
Intrusion-Tolerant Group Management in Enclaves
DSN’01, Göteborg, Sweden, July 2001

Bruno Dutertre, Hassen Saı̈di, and Victoria Stavridou
System Design Laboratory, SRI International

333 Ravenswood Avenue, Menlo Park, CA 94025, USA
fbruno,saidi,victoriag@sdl.sri.com

Abstract

Groupware applications require secure communication
and group-management services. Participants in such ap-
plications may have divergent interests and may not fully
trust each other. The services provided must then be de-
signed to tolerate possibly misbehaving participants. En-
claves is a software framework for building such group ap-
plications. We discuss how the protocols used by Enclaves
can be modified to guarantee proper service in the presence
of nontrustworthy group members. We show how the im-
proved protocol was formally specified and proven correct.

1. Introduction

Group-oriented applications deployed over insecure net-
works such as the Internet can involve a set of participants
who collaborate on common tasks but may not fully trust
each other. Even if all group members trust each other, ex-
ternal intruders could attempt to disrupt the application by
compromising a member’s host machine. To support group-
ware applications in such environments, it is necessary to
provide robust authentication, communication, and group-
management services that can tolerate misbehaving mem-
bers and members whose machine has been compromised.

EnclavesTM is a platform supporting such secure group-
oriented applications. It is designed to be lightweight and
portable, and relies on software-implemented cryptography.
An application consists of a set of members who coordinate
and cooperate via a group leader. The leader is responsible
for all group-management activities, including authenticat-
ing and accepting new members, distributing cryptographic
keys, and distributing group-membership information. In
the current implementation, all group members are assumed
trustworthy and there is little protection against misbehav-
ing members. As a consequence, compromise of a single
computer hosting one of the members can lead to the fail-
ure of group-management services.

This paper presents an improved protocol for authenti-

cation and group management in Enclaves, and shows how
this protocol was formally verified. The protocol ensures
that a noncompromised user is guaranteed correct group-
management services as long as the leader is not compro-
mised. The modeling and verification approach is a new
combination of techniques for proving secrecy properties of
cryptographic protocols, and of state-machine abstraction
based on verification diagrams. Section 2 gives an overview
of the Enclaves architecture and protocols, and discusses
weaknesses of these protocols in the presence of nontrust-
worthy group members. Section 3 presents the improved
protocol for user authentication and for group-management
activities. Sections 4 and 5 describe the formalization and
verification of this protocol, respectively. Section 6 dis-
cusses related work.

2. An Overview of Enclaves

2.1. Architecture

A group-oriented application enables users to share in-
formation and collaborate via a network such as the Inter-
net. The group involved is usually dynamic. An applica-
tion is started when a user initiates a session, and new users
are allowed to join and later leave the session. Multicast
is the main mode of communication: Messages originat-
ing from one group member are received by all the users in
the current session. In many cases, groupware applications
have restricted access policies and other security require-
ments. Access to an active session is limited to a prede-
fined set of users or to users having appropriate credentials
(e.g., they have paid for the service provided). In such con-
texts, user authentication, key distribution, data confiden-
tiality, and data integrity are essential.

Enclaves [5] is a lightweight software framework that
provides the infrastructure to support such secure group ap-
plications. The overall architecture of an Enclaves applica-
tion is shown in Figure 1. The group is organized around
a group leader who starts and ends the application, and is
responsible for all group-management activities. Regular

Member

Member Member

Member

Member

Group
Leader

Figure 1. Enclaves Architecture

group members establish a bidirectional point-to-point link
with the leader when they join the application.

Enclaves is designed to be easily portable. It does not
use IP multicast but relies on common point-to-point proto-
cols. As a consequence, all group communications are me-
diated by the group leader. Messages from a member to the
group are sent to the leader for relay to the other members.
To ensure confidentiality and integrity of communication,
Enclaves relies on standard cryptographic techniques based
on symmetric-key encryption and message-authentication
codes.

Messages are encrypted using a group keyK

g

that is dis-
tributed to the members when they join the group. The key
can be changed by the leader according to an application-
dependent policy. In addition to the group key, which is
common to all the members, each memberA has a separate
session keyK

a

that is used for group-management activ-
ities and is shared betweenA and the leader. This key is
generated whenA joins the application and remains in use
until A leaves.

Enclaves provides various group-management protocols
for supporting applications. Such protocols perform oper-
ations such as user authentication or key distribution. Ex-
amples are described in the next section. These protocols
have been extracted from the JavaTM implementation of
Enclaves described in [6] that differs significantly from a
previous implementation [5].

2.2. Example Protocols

For user authentication, Enclaves assumes that each po-
tential group member has a long-term password that must
be known in advance to the group leader.1 To join an ap-
plication, a userA first signals to the leaderL his intention
to join the group.L can either accept or deny access toA

1Authentication using public-key cryptography is also possible, but is
not currently implemented.

depending on the application security policy:

1: A! L : A; req open

2: L! A : L; a
k open (or
onne
tion denied):

If the connection is accepted,A initiates the following au-
thentication protocol:

1: A! L : A; fA;L;N

1

g

P

a

2: L! A : L; fL;A;N

1

; N

2

;K

a

; I:V:;K

g

g

P

a

3: A! L : A; fN

2

g

K

a

:

In message 1,A encrypts a triple composed ofA’s identity,
the leader’s identity and a nonceN

1

and sends the result to
the leader. This encryption uses a keyP

a

derived fromA’s
password, soP

a

is known by bothA andL. On reception
of this message,L checks that the two encrypted identities
are correct and extractsN

1

. L then generates a new nonce
N

2

, a new shared keyK
a

, and an initialization vectorI:V:.
L sends all these components together withN

1

and the cur-
rent group keyK

g

, all encrypted withP
a

. In message 3,A
acknowledges receipt of message 2.

At the end of this protocol,A is ready to participate in
group activities. The leader informs all the group that a new
memberA has joined and sends toA the identity of all the
other group members. These messages are encrypted using
the group key.

The group leader generates a first group keyK

g

when the
first member is accepted. A new group key can be generated
and distributed at any time by the leader, depending on the
application security policy. Typically, new keys can be gen-
erated when new members join, when members leave, or on
a periodic basis. For distributing a new group keyK

0

g

, L
sends an individual message to all the members and waits
for an acknowledgment:

1: L! A : L; new key; fK

0

g

; I:V:g

K

a

2: A! L : A; new key a
k; fK

0

g

g

K

0

g

:

A userA willing to leave the session simply sends the
following message:

1: A! L : A; req
lose

The leader then sends an acknowledgment toA and informs
the rest of the group thatA has left:

2: L! A : L;
lose
onne
tion

3: L! B

i

: L;mem removed; fAg

K

g

:

A variation of this protocol can be used to expel some mem-
bers of the group.

2.3. Protocol Weaknesses

The previous protocols are vulnerable to various attacks
– for example, based on message replay. Furthermore, the

2

protocols were designed under the assumption that group
members (past and present) are trustworthy. In case this
assumption is not valid, a misbehaving member can easily
disrupt the application and cause various security failures.

For example, the pre-authentication exchange can lead
to a simple denial-of-service attack. It may seem econom-
ical to check whetherA is allowed to join the group be-
fore performing the authentication protocol, butA has no
guarantees that the replya
k open or
onne
tion denied

actually came from the group leader. To prevent a legiti-
mate userA from joining the group, an attacker can forge a

onne
tion denied reply and send it toA.

The transmission of group-membership information is
also weak. The messageL;mem removed; fAg

K

g

is in-
tended to signal to all members thatA has left the group, but
there is little evidence that this message is fresh, and there
is no evidence that it was sent by the leader. Such a mes-
sage can be easily forged by any group member since it is
encrypted with the common group key. A malevolentA can
then convince a memberB thatA has left the group. As a
result,B has an inaccurate view of who is part of the group,
and this may causeB to send information to the group that
he did not intendA to receive.

There are similar problems with the distribution of new
group keys. The messageL; new key; fK

0

g

; I:V:g

K

a

in-
forms a group memberA that K 0

g

is the new group key.
Unfortunately, nothing guarantees toA that this message is
fresh. An attacker can then forceA to reuse an old group
keyK 0

g

by replaying an old key-distribution message. Such
an attack can cause loss of confidentiality if the attacker is
in possession ofK 0

g

. Obtaining an old group key such asK 0

g

may be difficult for an outsider but is trivial for any group
member. The attack can then be performed by a past mem-
ber of the group who has left the application but has kept the
old keyK 0

g

. The rekeying procedure is then insecure unless
all present and past participants in the current application
are trustworthy.

3. Intrusion Tolerance in Enclaves

3.1. Objectives

Our objective is to develop a more robust version of the
Enclaves protocols, that fixes the various flaws of the cur-
rent implementation and tolerates nontrustworthy or com-
promised members. The main objective of Enclaves is to
ensure user authentication, confidentiality and integrityof
group communication, and to provide accurate group mem-
bership information to the group members.

Confidentiality requires that group communication must
be accessible only to current group members. Clearly, this
cannot be guaranteed in the presence of nontrustworthy mem-
bers as any such member can leak the information outside

the group. Instead, we focus on making sure that compro-
mised group members cannot interfere with the user authen-
tication process or with the group management services. As
shown by the example attacks discussed previously, it is im-
portant for each user to have an accurate view of who is in
the group, and to have evidence that key distribution mes-
sages are timely and originate from the leader. To ensure
these properties, we define an improved protocol for per-
forming user authentication and distributing arbitrary group-
management messages to users.

The new protocol relies on the same architecture and
means of authentication as previously. We assume a set
of agents connected via an insecure asynchronous network.
The agents include users who can participate in the group
application and other agents (the outsiders). The partici-
pants consist of a central group leaderL and a set of prospec-
tive group members. Each prospective memberA has a
long-term keyP

a

initially known only byA andL. We say
that a participant is not compromised, trustworthy, or non-
faulty if it behaves as specified by the protocol. Outsiders
and compromised participants behave arbitrarily but we as-
sume that they cannot break the encryption primitives used.
A compromised participant may be one who intentionally
misbehaves or an honest user whose host machine or oper-
ating system has been corrupted. Since the network is in-
secure, compromised participants and outsiders can read all
the messages exchanged, replay old messages, and send ar-
bitrary messages they can construct (as described formally
in Section 4.2). In particular, compromised participants can
leak secrets, including their long-term key, to outsiders or
other compromised participants. Thus collusions between
attackers are possible.

The protocol specifies how a participantA joins and later
leaves the group and how group-management messages are
sent byL to group members. The requirements are as fol-
lows:

� Proper User Authentication.If a user is accepted as
group memberA by the leader then this user is actu-
ally A.

� Proper Distribution of Group-Management Messages.
All the group-management messages accepted by a
group memberA have been sent by the group leader;
they are accepted byA in the same order as they were
sent byL; no group-management message accepted
byA is a duplicate.

We want these requirements to be satisfied provided both
A andL are not compromised, even in the presence of an
arbitrary number of nontrustworthy agents. Each timeA

enters the group,L generates a new session key forA, and
the requirements must be satisfied even if old session keys
are compromised and known to nontrustworthy agents.

3

3.2. Improved Protocol

As previously, each userA has a secret long-term keyP
a

that is initially known byA and byL. To join the applica-
tion,A initiates the following protocol:

1: A! L : AuthInitReq; A; L; fA;L;N

1

g

P

a

2: L! A : AuthKeyDist; L;A; fL;A;N

1

; N

2

;K

a

g

P

a

3: A! L : AuthA
kKey; A; L; fN

2

; N

3

g

K

a

:

With small variations, this is the same authentication pro-
tocol as previously. The main differences are the removal
of the pre-authentication exchange, the presence of a fresh
nonceN

3

in message 3, and the absence of the group key
K

g

. K

g

must be distributed toA in subsequent group-
management messages and nonceN

3

is used in the distri-
bution of such messages.

If authentication succeeds,A becomes a member of the
group and is in possession of the session keyK

a

. As long
asA is in session,L can send group-management messages
to A andA must acknowledge each such message. The
messages and acknowledgments are encrypted withK

a

and
nonces are used to protect against replay. BothL andA
memorize a nonceN

2i+1

that was generated byA. This
nonce is either theN

3

communicated toL at the end of the
authentication protocol, or a nonce thatL received fromA
in the most recent acknowledgment message. The group-
management exchange is as follows:

1: L! A : AdminMsg; L;A;

fL;A;N

2i+1

; N

2i+2

; Xg

K

a

2: A! L : A
k; A; L; fA;L;N

2i+2

; N

2i+3

g

K

a

:

Message 1 containsN
2i+1

to prove toA that the message is
not a replay, and communicates toA the nonceN

2i+2

that
L generates. The fieldX is the actual group-management
message. For example,X may specify a new group key and
initialization vector, or indicate that a member has joinedor
left the session. Message 2 containsN

2i+2

to prove toL
that the acknowledgment is not a replay, and communicates
toL a fresh nonceN

2i+3

to be used in the next exchange.
A can leave the session at any time by sending the fol-

lowing message toL:

1: A! L : ReqClose; A; L; fA;Lg

K

a

:

In this message,K
a

is used to guarantee that the message
originated fromA and to prove freshness. The message can-
not be a replay since there can be at most one closing mes-
sage per session and hence per session key. On reception,
L simply closes the session withA: K

a

is discarded and no
further group-management message is sent toA.

4. Formal Protocol Model

To analyze the protocol, we first build a system model
based on state-transition systems. This model uses nota-

Connected(Na2,Ka)WaitingForKey(Na)

Connected(Na2, Ka)Connected(Na, Ka)

WaitingForKey(Na)NotConnected

!AuthInitReq, A, L, {A, L, Na}

?AuthKeyDist, L, A ,{L, A, Na, Nl, Ka}

Ka!AuthAckKey, A, L, {A, L, Nl, Na’}

?AdminMsg, L, A, {L, A, Na, Nl, X}Ka

!Ack, A, L, {A, L, Nl, Na’} Ka

NotConnectedConnected(Na, Ka)

Ka!ReqClose, A, L, {A, L}

Pa

Pa

Figure 2. State-transition Model of User A

tions and concepts presented by Millen and Rueß [10], and
closely follows Paulson’s inductive approach to modeling
cryptographic protocols [11].

We represent the message space in a standard way, as de-
scribed in [10] or [11]. Each message consists of a label, an
apparent sender, an intended recipient, and a content. La-
bels represent the type of each message – for example,Au-
thInitReq or AuthKeyDist. Message contents are elements
of the set of fieldsF defined as follows:

� Agent identities, keys, and nonces are primitive fields.

� Given two fieldsX andY , their concatenation, de-
noted by[X;Y ℄, is a field.

� Given a fieldX and a keyK, the encryption ofX
with K, denoted byfXg

K

, is a field.

The set of agent identities is denoted byA, the set of nonces
byN , and the set of keys byK. These three sets are mutu-
ally disjoint. Keys are either long-term keys of the formP

a

or session keys such asK
a

. All the keys are symmetric.
We also use “oops” events to model the compromise of

session keys (cf. [11]). An oops event is writtenOops(X)

and means that fieldX (typically a session key) is commu-
nicated to all agents.Oops(X) is treated like an ordinary
message whose content is the fieldX . The set of messages
and oops events is denoted byM.

4.1. Users and Leader

A nonfaulty userA is modeled by the state-transition
system of Figure 2. The states of this systems are of three
forms:

� NotConne
ted: A is out of the group and has not
started the authentication process.

4

WaitingForKeyAck(Nl,Ka)NotConnected

Connected(Na, Ka)WaitingForAck(Nl, Ka)

WaitingForAck(Nl, Ka)Connected(Na, Ka)

NotConnectedConnected(Na, Ka)

NotConnectedWaitingForAck(Nl, Ka)

Connected(Na,Ka)WaitingForKeyAck(Nl,Ka)

Pa?AuthInitReq, A, L, {A, L, Na}

!AuthKeyDist, L, A ,{L, A, Na, Nl, Ka} Pa

?AuthAckKey, A, L, {A, L, Nl, Na} Ka

!AdminMsg, L, A, {L, A, Na, Nl, X} Ka

?Ack, A, L, {A, L, Nl, Na} Ka

Ka?ReqClose, A, L, {A, L}

?ReqClose, A, L, {A, L}Ka

Oops(Ka)

Oops(Ka)

Figure 3. Leader Communication with A

� WaitingForKey(N

a

):A has sent anAuthInitReqmes-
sage containingN

a

as a fresh nonce, andA is waiting
for a reply from the leader

� Conne
ted(N

a

;K

a

): A has joined the group, and
has receivedK

a

as a session key from the leader.
N

a

is the last nonceA has generated and sent toL.
N

a

is then the nonceA expects in the next group-
management message fromL.

The leader is modeled as the composition of separate
transition systems, one for each user. Each of these systems
defines the responses of the leader to requests from a user
A, and the transmission of group-management messages to
this user. The system is shown in Figure 3 and its states are
of the following forms:

� NotConne
ted: A is not connected.

� WaitingForKeyA
k(N

l

;K

a

): L has generated a fresh
session keyK

a

for A and is waiting for a key ac-
knowledgment containing nonceN

l

.

� Conne
ted(N

a

;K

a

): this is the normal state whenA
is a member of the group.K

a

is the session key that
L uses to communicate withA. N

a

is the most recent
nonce thatL received fromA and will be included in
the next group-management message.

� WaitingForA
k(N

l

;K

a

): L has just sent a group-
management message toA and is waiting for an ac-
knowledgment containing nonceN

l

.

On reception of aReqClose message,L closes the session
andK

a

is discarded. TheOops(K
a

) event attached to the

corresponding transitions models the compromise of old ses-
sion keys:K

a

is released and becomes public as soon as the
session is closed.

4.2. Global Model

We use Paulson’s approach [11, 10] to model the behav-
ior of nontrusted agents. Given a set of fieldsS, the fol-
lowing sets are used:Parts(S), Analz(S), andSynth(S).
Parts(S) is the set of fields and subfields that occur inS.
Analz(S) is the set of fields that can be extracted from ele-
ments ofS without breaking the cryptosystem.Synth(S) is
the set of fields that can be constructed from elements ofS

by concatenation and encryption. Formal definitions can be
found in [11] or [10].

Overall, our model is the asynchronous composition of
an honest userA, an honest leaderL, and other nontrusted
agents. The behavior of a nontrusted agentB is determined
by the keys and other fields thatB knows initially, and by
the messages thatB has observed so far. Given an agent
G 2 A, we denote byI(G) the set of fields thatG knows
initially. We assume thatParts(I(G)) does not contain any
nonce or session key. Furthermore, ifG 6= A andG 6= L,
we assumeP

a

62 Parts(I(G)). This means that initially
onlyA andL knowA’s long-term keyP

a

.
Let Q denote the global state space of the system. In

a system stateq 2 Q, we denote bytra
e(q) the set of
messages and oops events that have occurred so far and by
tra
e(q) the message contents that occur intra
e(q). We
assume that all agents are able to observe all the events that
have occurred so far. In a stateq, the set of fields thatG can
access is then

Know(G; q) = Analz(I(G) [tra
e(q)):

This is the set of fields thatG can obtain from its initial
knowledgeI(G) and the messages seen so far. We also
define the set of nonces and sessions keys that are not used
in stateq as follows:

FreshNon
es(q) = N � Parts(tra
e(q))

UsedKeys(q) = fKj9X : fXg

K

2 Parts(tra
e(q))g

FreshKeys(q) = K

S

�

(Parts(tra
e(q)) [UsedKeys(q));

whereK
S

denotes the set of session keys. The set of fields
thatG can generate in a stateq is

Gen(G; q) = Synth(Know(G; q) [FreshFields(q));

whereFreshFields(q) is the union ofFreshNon
es(q) and
FreshKeys(q). G can then synthesize new messages from
fields it knows and from fresh keys or nonces it generates.

5

The overall model is now given by a collection of tran-
sition relationsT

G

� Q � M � Q, one for each agent
G 2 A. Each triple(q;M; q

0

) of T
G

represents a global
transition corresponding to agentG sending messageM in

stateq. Such a transition is denoted byq
M

�! q

0

by G, and
its effect ontra
e is given by

tra
e(q

0

) = fMg [tra
e(q): (1)

An important constraint is that an agentG sends only mes-
sages it can generate:

q

M

�! q

0

by G) M 2 Gen(G; q); (2)

whereM is the content of messageM . The label ofM , the
apparent sender, and the intended recipient can be arbitrary.

The transition relationsT
A

andT
L

corresponding toA
andL are extracted from Figures 2 and 3 in a straightfor-
ward way. For all other agentsB, T

B

is an arbitrary relation
that is assumed to satisfy constraints (1) and (2). The global
system behavior is characterized by the following rule:

q �! q

0

= 9G 2 A;M 2M : q

M

�! q

0

by G:

The system evolves by selecting an agentG and executing
a corresponding transition. This corresponds to the asyn-
chronous composition of the systemsT

G

. Since we look
only at safety properties, there are no fairness assumptions.

5. Verification

LetA be an arbitrary non-faulty user. The proof that the
protocol satisfies the requirements of Section 3.1 is decom-
posed in four steps. We first show two secrecy properties:

� A’s long-term keyP
a

is kept secret. Nobody other
thanA andL can ever access keyP

a

.

� As long as a session keyK
a

is in use, it is secret: only
A andL can useK

a

.

These properties are state invariant: they are satisfied in all
the reachable states of the system. The proofs use the no-
tions of protocol regularity, and of ideals and coideals pre-
sented in [10].

Using these two invariant properties, we apply a veri-
fication method, based on verification diagrams, that was
proposed by Rushby [15]. The idea is to construct an ab-
straction of the transition system from which the require-
ments can be easily established. We construct a verification
diagram that corresponds to our informal understanding of
the protocol and we show that this diagram is actually a
valid abstraction of the system. The final step is to show
that proper authentication and proper distribution of group-
management messages are implied by the diagram.

The following sections describe the main stages of the
proof. A more detailed presentation is given in [4]. The
whole formalization and verification have been performed
using the PVS theorem prover. The PVS formalization re-
quired two person weeks of effort. No error in the protocols
was found, but the use of PVS was essential to fix flaws
in our hand proofs, including errors and omissions in sev-
eral candidate verification diagrams we constructed. The re-
sulting PVS developments are available athttp://www.
csl.sri.com/˜bruno/pvs/enclaves.txt .

5.1. Secrecy ofA’s Long-Term Key

We have to prove that the following property is satisfied
by any reachable stateq:

8G 2 A : P

a

2 Know(G; q)) G = A _G = L:

We prove this by using theRegularity Lemmaof Millen
and Rueß [10]. The idea is to show that, in any reach-
able stateq, P

a

does not occur intra
e(q), that is,P
a

62

Parts(tra
e(q)): This property is satisfied because the pro-
tocol isregular: NeitherA norL ever sendP

a

in a message.
Formally, we have to show

q

M

�! q

0

by A) P

a

62 Parts(M)

q

M

�! q

0

by L) P

a

62 Parts(M):

The proof is an easy case analysis. Using the regularity
lemma of [10], this implies that, in any reachable stateq, we
haveP

a

62 Parts(tra
e(q)): Now, by elementary properties
of Analz andParts (cf. [10]), we have

Know(G; q) = Analz(I(G) [tra
e(q))

� Parts(I(G) [tra
e(q))

= Parts(I(G)) [Parts(tra
e(q)):

If q is a reachable state andP
a

belongs toKnow(G; q), we
must then haveP

a

2 Parts(I(G)). By the assumptions on
the initial knowledge ofG, this impliesG = A orG = L.

5.2. Secrecy of Session Keys

We say that a session keyK
a

is in use in a stateq if L is
in a local state that containsK

a

as a component:

InUse(K

a

; q) =

(9N : lead

A

(q) = WaitingForKeyA
k(N;K

a

))

_(9N : lead

A

(q) = Conne
ted(N;K

a

))

_(9N : lead

A

(q) = WaitingForA
k(N;K

a

)):

We want to show that the following property is satisfied in
any reachable stateq for all K

a

andG:

InUse(K

a

; q) ^ K

a

2 Know(G; q)) G = A _ G = L:

6

As long asK
a

is in use, no agent other thanA andL has
access toK

a

.
As discussed in [10], to show that a keyK

a

is known
only byA andL we have to consider theidealgenerated by
the setS = fK

a

; P

a

g. This ideal is denoted byI(S) and is
the smallest set of fields such that

� S � I(S)

� if X 2 I(S) or Y 2 I(S) then[X;Y ℄ 2 I(S)

� if X 2 I(S) andK 62 S thenfXg
K

2 I(S).

I(S) contains all the fields from whichK
a

or P
a

can be
extracted. For example,fX;Y;K

a

g

P

b

belongs toI(S) as
any agent in possession ofP

b

can obtainK
a

from this field.
ForK

a

to remain secret, we must make sure that fields from
I(S) never occur in the trace as long asK

a

is in use.
The complement ofI(S) is called acoidealand is de-

noted byC(S). Proving thatK
a

remains secret amounts
then to showing thattra
e(q) is included inC(S). Coideals
satisfy two important properties [10]:

Analz(C(S)) = C(S): (3)

Synth(C(S)) = C(S): (4)

Another useful result is that, for any set of fieldsE,

Parts(E) \ S = ;) E � C(S):

This is the Ideal-Parts Lemma of [10]. To apply these results
to Enclaves, we start with the following lemma whose proof
is an easy induction.

Lemma 1 For any reachable stateq and any session key
K

a

, we have

InUse(K

a

; q)) K

a

2 Parts(tra
e(q)):

This simply means that onceK
a

is in use, it is no longer
fresh and thus any key that nontrusted agents might generate
in the future will be distinct fromK

a

.

Lemma 2 If G is an agent other thanA andL, and q is
a reachable state such thatInUse(K

a

; q) and tra
e(q) �
C(S), then the two following properties are satisfied:

Know(G; q) � C(S)

Gen(G; q) � C(S):

Proof: By assumption, we haveParts(I(G)) \ S = ; and
then I(G) � C(S). Sincetra
e(q) � C(S), we obtain
I(G) [tra
e(q) � C(S), and then

Know(G; q) = Analz(I(G) [tra
e(q))

� Analz(C(S)) = C(S):

The proof of the second inclusion is very similar and relies
on the preceding lemma.2

The remainder of the proof of secrecy consists of show-
ing that the property

InUse(K

a

; q)) tra
e(q) � C(S) (5)

is invariant. It is trivially true in the initial stateq
0

. Now, let
q be a state that satisfies (5) and letq

0 be a successor ofq.
We have

q

M

�! q

0

by G

for some messageM and agentG. AssumingK
a

is in use
in q0, we have to showtra
e(q0

) � C(S), that is,tra
e(q)[
fMg � C(S). Three cases must be considered:

� K

a

is not in use inq. K
a

has then been freshly gen-
erated byL in response to anAuthInitReq message:
G = L andK

a

2 FreshKeys(q). This means that
K

a

62 Parts(tra
e(q)). As we have shown in the
previous section,P

a

62 Parts(tra
e(q)). SinceS =

fK

a

; P

a

g, the properties of coideals givetra
e(q) �
C(S). The messageM is of the form

AuthKeyDist; L;A; fA;L;N

a

; N

l

;K

a

g

P

a

;

and it is easy to see that the contentM of this message
– namely, the fieldfA;L;N

a

; N

l

;K

a

g

P

a

– does not
belong toI(S). So we havetra
e(q0

) � C(S).

� K

a

is in use inq andG is an agent other thanA and
L. We know thatM 2 Gen(G; q). SinceK

a

is in use
in q, we havetra
e(q) � C(S). By Lemma 2, this
impliesM 2 C(S) and thentra
e(q0

) � C(S).

� K

a

is in use inq andG is eitherA or L. By inspec-
tion, we can see that the content of messageM is of
the formf: : :g

K

a

. Such a field does not belong to
I(S) so we haveM 2 C(S). We can then conclude
thattra
e(q0

) � C(S) as in the previous case.

By induction, we have then shown that property (5) is true
in all reachable states. We conclude by the following propo-
sition, which is an easy consequence of the previous result,
of Lemma 2, and of the fact thatK

a

62 C(S).

Proposition 3 Given a session keyK
a

, an agentG and a
reachable stateq, we have

InUse(K

a

; q) ^ K

a

2 Know(G; q)) G = A _ G = L:

5.3. System Abstraction

Figure 4 shows a verification diagram (cf. [15, 8]) that
represents an abstraction of the overall transition system.
Each box in the diagram is labeled with a predicateQ

i

(q)

that relatesusr
A

(q), lead
A

(q), and tra
e(q). (Only the

7

!AuthKeyDist

!AuthKeyDist

(replay)

(replay)

!AuthInitReq !AuthInitReq

!AuthKeyDist

!AuthAckKey

?AuthAckKey

!AdminMsg

!Ack

NotConnected

NotConnected

WaitingForKey

NotConnected

WaitingForKeyAck

WaitingForKey

WaitingForKeyAck

WaitingForKey

WaitingForKeyAck

Connected

WaitingForKeyAck

Connected

WaitingForAck

Connected

Connected

Connected

WaitingForAck

NotConnected
Q1

Q2

Q12

Q13

Q3

Q4

Q5

?AuhtAckKey

!AdminMsg

WaitingForKey

WaitingForKeyAck

WaitingForKey

Connected

WaitingForKey

WaitingForAck

WaitingForKey

WaitingForAck
Q7

!AuthInitReq

!AuthInitReq

!AuthInitReq

Q6

Q14

Q17

Q16

Q15

!ReqClose

!ReqClose

!ReqClose

!ReqClose

!AuthInitReq

Q9

?Ack

?Ack

?Ack

?ReqClose ?ReqClose

?AuhtAckKey

!AdminMsg

NotConnected

WaitingForKeyAck

NotConnected

Connected

NotConnected

WaitingForAck

NotConnected

WaitingForAck

Q10

Q11

Q8

Figure 4. Protocol Abstraction

local user and leader states are shown in the figure.) For
example, the predicatesQ

1

, Q
2

, andQ
12

are as follows:

Q

1

(q) =

usr

A

(q) = NotConne
ted ^ lead

A

(q) = NotConne
ted

Q

12

(q) = 9N

l

; K

a

:

usr

A

(q) = NotConne
ted ^

lead

A

(q) = WaitingForKeyA
k(N

l

; K

a

) ^

8N : fA;L;N

l

; Ng

K

a

62 Parts(tra
e(q))

Q

2

(q) = 9N

a

:

usr

A

(q) = WaitingForKey(N

a

) ^

lead

A

(q) = NotConne
ted ^

8N;K : fL;A;N

a

; N;Kg

P

a

62 Parts(tra
e(q)):

The whole diagram can be constructed in a systematic way
as explained in [15]. In our case, the construction is based
on examining the successive transitionsA orL can execute,
starting from a state that satisfiesQ

1

. A complete list of the
abstraction predicates is given in [4].

To prove that the diagram is a correct abstraction of the
protocol model, we must show for each boxi labeled by
predicateQ

i

that the diagram captures all the possible tran-
sitions out of a state whereQ

i

holds. If the successor boxes
of i are numberedi

1

; : : : ; i

k

, the proof obligation is

8q; q

0

;M;G : Q

i

(q) ^ q

M

�! q

0

by G)

Q

i

1

(q

0

) _ : : : _Q

i

k

(q

0

):

Although this is not shown explicitly in Figure 4,i is always
a successor of itself. In addition, we must also show thatq

0

,
the initial state, satisfies predicateQ

1

.
For i = 1, we must then show that for statesq andq0, all

agentsG and all messagesM , we have

Q

1

(q) ^ q

M

�! q

0

by G) Q

1

(q

0

) _Q

2

(q

0

) _Q

12

(q

0

):

The proof is a simple case analysis. IfG = A, q0 satis-
fiesQ

2

; if G = L, q0 satisfiesQ
12

; otherwise,q0 satisfies
Q

1

. The proof thatQ
2

(q

0

) is satisfied whenG = A or
thatQ

12

(q

0

) is satisfied whenG = L uses the fact that the
nonces created by the transition are fresh.

In most other cases, we use the secrecy theorems estab-
lished previously to discharge the proof obligations. For
example, the proof obligation forQ

3

is

Q

3

(q) ^ q

M

�! q

0

by G) Q

3

(q

0

) _Q

4

(q

0

); (6)

whereQ
3

(q) andQ
4

(q) are as follows:

Q

3

(q) = 9N

a

; N

l

; K

a

:

usr

A

(q) = WaitingForKey(N

a

) ^

lead

A

(q) = WaitingForKeyA
k(N

l

; K

a

) ^

(8N;K : fL;A;N

a

; N;Kg

P

a

2 Parts(tra
e(q)))

N = N

l

^K = K

a

) ^

(8N : fA;L;N

l

; Ng

K

a

62 Parts(tra
e(q))) ^

fA; Lg

K

a

62 Parts(tra
e(q))

Q

4

(q) = 9N

a

; N

l

; K

a

:

usr

A

(q) = Conne
ted(N

a

; K

a

) ^

lead

A

(q) = WaitingForKeyA
k(N

l

; K

a

) ^

(8N : fA; L;N

l

; Ng

K

a

2 Parts(tra
e(q))) N = N

a

) ^

(8N : fL;A;N

a

; Ng

K

a

62 Parts(tra
e(q))) ^

fA; Lg

K

a

62 Parts(tra
e(q)):

Assume thatq satisfiesQ
3

and thatq
M

�! q

0

byG. It is easy
to see that no transition ofL is enabled inq so we must have
eitherG = A orG is an agent other thanA andL.

� If G = A thenA has just received a key-distribution
message of the form

AuthKeyDist; L;A; fL;A;N

a

; N;Kg

P

a

and has answered with the key acknowledgment

AuthA
kKey; A; L; fA;L;N;N

0

a

g

K

;

whereN 0

a

is a freshly generated nonce.A moves to
stateConne
ted(N 0

a

;K).

SinceA has received it, the fieldfL;A;N
a

; N;Kg

P

a

belongs toParts(tra
e(q)). By definition ofQ
3

, we
must haveN = N

l

andK = K

a

. The only field of
the formfA;L;N

l

; Ng

K

a

in tra
e(q

0

) is the content
of the message thatA has just sent and thenN = N

0

a

.
Since nonceN 0

a

is fresh, there cannot be a field of the
form fL;A;N

0

a

; N

0

g

K

a

in tra
e(q

0

). It is also clear
that fA;Lg

K

a

does not belong totra
e(q0

). This
shows thatq0 satisfies predicateQ

4

.

� If G 6= A andG 6= L, we knowM 2 Gen(G; q) and
we must show thatQ

3

(q

0

) is satisfied. This amounts
to showing thatM cannot contain a part of the form
fL;A;N

a

; N;Kg

P

a

; unlessN = N

l

andK = K

a

,

8

and thatM cannot contain a subfieldfL;A;N
l

; Ng

K

a

or fA;Lg
K

a

. Now, Q
3

(q) implies InUse(K
a

; q) so
we can use the preceding results – namely,P

a

62

Know(G; q) andK
a

62 Know(G; q). Then, by def-
inition of Synth (cf. [10]),G cannot synthesize fields
of the formf: : :g

P

a

or f: : :g
K

a

, but can only replay
them. ForfL;A;N

a

; N;Kg

P

a

to be inGen(G; q),
we must then have

fL;A;N

a

; N;Kg

P

a

2 Know(G; q):

SinceKnow(G; q) � Parts(I(G))[Parts(tra
e(q)),
this implies that

fL;A;N

a

; N;Kg

P

a

2 Parts(tra
e(q)):

By the third clause ofQ
3

, N = N

l

andK = K

a

.

By a similar reasoning, we obtain that no part ofM

can be of the formfL;A;N
l

; Ng

K

a

or fA;Lg
K

a

since no such field belongs toParts(tra
e(q)). We
can then conclude thatq0 satisfiesQ

3

.

The remainder of the verification relies on proof obliga-
tions that are very similar to property (6). The reasoning
is always the same: transitions byA or L from a state that
satisfiesQ

i

lead to a state that satisfies a new predicateQ

j

.
Transitions performed by other agents leaveQ

i

invariant,
essentially because agents other thanA andL do not have
access toP

a

andK
a

.

5.4. Diagram Analysis

The proof diagram of Figure 4 is the support for further
analysis of the Enclaves protocol. In particular, the fact that
group-management messages are received in the order they
were sent without duplication can be almost read off the di-
agram. In more detail, we first extend the transition system
by recording the list of group-management messages sent
by L and received byA. In a stateq, these two lists are
kept in state-variablessnd

A

(q) andr
v
A

(q), respectively.
The lists are initially empty. A new element is appended to
snd

A

(q) whenL sends anAdminMsg M , and a new ele-
ment is appended tor
v

A

(q) whenA executes a transition
triggered by the reception of anAdminMsg M . r
v

A

(q)

is emptied whenA leaves a session andsnd
A

(q) is emptied
whenL receivesReqClose fromA. It is then easy to prove
from the verification diagram that the listr
v

A

(q) is a prefix
of snd

A

(q) in all reachable states.
Proper user authentication can be derived from the dia-

gram by a similar method.L acceptsA as a member when
the system enters a state wherelead

A

(q) = Conne
ted(: : :).
This happens wheneverL accepts a message of typeAu-
thAckKey. Similarly,A requests to enter by sending a mes-
sage of typeAuthInitReq. Proper user authentication re-
quires that thenth AuthAckKey accepted byL was pre-
ceded by thenth AuthInitReq fromA. This can be proved

by showing that the list of acceptance events fromL is a
prefix of the list of requests to join fromA.

Another important property follows from the verification
diagram: WheneverA andL are both in aConnected state,
they agree on the session key and on the most recent nonce
produced byA:

usr

A

(q) = Conne
ted(N;K) ^

lead

A

(q) = Conne
ted(N

0

; K

0

)

) N = N

0

^ K = K

0

:

The diagram also shows that wheneverA is in possession
of a session keyK

a

, thenL is also in possession ofK
a

, that
is, InUse(K

a

; q) is satisfied.

6. Related Work

Existing approaches for achieving intrusion tolerance in
distributed systems rely on redundancy and secret sharing
(e.g., [3]). In the Enclaves context, our objective was more
limited and our approach was to design a robust crypto-
graphic protocol. Such an approach can apply to other sys-
tems such as Antigone [9] that are based on a centralized
group leader. The advantage of such an architecture is sim-
plicity. User authentication is centralized and membership
information is easily collected and distributed. On the other
hand, such an architecture is not scalable and the leader is
clearly a single point of failure. The protocol we propose
tolerates compromised users but still requires the leader to
be trusted and trustworthy. For better resilience to intru-
sions, more complex systems such as Rampart [13] or the
SecureRing [7] use fault-tolerant protocols to distributeall
decisions about group management. Centerpieces of such
systems are intrusion-tolerant distributed agreement proto-
cols that tolerate some forms of Byzantine failures by rely-
ing on failure detectors, or other forms of Byzantine agree-
ment protocols (e.g., [2]). These distributed architectures
can provide stronger intrusion-tolerance guarantees, butthe
agreement protocols are complex and can cause important
performance degradation. These infrastructures are reserved
for critical applications with high-integrity requirements. In
other systems such as Secure Spread [1], Ensemble [14],
or Horus [17], security services are built on top of an ex-
isting group communication infrastructure. The infrastruc-
ture provides group-membership and multicast services that
support a variety of network-level faults, including network
partitioning. Key-agreement or key-distribution protocols
(e.g., [16]) are implemented on top of these services, and
cryptography ensures confidentiality and integrity of group
communication. These systems typically provide security
against outsider attacks but do not consider misbehaving
group members.

The formalization and verification methods we use are
based on Paulson’s inductive approach to verifying crypto-

9

graphic protocols [11], with extensions proposed by Millen
and Rueß [10]. Proof diagrams were proposed by Manna
and Pnueli [8]. The type of diagrams we use was discussed
by Rushby [15] and has been applied to the verification of
fault-tolerant protocols [12].

7. Conclusion

We define a new Enclaves protocol for performing user
authentication and for distributing group-management mes-
sages. This protocol improves over the existing Enclaves
protocols by providing correct services even in the presence
of faulty insiders (past or present group member). We give
a proof of correctness of the protocol that combines model-
ing and verification techniques developed for cryptographic
protocols, and system abstraction techniques.

The main limit of the current Enclaves architecture is its
reliance on a central group leader. In future work, we intend
to develop a more robust and scalable version of the system
where the single leader is replaced by a distributed set of
group managers.

Acknowledgments

The work presented in this paper was partially funded by
the Defence Evaluation and Research Agency under con-
tract CU009-0000002017, and by the Space and Naval War-
fare Systems Center under contract N66001-00-C-8001.

Our thanks go to Sathish Gopalakrishnan who imple-
mented the new Enclaves protocol. Our PVS formaliza-
tion and verification relied on libraries developed by Harald
Ruess and Jon Millen.

References

[1] Y. Amir et al. Secure Group Communication in Asyn-
chronous Networks with Failures: Integration and Ex-
periments. In20th IEEE International Conference on
Distributed Computing Systems, Taipei, April 2000.

[2] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. InThird Symposium on Operating Systems
Design and Implementation, pages 173–186, New Or-
leans, LA, February 1999.

[3] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion
Tolerance in Distributed Computing Systems. In
IEEE Symposium on Research in Security and Pri-
vacy, pages 110–121, Oakland, CA, May 1991.

[4] B. Dutertre and H. Saı̈di. Verification of Enclaves
Group-Management Services. Technical report, Sys-
tem Design Laboratory, SRI International, July 2000.

[5] L. Gong. Enclaves: Enabling Secure Collaboration
over the Internet.IEEE Journal of Selected Areas in
Communications, 15(3):567–575, April 1997.

[6] S. Keung and L. Gong. Enclaves in Java: APIs and
Implementations. Technical Report SRI-CSL-96-07,
SRI International, 1996.

[7] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The
SecureRing Protocols for Securing Group Communi-
cation. InIEEE 31st Hawaii International Conference
on System Sciences, pages 317–326, January 1998.

[8] Z. Manna and A. Pnueli. Temporal Verification Di-
agrams. InInternational Symposium on Theoreti-
cal Aspects of Computer Software (TACS’94), pages
726–765, Sendai, Japan, April 1994. Springer-Verlag,
LNCS 769.

[9] P. McDaniel, A. Prakash, and P. Honeyman. Antigone:
A Flexible Framework for Secure Group Communica-
tion. In 8th USENIX Security Symposium, pages 99–
114, Washington, DC, August 1999.

[10] J. Millen and H. Rueß. Protocol-Independent Secrecy.
In IEEE Symposium on Research in Security and Pri-
vacy, pages 110–119, Oakland, CA, May 2000.

[11] L. Paulson. The Inductive Approach to Verifying
Cryptographic Protocols.Journal of Computer Secu-
rity, 6(1):85–128, 1998.

[12] H. Pfeifer. Formal Verification of the TTP Group
Membership Algorithm. InFORTE/PSTV 2000, Pisa,
Italy, October 2000.

[13] M. Reiter. The Rampart Toolkit for Building High-
Integrity Services. InTheory and Practice in Dis-
tributed Systems, pages 99–110. Springer Verlag,
LNCS 938, 1995.

[14] O. Rodeh et al. Ensemble Security. Technical Report
TR98-1703, Department of Computer Science, Cor-
nell University, September 1998.

[15] J. Rushby. Verification Diagrams Revisited: Dis-
junctive Invariants for Easy Verification. InCom-
puter Aided Verification (CAV 2000), pages 508–520,
Chicago, IL, July 2000. Springer-Verlag, LNCS 1855.

[16] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES:
A New Approach to Group Key Agreement. In18th
International Conference on Distributed Computing
Systems (ICDCS’98), pages 380–387, Amsterdam,
The Netherlands, May 1998.

[17] R. van Renesse, K. Birman, and S. Maffeis. Horus: A
Flexible Group Communications System.Communi-
cations of the ACM, 39(4):76–83, April 1996.

10

