explored by the formal methods community. For
example, littl e has been done in the analysis of
distributed real-time systems, where diff icult
problems mixing communication, processing, fault-
tolerance must be addressed. Formal methods are
especially valuable in such complex settings, where
informal proofs guided by intuition are insuff icient
and where other validation approaches such as
testing are incomplete. Formal methods should
become an essential tool for validating the most
criti cal aspects of real-time systems, such as the

2 The proof of theorem 1 given by Liu and Layland is
particularly unconvincing.

 7

partitioning mechanisms required for fault isolation
in integrated avionics.

Real-time scheduling problems are an ideal
application area for formal methods since they are
subtle and complex, must be certified to the highest
degrees of assurance for supporting criti cal
applications, and thus require very precise, detailed,
and rigorous verification.

Acknowledgements
The work described in this paper was partiall y

funded by the Defense Advanced Research Project
Agency and by the Air Force Research Laboratory
under contract F30602-97-C-0040.

References
[1] Dong, Libin, et al., 1999, Implementation of a
Transient-Fault-Tolerance Scheme on DEOS, In
Proceedings of the Real-Time Technology and
Application Symposium (RTAS), Vancouver,
Canada.

[2] ARINC Specification 653, Avionics Application
Software Interface, Annapolis, MD.

[3] Sha, L., R. Rakjumar, and J. P. Lehoczky, 1990,
Priority Inheritance Protocols: An Approach to
Real-Time Synchronization, IEEE Transactions on
Computers, Vol. 39, No. 9, pp. 1175-1185.

[4] Liu, C. L. and James W. Layland, 1973,
Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment, Journal of the ACM,
Vol. 20, No 1, pp. 46-61.

[5] Audsley, N. C., A. Burns, M. F. Richardson, and
A. J. Welli ngs, 1991, Hard Real-Time Scheduling:
The Deadline Monotonic Approach, Proceedings of
the 8th IEEE Workshop on Real-Time Operating
Systems and Software, Atlanta, GA, pp. 127-132.

[6] Sha, L., R. Rajkumar, and S. Sathaye, 1994,
Generalized Rate-Monotonic Scheduling Theory: A
Framework for Developing Real-Time Systems,
Proceedings of the IEEE, Vol. 82, No. 1, pp. 68-82.

[7] Ghosh, S., R. Melhem, and D. Mossé, 1997,
Fault-Tolerant Rate-Monotonic Scheduling, In
Dependable Computing for Critical Applications
(DCCA-6), IEEE Computer Society.

[8] Ghosh, S., R. Melhem, D. Mossé, and J. Sarma,
1998, Fault-Tolerant Rate-Monotonic Scheduling,
Real-Time Systems, Vol. 15, Kluwer Academic
Publisher, pp. 149-181.

[9] Sinha, P. and N. Suri, 1999, On the Use of
Formal Techniques for Analyzing Dependable
Real-Time Protocols, In Proceedings of the 20th
IEEE Real-Time Systems Symposium (RTSS-99),
Phoenix, AZ.

[10] Steward, D. and P. Khosla, 1991, Real-Time
Scheduling of Sensor-Based Control Systems,
Proceedings of the 8th IEEE Workshop on Real-
Time Operating Systems and Software, Atlanta,
GA, pp. 144-150.

[11] Gill , C., D. Levine, and D. Schmidt, 2000, The
Design and Performance of a Real-Time CORBA
Scheduling Service, International Journal of Time-
Critical Computing Systems, Special Issue on Real-
Time Middleware,
http://www.cs.wustl.edu/~schmidt/dynamic.ps.gz.

[12] Owre, S., J. Rushby, N. Shankar, and F. von
Henke, 1995, Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design
of PVS, IEEE Transactions on Software
Engineering, Vol. 21, No 2, pp. 107-125.

[13] Dutertre, B., 1999, The Priority-Ceiling
Protocol: Formalization and Analysis using PVS,
Technical Report, System Design Laboratory, SRI
International,
http://www.sdl.sri.com/dsa/publis/prio-ceili ng.html.

