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I ntroduction

In modern avionics architedures, applicaion
software increasingly relies on services provided by
a red-time operating system (RTOS). An
applicaion is typicdly structured in sets of
processs that share common hardware resources
viathe RTOS. Such architedures present numerous
advantages for software development by decouging
the gplicaion software from the spedfics of the
underlying hardware. However, they also present
challenging certification poblems. The RTOS is a
highly criticd comporent of the overal avionics
system and must be cetified to the highest levels of
asurance In addition, rew software integration
isaues have to be aldressed such as ensuring that
the processes that share common resources will
satisfy their performance requirements.

Scheduling and synchronization services are
among the most criticd services an RTOS must
provide. These services can be particularly subtle,
andit isdifficult to oltain strong evidencethat they
will perform properly in al circumstances. Testing
and inspedion are not sufficient for this purpose.
Aside from the pure problem of showing that the
RTOS behaves as expeded, a seoond isse is to
determine whether an applicaion that relies on the
scheduling discipline and wses the communication
services provided by the RTOS satisfies its timing
requirements.

A well-established theory of red-time
scheduling does exist, that shodd provide asound
founcition to the development and validation o
red-time system. Yet, the éundant theoreticd
work may naot by itself provide the degree of
asarance required in safety-criticd domains such
asavionics. Theliterature has traditionally relied on
informal approaches, and proafs often rely more on
intuitive eplanations than predse, rigorous
arguments. Since the problems are complex and
subtle, there ae examples of erroneous results and
flawed proofs in the literature. In addition, red
operating systems are often richer and more

complex than considered in the literature. In
integrated avionics, RTOS must provide strong
partitioning guarantees to prevent interference
between processes daring common herdware
resources. Complex systems relying on fault-
tolerant rate-monaonic scheduling are being built
[1] or kernels employing a nortrivial mixing of
static and priority-based scheduling are being
considered [2]. The genera theory rarely applies
diredly but often has to be alapted to a spedfic
context.

We examine how forma methods can help
addressthese isaues. Formal methods can be used to
develop very predse, complete, and rigorous proofs
that theoreticd results are corred and poperly
applied to a particular context. Formal modeling
and verificdaion can provide very strong evidence
that an RTOS satisfies criticd scheduling and
synchronization properties. As an ill ustration, we
discuss the formalization and verificaion d the
priority-ceiling protocol [3], a scheduling and
synchronization protocol used in common red-time
operating systems. We then dscuss extensions of
this work to more complex types of kernels and the
benefits of formal methods in red-time scheduling
problems.

Real-Time Scheduling Issuesin
Safety-Critical Applications

In traditional red-time systems, an application
is decomposed into a set of processes or tasks that
run concurrently on ore of more procesors. A
scheduling policy determines how the processng
resources are shared between the different tasks.
Typicd RTOSs use fixed-priority preemptive
scheduling: ead task is asdgned a fixed priority,
and, at al time, the task of highest priority that is
ready to exeaute is alocaed the processor. Other
pdlicies are dso passble, such as ealiest-deadline-
first scheduling, table-driven scheduling, or other
more complex schemes.

The fundamental problem in this context is to
determine condtions under which a given set of



tasks stisfies its timing requirements. Many
theoreticd results provide such guarantees for
different clases of systems, relying on dfferent
scheduling pdlicies, and with dfferent assumptions
abou tasks and timing constraints. In particular,
fixed-priority preamptive scheduling has been
extensively studied and schedulability results are
known for many types of task sets and timing
constraints.

A simple situation is when the tasks are
independent and periodic. In such a cae, n tasks
T,,---,T, ae eab charaderized by a computation
cost C; and a period T,. Task 71; is adivated at
successve times t,,t, +T,,t, + 2T;, and so forth,
and ead invocaion must terminate within a one-
period interval. In ather words, 1; must be dlocated
atotal amourt of C, time units of processng time
in every interval [ty +KT;,t, +KT, +T;). In fixed-
priority scheduling, it is known that, uncer the rate-
monaonic priority assgnment’, the problem is
feasibleif the foll owing condtionis satisfied
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Liu and Layland proved this property in 1973[4].
They also established ather important results, such
as the fad that the rate-monaonic priority
assgnment is optimal. The condtionaboveis based
on aworst-case analysis and many task sets that do
not satisfy the inequality are still feasible. A better
analysis technique ansists of computing the worst-
case resporse time of a task. The procedure is
sketched in Figure 1, where H; is the set of tasks

of higher priority than 1,. The sequence (W) is
computed urtil either it converges to a fixed pdnt
W < T, orit readesavalue W that is greaer than
T, . Inthe former case, every invocdion d task 7;is
guaranteed to terminate within a delay W.. In the
latter case, 1; cannd be guaranteed to med its
dealines.

The gproach sketched in Figure 1 (as well as
other approaches) generalize to many other task

models, including models where tasks can
communicae with ead ather and where dealines

! The tasks with lower period are given higher priority.

are different from the task periods[5,6]. With such
anaysis tedniques, the theory of red-time
scheduling, espedally in the fixed-priority context,
isnow mature and appli cable to red-world systems.
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Figure 1. Computing the Wor st-Case Response
Time of a Task

However, in safety-critica applications, high
asaranceis required, and the following issues have
to be examined:

*  Which guarantees do we have that the results
pubished in the literature ae ac¢ually corred?

e Which guarantees do we have that a given
RTOS adually satisfies the assumptions of an
abstrad scheduling model ?

Correctness | ssues

Althowgh the theory of red-time scheduling
can be developed using rigorous mathematics,
results are often presented less formally. The
asumptions made ae not aways caefully
spedfied. The proofs are often impredse and based
on intuitive eplanations rather than rigorous
arguments. As the problems are subtle ad
complex, there ae examples of erroneous results,
and incomplete or flawed proofsin the literature.

Even Liu and Layland's esential results rely
on many properties that al look intuitively
ressonable but are nat rigorously proven [4]. More
predse proofs of the same results have been given
since, bu there is an olvious risk in relying on
properties whose proof is based on their authors
intuition. This risk is exacebated when ore moves
away from the simplest scheduling models. In many
systems that are relevant for avionics, process
scheduling interads with ather criticd medianisms,
such as those suppating inter-process
communication, partitioning, or fault-tolerance. In
such contexts, our intuition is much more likely to
be wrong than in the basic, fixed-priority model.



For example, Ghoshetal.[7] present a
scheduling approad intended to tolerate transient
faults by reexeauting faulty tasks. Generalizing Liu
and Layland's results, they give aondtions under
which periodic tasks are feasible using this £heme.
In a subsequent paper, the same authors found a
flaw in their initial analysisand proposed a diff erent
fault-tolerant scheduling scheme [8]. Unfortunately,
as discovered by Sinha and Suri [9], their analysis
of the new scheme is aso flawed; there ae task sets
that satisfy the condtions in Ghosh et al. [8], bu
where dealines are not met if afault occurs.

This example illustrates the difficulty of
corredly analyzing complex scheduling pdlicies
using only informal models and poofs. It also
shows that the informal review process used in
acalemic reseach may fail to spot serious errors.
The example is adso very relevant to the avionics
community since the fault-tolerant scheduling
scheme of Ghosh et a. has been implemented in an
RTOS gspedficdly designed for avionics
applicaions[1]. (The gproach might work in this
case because the RTOS in question orly suppats
harmonic task sets.)

Validity of Models

Most results in red-time scheduing are
developed uwsing very abstrad scheduler models.
Typicdly, only a few assumptions are made éou
the scheduler, such as which job is adive when
several are ready to exeaute. To apply theoreticd
results in criticd applicaions, one neeals to ensure
that the relevant assumptions are satisfied by the
system at hand. This can be difficult as there is
usualy a large gap between the dstrad models
used to derive scheduling results and the red
scheduling algorithms used in an RTOS. Part of the
difficulties is due to the mplex interadion
between scheduling and aher services provided by
the RTOS. As a minimum, inter-process
communicaion requires g/nchronization services
that may cause aprocessto wait and ke delayed by
other processes. Other feaures of an RTOS, such as
interrupt handliing or its clock frequency also have
an impad ontask exeaution.

Becaise of fault-tolerance requirements,
RTOS for criticd applicaions may also provide
fedures, such as temporal partitioning[2], that
impose nstraints on hov a procesdng time is

alocaed to tasks. Such systems do nd follow
exadly the simple priority-based alocdion pdicy
that is the most commonly studied in theory.
Furthermore, because of limitations of the simple
approadhes, more complex scheduling strategies are
being proposed. For example, maximal-urgency-
first scheduling[10] is a complex combination o
priority-based and dealline-based scheduling. The
approad intends to ensure that criticd tasks never
miss a dealline, while adieving high processor
utili zation. This new approach has undeniable
performance a@vantages over more dassc
scheduling strategies and may be alopted by
pradicd systems, bu it is also more complex to
implement and to analyze. To the best of our
knowledge, this approach has been evaluated only
empiricdly [10,17.

Even thowh many types of scheduling
disciplines and task sets have been investigated
theoreticdly, red systems may nat always match
any of the theoreticd models. Still, the literature
provides genera analysis methoddogies that can
often be alapted to new contexts. The problemisto
obtain high asaurance that such general methods
have been properly applied to the given system.

A Formal Analysis Methodology for
Real-Time Scheduling

The literature on red-time scheduling contains
many results that shoud provide sound lases for
the engineging of red-time systems. For such
results to be gplied in safety-criticd applicaions,
one must obtain very high confidence that they are
corred. Furthermore, as hew scheduling strategies
are introduced, there is a need for rapidly adapting
scheduling results to complex systems that do nd
necessarily match traditional models.

As discused previously, very rigorous
approadies are necessary to cach pdential errorsor
omisgonsin models andin proofs. Forma methods
and tool-asssted verificaion can provide the
required degree of predsion and rigor, and as
discussed in the sequel, can be gplied effedively
to nortrivial examples. We propcse a genera
methoddogy for modeling red-time schedulers,
proving that they satisfy criticd properties, and
deriving scheduling properties for diff erent types of
tasks. Our objedive is an approach that suppats



baoth the verificaion o qualitative properties related
to synchronization (e.g., the asence of deallocks)
and the derivation d high-level red-time results
(e.g., condtions under which deallines are met).

To suppat the gproach, we use the PVS
theorem prover [12]. In partticular, we have
developed a large library of basic notions and
results that are useful for modeling systems and
verifying high-level scheduling properties. This
PVS library also introduces the basic concepts that
are cetra to red-time scheduing anaysis.
Application to a spedfic scheduling protocol
consists of building a state-machine model of the
scheduler, examining the eeaution traces of this
model, and relating these traces to the basic nations
and results provided by thelibrary.

Support for Timing Analysis

Although scheduling agorithm can vary alot,
many generic nations and taesic fads are useful for
reasoning abou diff erent approadhes. The literature
aso provides ome general anaysis techniques,
such as computing worst-case resporse times, that
are gplicable in many contexts. To take alvantage
of these eisting results, we have developed a
library of PVS theories that formalize and prove
many useful properties.

The library is based onthe basic concept of a
discrete-time abstract schedule that represents the
alocation d asingle resource (e.g., a procesr) to
different jobs. Given a set of jobs J, ascheduleisan
infinite sequence

U =Ug,Up,...,Ug,...

where u,indicates which job, if any, owns the
resource d timet. Either u, = jand jJJisthejob
that is adive & timet, or u, =0 if thereisnojob

adive a that time. Analysis of timing properties
can then be based onmeasuring how much time has
been dlocaed to a particular job a sets of jobs
during. Givenaset E O J, the PYSfunction

process_time(u, t1, t2, E)

gives the anournt of time dlocaed to jobs of E in
the interval [t;,t,). A similar function gives the

amourt of idle time in an interval. These basic
nations and their properties are implicitly used in

many theoreticad works on red-time scheduling. A
set of PV S theories contains many useful properties
of these basic functions.

Anather part of our PVS libraries introduces
results that suppat timing analysis via the
computation o worst-case resporse times. For
example, we have formaized in PVS a
generdization d the dgorithm described in
Figure 1. These results are very useful since they
can be gplied in general contexts. In particular
they are egplicable to many priority-based
preemptive schemes.

Modeling Schedulers

To apply the results from the library to a
particular system, the first step is to buld a model
of the scheduling agorithm used. A natura
approadh is to use state-madchine models. Such
models have the advantage of providing operational
spedficaions and are eay to understand, thus
reducing the gap between implementation and
model. There ae dso well-known verificaion
techniques (some of which can be fully automated)
for proving properties of such automata-based
models.

It is also important for our purpose to oltain
models that conveniently suppat timing analysis.
Since timing results depend as much on task
charaderistics as on scheduler properties, we need
the aility to introduce asumptions abou sets of
tasks. A common approach is to decompose atask
into a successon d jobs, ead job keing
charaaerized hy attributes such as its dispatch time
and duation. Timing charaderistics of tasks can
then be spedfied as constraints onthe length of jobs
and the delays between successve jobs.

Our modeling approach follows the same
general principles. We build a state-machine model
that is parameterized by a fixed bu arbitrary
colledion d jobs. All the job attributes are sssumed
fixed and known in advance to simplify the
modeling. To oltain general models, we asume &
little @& posdsble @ou the jobs. This allows us to
obtain results that are valid for very general classes
of jobs and then largely independent of the type of
tasks considered. For example, synchronization
properties that are vaid whatever the task
charaderistics can be established in this way.



For oltaining higher-level scheduling results
that depend onthe timing charaderistics of tasks,
the general models can be spedalized by restricting
attention to jobs that satisfy certain properties. This
amourts to instantiating the state-machine model
with spedfic parameters that satisfy adequeate
asumptions. Analysis of these spedali zed instances
can dill rely on the properties that are inherited
from the generic model.

From State Machines to Abstract Schedules

Once a statemadiine spedficdion is
constructed, we can study itsred-time properties by
examining its exeaution traces. More predsely, the
state-machine model is parameterized by a set of
jobs J with attributes such as their starting time,
their priority, and their duration. The traces of the
machine ae sequences of state-transitions
performed by the system for this particular set of
jobs. From such traces, it is trivial to construct
abstrad schedules that can be analyzed using the
suppat library. As previoudly, timing properties
can be very general or valid orly for spedal
instances of the job parameters that satisfy relevant
assumptions.

An Example: ThePriority-Celling
Protocol

We have performed a full PVS formalization
and verificaion d a nortrivia scheduling
algorithm. This dows that predse and rigorous
analysis of fairly complex scheduling approaces
can be performed with modern theorem provers.
Our case study was the priority-ceiling protocol,
introduwced by Sha & al.[3]. This protocol is a
synchronization agorithm for red-time systems
that employ fixed-priority preemptive scheduling.
In its basic form, the protocol is used to control
access to common resources, such as dared
variables or 1/O devices, in mono-procesor
systems. Accessto criticd sedionsis controlled via
binary semaphaes.

This protocol has many interesting properties:
it ensures mutual exclusion and absence of
deallocks, and it guarantees that blocking delays
are minimal. The latter property is esential in red-
time gplicaions. It means that a process P
requesting accessto aresource Swill wait only for

a boundd time before S becomes available. The
protocol is also important in pradice the priority-
cdiling protocol or one of its variant is used in most
commercial RTOSs.

As is often the cae in the literature, the
description d the protocol given by its authorsis
quite informal and impredse. The key properties
are dso proved in afairly informal manner. As the
protocol is subtle and relies on complex priority-
adjustment rules, an informal spedfication is open
to misinterpretation. The priority-adjustment rules
and the interadions between mutual exclusion and
scheduling make the detail s of the protocol difficult
to understand and gute challenging to verify.

Our objedive was to develop complete and
predse spedficdions of the protocol, and olain
rigorous prodfs that the asociated results are valid.
We wanted to prove both key synchronization
properties sich as mutual exclusion and absence of
deadlocks, and significant schedulability results.
Detail s of the PVS developments and verificaions
are available dsewhere[13]. We used the general
methoddogy described previoudly:

We mnstructed a parameterized state-machine
model of the priority-ceili ng protocol that spedfies
how semaphares are dlocaed to jobs and hav jobs
can be adivated in a given state. We then proved
that al readable states of the protocol satisfy
invariant properties that ensure mutual exclusion,
absence of deadlocks, and imply that at most one
job can bock ancther. The proofs use standard
techniques based oninduction.

In a seaond step, we examined the exeaution
traces and schedules that the protocol model can
produce From the basic state-invariant properties,
we obtained general bounds on Hocking delays and
on the procesdng time dlocaed to jobs. These
properties are valid for arbitrary colledions of jobs
and are the basis for further scheduling analysis.
The proofs used the notion d schedules and the
various results developed in the suppart library.

We then applied the general resultsto derive a
well-known schedulability criterion for sporadic
tasks[5,6). A sporadic task can be thouwght of as a
sequence of jobs of the same priority, separated by
a minimal interarrival delay. Sporadic tasks are
useful for modeling both strictly periodic
computations and interrupt-driven adivities with a



limited interrupt frequency. Knowing bound onthe
length of ead job d atask andthe length o criticd
sedions of other jobs, one cax compute the worst-
case resporse time for jobs of atask 7;, using an

iterative dgorithm similar to the one of Figure 1.
From this worst-case exeaution time, it is easy to
determine if atask med its deallines.

The cae study shows that a full formal
spedficaion and verificaion d nortrivia
scheduling mechanisms and properties is feasible.
In the same framework, we established bah low-
level synchronization properties and high-level
schedulability properties. All the developments
were performed with tod suppat, using the PVS
spedficaion and verificaion system. This provides
very high aswurance of corredness and ensures a
complete and rigorous analysis. The whole PVS
formalization required between two and three
person months of effort, part of which was gent on
developing the general suppat libraries. The
formali zation contains 417 lemmas and theorems,
for around 250dines of spedfications. The suppat
library and dher reusable results that are
independent of the priority-cdling protocol
represent around 406 of the developments (1000
lines).

In addition to giving very strong evidence that
the protocol and the assciated scheduling test are
corred, the formali zation al'so provided ather useful
insights:

e Our spedficaion o the protocol is more
predse and simpler than the traditi onal informal
description. In particular, the protocol can be
entiredly spedfied withou any priority
adjustment by using a dlightly modified rule for
seleding adive jobs. This may point to new
ways of implementing the protocol and was
essential for simplifying the verification.

e Some new results emerged from the analysis,
such as the fad that the protocol works under
wegker asaumptions than ariginally made by its
authors. Sha @ al. assume that criticd sedion
are properly nested [3], bu this requirement is
adualy unrecessary. All the important
properties are satisfied even if criticd sedions
overlap.

e Our PVS proof of the schedulability result for
sporadic tasks is based on the nation d busy

periods, bu is smpler and more dired than the
clasgc proofs. Many informal proofs of similar
results refer to Liu and Layland' s theorem 1,
which states that the worst-case resporse time
for a task 7 occurs when all tasks of higher
priority than 1 are dispatched at the same time
as 1 [4]. The worst-case scenario is then when
all tasks are released at the same time, cdled a
criticd instant. Informa proofs are usualy
based onfinding the worst-case scenario for a
given context and determining resporse times
in this worst case. However, proving that the
identified scenario isacually the worst possble
case can be difficult’. Our proof shows that
looking for such worst-case scenarios is
adualy an unrecessary detour.

Conclusion

A sound theory of red-time scheduling is
necessry to suppat the engineaing of red-time
software gplicaions. Developing scheduling
results using formal methods helps provide the high
level of asarance required in safety-criticd
domains. We propose aformali zation methoddogy
relying on state-machine models and onallibrary of
commonly applicable properties. A case study has
shown that rigorous and a detailed verificaion d
nortrivial scheduling results can be performed
within reasonable time limits, using modern
theorem-proving tods such as PV S.

It is gill necessary to develop and extend such
verificdion efforts to the increasingly complex
scheduling algorithms that may one day be used in
safety-criticd applications. Other aspeds relevant
to the aionics domain reman insufficiently
explored by the formal methods community. For
example, little has been dore in the analysis of
distributed red-time systems, where difficult
problems mixing communicaion, gocessng, fault-
tolerance must be addressed. Formal methods are
espedally valuable in such complex settings, where
informal proofs guided by intuition are insufficient
and where other validation approaches such as
testing are incomplete. Forma methods shoud
bemme an esential tod for validating the most
criticd aspeds of red-time systems, such as the

2 The proof of theorem 1 given by Liu and Layland is
particularly unconvincing.



partitioning mechanisms required for fault isolation
in integrated avionics.

Red-time scheduling problems are an ided
applicaion areafor formal methods snce they are
subtle and complex, must be cetified to the highest
degrees of aswrance for suppating criticd
applicaions, andthus require very predse, detail ed,
andrigorous verification.
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