Intrusion-Tolerant Group Management in Enclaves
DSN’01, Gdteborg, Sweden, July 2001

Bruno Dutertre, Hassen Saidi, and Victoria Stavridou
System Design Laboratory, SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025, USA
{bruno,saidi,victorig @sdl.sri.com

Abstract cation and group management in Enclaves, and shows how
this protocol was formally verified. The protocol ensures
Groupware applications require secure communication that a noncompromised user is guaranteed correct group-
and group-management services. Participants in such ap-management services as long as the leader is not compro-
plications may have divergent interests and may not fully mised. The modeling and verification approach is a new
trust each other. The services provided must then be de-combination of techniques for proving secrecy propertfes o
signed to tolerate possibly misbehaving participants. En- cryptographic protocols, and of state-machine abstmactio
claves is a software framework for building such group ap- based on verification diagrams. Section 2 gives an overview
plications. We discuss how the protocols used by Enclavesf the Enclaves architecture and protocols, and discusses
can be modified to guarantee proper service in the presenceweaknesses of these protocols in the presence of nontrust-
of nontrustworthy group members. We show how the im-worthy group members. Section 3 presents the improved
proved protocol was formally specified and proven correct. protocol for user authentication and for group-management
activities. Sections 4 and 5 describe the formalization and
verification of this protocol, respectively. Section 6 dis-
1. Introduction cusses related work.

Group-oriented applications deployed over insecure net-2. An Overview of Enclaves
works such as the Internet can involve a set of participants
who collaborate on common tasks but may not fully trust 2.1. Architecture
each other. Even if all group members trust each other, ex-
ternal intruders could attempt to disrupt the applicatign b A group-oriented application enables users to share in-
compromising a member’s host machine. To support group-formation and collaborate via a network such as the Inter-
ware applications in such environments, it is necessary tonet. The group involved is usually dynamic. An applica-
provide robust authentication, communication, and group-tion is started when a user initiates a session, and new users
management services that can tolerate misbehaving memare allowed to join and later leave the session. Multicast
bers and members whose machine has been compromisedis the main mode of communication: Messages originat-
Enclaves™ is a platform supporting such secure group- ing from one group member are received by all the users in
oriented applications. It is designed to be lightweight and the current session. In many cases, groupware applications
portable, and relies on software-implemented cryptograph have restricted access policies and other security require
An application consists of a set of members who coordinatements. Access to an active session is limited to a prede-
and cooperate via a group leader. The leader is responsibléined set of users or to users having appropriate credentials
for all group-management activities, including autheattic (e.g., they have paid for the service provided). In such con-
ing and accepting new members, distributing cryptographictexts, user authentication, key distribution, data comfide
keys, and distributing group-membership information. In tiality, and data integrity are essential.
the currentimplementation, all group members are assumed Enclaves [5] is a lightweight software framework that
trustworthy and there is little protection against misheha provides the infrastructure to support such secure group ap
ing members. As a consequence, compromise of a singleplications. The overall architecture of an Enclaves applic
computer hosting one of the members can lead to the fail-tion is shown in Figure 1. The group is organized around
ure of group-management services. a group leader who starts and ends the application, and is
This paper presents an improved protocol for authenti- responsible for all group-management activities. Regular

depending on the application security policy:

Member) Membe
1. A= L: A reqopen
\ 2. L— A: L,ack_open (or connection_denied).
fergfjﬁr If the connection is accepted, initiates the following au-
thentication protocol:
Membe 1. A=-L: A{ALN}p,

2. L—A: L{L,AN;,Ny,K,, 1.V, K,}p,
3. A=L: A{N:}k,.

Membey In message 14 encrypts a triple composed dfs identity,

the leader’s identity and a non@g and sends the result to
the leader. This encryption uses a keyderived fromA’s
Figure 1. Enclaves Architecture password, sd@, is known by both4 and L. On reception
of this messagel, checks that the two encrypted identities
group members establish a bidirectional point-to-poik li are correct and extracfs; . L then ggn_eraf[es anewnonce
. g e N>, a new shared kel ,,, and an initialization vectaf.V..
with the leader when they join the application. L sends all these components together Wihand the cur-

Enclaves_ is deS|gn¢d to be easily por_table. It_does notrent group keyk,, all encrypted with?,. In message 34
use IP multicast but relies on common point-to-point proto- .
acknowledges receipt of message 2.

e e T AL he end f i roocol s resdy 0 paricipte i
o arye sen% to tFr)le Ieadér for reI?i to the other membersgroup activities. The leader informs all the group that a new

group : L) y L memberA has joined and sends tbthe identity of all the

To ensure confidentiality and integrity of communication,

Enclaves relies on standard cryptographic techniquesjbase?rfgegrrgl:%ulfer;embers' These messages are encrypted using

on symmetric-key encryption and message-authentication The group leader generates a first group Keywhen the
codes. first member is accepted. A new group key can be generated

Messages are encrypted using a groupXkegyhat is dis- _ . ;
. e and distributed at any time by the leader, depending on the
tributed to the members when they join the group. The key application security policy. Typically, new keys can be-gen

can be changed by the leader according to an application- o
. o .. erated when new members join, when members leave, or on
dependent policy. In addition to the group key, which is

a periodic basis. For distributing a new group K&y, L
common to allthe m.embers, each memidas a separate - qohds an individual message to all the members %nd waits
session key, that is used for group-management activ- for an acknowledgment:
ities and is shared betweehand the leader. This key is '
generated wherl joins the application and remains in use . L—A: Lynewkey {K,IV}k,
until A leaves. 2. A= L: Anewkey-ack {K}}x:.

Enclaves provides various group-management protocols
for supporting applications. Such protocols perform oper- A user A willing to leave the session simply sends the
ations such as user authentication or key distribution. Ex-following message:
amples are described in the next section. These protocols
have been extracted from the J&Vaimplementation of

Enclaves described in [6] that differs significantly from a The leader then sends an acknowledgment émd informs
previous implementation [5]. the rest of the group that has left:

1. A= L: A, reqgclose

2.2. Example Protocols 2. L— A: L,close_connection
3. L— B;j: L,mem_removed,{A}x,.

For user authentication, Enclaves assumes that each pop yariation of this protocol can be used to expel some mem-
tential group member has a long-term password that mustyqs of the group.

be known in advance to the group leadiefo join an ap-
plication, a used first signals to the leaddr his intention 2 3. Protocol Weaknesses
to join the group.L can either accept or deny accessito

1Authentication using public-key cryptography is also fioles but is The previous protocols are vulnerable to various attacks
not currently implemented. — for example, based on message replay. Furthermore, the

protocols were designed under the assumption that groughe group. Instead, we focus on making sure that compro-
members (past and present) are trustworthy. In case thismised group members cannot interfere with the user authen-
assumption is not valid, a misbehaving member can easilytication process or with the group management services. As
disrupt the application and cause various security faslure shown by the example attacks discussed previously, it is im-
For example, the pre-authentication exchange can leadbortant for each user to have an accurate view of who is in
to a simple denial-of-service attack. It may seem econom-the group, and to have evidence that key distribution mes-
ical to check whether is allowed to join the group be- sages are timely and originate from the leader. To ensure
fore performing the authentication protocol, btithas no these properties, we define an improved protocol for per-
guarantees that the reply:k_open or connection_denied forming user authentication and distributing arbitrargup-
actually came from the group leader. To prevent a legiti- management messages to users.
mate user from joining the group, an attacker can forgea The new protocol relies on the same architecture and

connection_denied reply and send it tol. means of authentication as previously. We assume a set
The transmission of group-membership information is of agents connected via an insecure asynchronous network.
also weak. The messade mem_removed, {A} g, is in- The agents include users who can participate in the group

tended to signal to all members théhas left the group, but application and other agents (the outsiders). The partici-
there is little evidence that this message is fresh, anather pants consist of a central group leadieand a set of prospec-

is no evidence that it was sent by the leader. Such a mestive group members. Each prospective memHdehas a
sage can be easily forged by any group member since it islong-term keyP, initially known only by A andL. We say
encrypted with the common group key. A malevoldntan that a participant is not compromised, trustworthy, or non-
then convince a membé? that A has left the group. Asa faulty if it behaves as specified by the protocol. Outsiders
result, B has an inaccurate view of who is part of the group, and compromised participants behave arbitrarily but we as-
and this may causB to send information to the group that sume that they cannot break the encryption primitives used.

he did not intend4 to receive. A compromised participant may be one who intentionally
There are similar problems with the distribution of new misbehaves or an honest user whose host machine or oper-
group keys. The messadg new_key, { K;,1.V.}k, in- ating system has been corrupted. Since the network is in-

forms a group membed that K| is the new group key. secure, compromised participants and outsiders can read al
Unfortunately, nothing guaranteesAothat this message is the messages exchanged, replay old messages, and send ar-
fresh. An attacker can then forceto reuse an old group bitrary messages they can construct (as described formally
key K, by replaying an old key-distribution message. Such in Section 4.2). In particular, compromised participarets ¢

an attack can cause loss of confidentiality if the attacker isleak secrets, including their long-term key, to outsiders o

in possession ok ’;. Obtaining an old group key such &%, other compromised participants. Thus collusions between
may be difficult for an outsider but is trivial for any group attackers are possible.

member. The attack can then be performed by a past mem- The protocol specifies how a participahjoins and later

ber of the group who has left the application but has kept theleaves the group and how group-management messages are
old key K ;. The rekeying procedure is then insecure unless sent byL to group members. The requirements are as fol-

all present and past participants in the current applinatio lows:

are trustworthy.
y e Proper User Authenticationlf a user is accepted as

. . roup member by the leader then this user is actu-
3. Intrusion Tolerance in Enclaves grotp y

ally A.
3.1. Objectives e Proper Distribution of Group-Management Messages.
All the group-management messages accepted by a
Our objective is to develop a more robust version of the group member have been sent by the group leader;
Enclaves protocols, that fixes the various flaws of the cur- they are accepted by in the same order as they were
rent implementation and tolerates nontrustworthy or com- sent by/; no group-management message accepted
promised members. The main objective of Enclaves is to by A is a duplicate.

ensure user au_the_ntlcatlon, conﬂdennahty and integfty We want these requirements to be satisfied provided both
group communication, and to provide accurate group MEM- 4 and L are not compromised, even in the presence of an

bercs:hlpf.gﬂfo;_mliattlon to Fhe %;Ol:p members. icati ¢ arbitrary number of nontrustworthy agents. Each tirhe
onfidentiality requires that group communication must o0 e group, generates a new session key forand

be accessible only to <_:urrent group members. Clearly, th'sthe requirements must be satisfied even if old session keys
cannot be guaranteed in the presence of nontrustworthy men)-, compromised and known to nontrustworthy agents.
bers as any such member can leak the information outside

3.2. Improved Protocol NotConnected > WaitingForKey(Na)
IAuthinitReq, A, L, {A, L, Na}Pa
As previously, each uset has a secret long-term ke,
that is initially known byA and byL. To join the applica-

. .. . ?AuthKeyDist, L, A {L, A, Na, NI, Ka}
tion, A initiates the following protocol: Pa

. WaitingForKey(Na) = Connected(Na2,Ka)
1.A— L: AuthhnitReq, A,L,{A,L,Ni }p, IAuthAckKey, A, L, {A, L, NI, Na} 5

2.L - A: AuthKeyDist, L, A, {L, A, Ny, No, K, } p,
3.A— L: AuthAckKey, A, L,{N2, N3}k, .

With small variations, this is the same authentication pro-
tocol as previously. The main differences are the removal
of the pre-authentication exchange, the presence of a fresh
nonceN3 in message 3, and the absence of the group key
K,. K, must be distributed to1 in subsequent group-
management messages and noNges used in the distri-
bution of such messages.

If authentication succeedd, becomes a member of the
group and is in possession of the session Key As long
asA is in session[. can send group-management messages
to A and A must acknowledge each such message. Thetions and concepts presented by Millen and RueR [10], and
messages and acknowledgments are encryptediyjthnd closely follows Paulson’s inductive approach to modeling

?AdminMsg, L, A, {L, A, Na, NI, X}Ka

Connected(Na, Ka) > Connected(Na2, Ka)
'Ack, A, L, {A, L, NI, Na'} o

Connected(Na, Ka) > NotConnected
IReqClose, A, L, {A, Lka

Figure 2. State-transition Model of User A

nonces are used to protect against replay. Bothind A cryptographic protocols [11].
memorize a noncéVs;; that was generated hy. This We represent the message space in a standard way, as de-
nonce is either théVs communicated td at the end of the scribed in [10] or [11]. Each message consists of a label, an
authentication protocol, or a nonce tHateceived fromA4 apparent sender, an intended recipient, and a content. La-
in the most recent acknowledgment message. The groupbels represent the type of each message — for exadpie,
management exchange is as follows: thinitReq or AuthKeyDist. Message contents are elements
1.L - A: AdminMsg, L, A, of the set of fieldsF defined as follows:
{L, A, Naiv1, Nojto, X}k, e Agentidentities, keys, and nonces are primitive fields.

2.A— L: ACk,z‘l7 L, {A,L,N2i+2, NQH_:;}KG.

Message 1 contains,;,; to prove toA that the message is
not a replay, and communicatesAothe nonceV,;, - that
L generates. The field is the actual group-management e Given a fieldX and a keyK, the encryption ofX
message. For exampl&, may specify a new group key and with K, denoted by{ X } , is a field.

initialization vector, or indicate that a member has joioed . L
J The set of agent identities is denoted bythe set of nonces

left the session. Message 2 contai¥ig,» to prove toL
that the acknowledgment is not a replay, and c:ommunicatesby N, and the set of keys b These three sets are mutu-

t0 L a fresh nonceVa;. s to be used in the next exchange. ally disjoint. Keys are either long-term keys of the foff

A can leave the session at any time by sending the fol- O S€Ssion keys f'UCh i . All the keys are symmetnc._
. } We also use “oops” events to model the compromise of
lowing message ta.:

session keys (cf. [11]). An oops event is writt®nps(X)
1. A— L: ReqClose, A,L,{A,L}g,. and means that field (typically a session key) is commu-
nicated to all agentsOops(X) is treated like an ordinary

In this messagel(, is used to guarantee that the message X i
originated fromA and to prove freshness. The message can-"Message whose pontent is the fiéfd The set of messages
and oops events is denoted 1by.

not be a replay since there can be at most one closing mes®
sage per session and hence per session key. On receptio
L simply closes the session witht K, is discarded and no
further group-management message is sent to

e Given two fieldsX andY’, their concatenation, de-
noted by[X, Y], is a field.

2’.1. Users and Leader

A nonfaulty userA is modeled by the state-transition
system of Figure 2. The states of this systems are of three

4. Formal Protocol Model ; _
orms:

To analyze the protocol, we first build a system model e NotConnected: A is out of the group and has not
based on state-transition systems. This model uses nota- started the authentication process.

PAuthinitReq, A, L, {A, L Nalpq corresponding transitions models the compromise of old ses

sion keys:K, is released and becomes public as soon as the
session is closed.

NotConnected WaitingForKeyAck(NI,Ka)

IAuthKeyDist, L, A {L, A, Na, NI, Ka} Pa

?AuthAckKey, A, L, {A, L, NI, Na} Ka
Connected(Na,Ka)

4.2. Global Model

WaitingForKeyAck(NI,Ka)

We use Paulson’s approach [11, 10] to model the behav-
ior of nontrusted agents. Given a set of fielfisthe fol-
lowing sets are usedParts(S), Analz(S), andSynth(S).
Parts(S) is the set of fields and subfields that occurSin
Analz(S) is the set of fields that can be extracted from ele-
ments ofS without breaking the cryptosystei@ynth(.S) is
the set of fields that can be constructed from elements of
by concatenation and encryption. Formal definitions can be
found in [11] or [10].

Overall, our model is the asynchronous composition of
an honest used, an honest leaddl, and other nontrusted
agents. The behavior of a nontrusted ageis determined
by the keys and other fields th&t knows initially, and by
the messages thd@ has observed so far. Given an agent
G € A, we denote by (G) the set of fields that! knows
initially. We assume thaarts(I(G)) does not contain any
nonce or session key. Furthermoreif£A A andG # L,
we assume?, ¢ Parts(I(G)). This means that initially
only A andL know A’s long-term keyP, .

e Connected(N,, K,): A has joined the group, and Let (Q denote the global state space of the system. In
has receivedy, as a session key from the leader. a system statg € @, we denote bytrace(q) the set of

N, is the last noncel has generated and sentfo messages and oops events that have occurred so far and by

N, is then the noncel expects in the next group- trace(q) the message contents that occutince(q). We

management message fram assume that all agents are able to observe all the events that

The leader is modeled as the composition of separatehave occurred so far. In a stafethe set of fields thaf¥ can

transition systems, one for each user. Each of these system§CceSS is then
defines the responses of the leader to requests from a user
A, and the transmission of group-management messages to
this user. The system is shown in Figure 3 and its states arerpjs is the set of fields thaf can obtain from its initial

of the following forms: knowledgel(G@) and the messages seen so far. We also
define the set of nonces and sessions keys that are not used
in stateq as follows:

Connected(Na, Ka) WaitingForAck(NI, Ka)
|AdminMsg, L, A, {L, A, Na, NI, X} (o

2Ack, A, L {A, L, NI, Na} o

WaitingForAck(NI, Ka) Connected(Na, Ka)

?ReqClose, A, L, {A, Lka

Connected(Na, Ka) >
Oops(Ka)

NotConnected

?ReqClose, A, L, {A, Lk,

WaitingForAck(NI, Ka) NotConnected

Oops(Ka)

Figure 3. Leader Communication with A

e WaitingForKey(V,): A has sent aAuthlnitReq mes-
sage containingy, as a fresh nonce, antlis waiting
for a reply from the leader

Know(G,q) = Analz(I(G) U trace(q)).

e NotConnected: A is not connected.

e WaitingForKeyAck(N;, K,): L has generated a fresh

session keyk, for A and is waiting for a key ac- FreshNonces(q) = N — Parts(trace(q))
knowledgment containing nonce,. UsedKeys(q) = {K|3X :{X}x € Parts(trace(q))}
e Connected(N,, K,): this is the normal state whet FreshKeys(q) = Ks—

is a member of the groupy, is the session key that
L uses to communicate with. IV, is the most recent

(Parts(trace(q)) U UsedKeys(q)),

nonce that_ received fromA4 and will be included in
the next group-management message.

e WaitingForAck(IN;, K,):

knowledgment containing nongé,.

L has just sent a group-
management message Aoand is waiting for an ac-

whereK s denotes the set of session keys. The set of fields
thatG can generate in a stajgs
Gen(G,q) = Synth(Know(G,q) U FreshFields(q)),

whereFreshFields(q) is the union ofFreshNonces(¢q) and

FreshKeys(q). G can then synthesize new messages from

On reception of &ReqClose messagel closes the session fig|qs it knows and from fresh keys or nonces it generates.

and K, is discarded. Th®ops(K,) event attached to the

The overall model is now given by a collection of tran- The following sections describe the main stages of the
sition relationsTez C @ x M x @, one for each agent proof. A more detailed presentation is given in [4]. The
G € A. Each triple(q, M, q") of T, represents a global whole formalization and verification have been performed

transition corresponding to age@tsending messag¥ in using the PVS theorem prover. The PVS formalization re-
stateg. Such a transition is denoted byﬂ} ¢ by G, and quired two person weeks of effort. No error in the protocols
its effect ontrace is given by was found, but the use of PVS was essential to fix flaws
in our hand proofs, including errors and omissions in sev-

trace(q') = {M} Utrace(q). (1) eral candidate verification diagrams we constructed. The re

) o sulting PVS developments are availabldtip://www.
An important constraint is that an agefitsends only mes- ¢gj.sri.com/"bruno/pvs/enclaves.txt

sages it can generate:

M 5.1. Secrecy ofd’s Long-Term Key
qg-—qdbyG = M € Gen(G,q), 2
We have to prove that the following property is satisfied

wherel is the content of messadé. The label ofM, the by any reachable state

apparent sender, and the intended recipient can be aybitrar
The transition reIationTA. and7y, corresponding .to4 VGeA: P, € Know(G,q) = G=AVGE=0L.

and L are extracted from Figures 2 and 3 in a straightfor-

ward way. For all other agenf3, Tz is an arbitrary relation ~ We prove this by using th&egularity Lemmaof Millen

that is assumed to satisfy constraints (1) and (2). The globaand Ruefl3 [10]. The idea is to show that, in any reach-

system behavior is characterized by the following rule: able statey, P, does not occur itrace(q), that is, P, ¢
Parts(trace(q)). This property is satisfied because the pro-
¢g—q¢ = IGeAMeM: ¢5 ¢ byaG. tocol isregular. NeitherA nor L ever send?, in a message.

Formally, we have to show
The system evolves by selecting an agérand executing

a corresponding transition. This corresponds to the asyn- q M, qd by A = P, & Parts(M)
chronous composition of the systerfig. Since we look "
only at safety properties, there are no fairness assungotion q—q byL = P, ¢ Parts(M).

The proof is an easy case analysis. Using the regularity
5. Verification lemma of [10], this implies that, in any reachable stgtere
haveP, ¢ Parts(trace(q)). Now, by elementary properties
Let A be an arbitrary non-faulty user. The proof that the of Analz andParts (cf. [10]), we have
protocol satisfies the requirements of Section 3.1 is decom-

posed in four steps. We first show two secrecy properties: Know(G,q) = Analz(I(G) U trace(q))
oS | KevP. is Kk Nobody oth C Parts(I(G) Utrace(q))
e A’s long-term keyP, is kept secret. Nobody other — Pants(I(G)) U Parts(trace(q)).

thanA andLL can ever access key,.

If ¢ is a reachable state a#t] belongs toKnow(G, q), we
must then havé®, € Parts(I(G)). By the assumptions on
the initial knowledge of7, this impliesG = A or G = L.

e Aslongas asession kdy, isin use, itis secret: only
A andL can useX,.

These properties are state invariant: they are satisfieltl in a

the reachable states of the system. The proofs use the no5.2. Secrecy of Session Keys

tions of protocol regularity, and of ideals and coideals pre

sented in [10]. We say that a session kéy, is in use in a state if L is
Using these two invariant properties, we apply a veri- in a local state that contairds, as a component:

fication method, based on verification diagrams, that was

proposed by Rushby [15]. The idea is to construct an ab-

straction of the transition system from which the require- (4

ments can be easily established. We construct a verification V(AN :leada(q) = CO"_”_eCted(N’ Ka))

diagram that corresponds to our informal understanding of V(AN : leada(q) = WaitingForAck(NV, Ko)).

the protocol and we show that this diagram is actually @ \yg want to show that the following property is satisfied in

valid abstraction of the system. The final step is to show any reachable statgfor all K, andG:

that proper authentication and proper distribution of grou

management messages are implied by the diagram. InUse(K,,q) N K, € Know(G,q) = G=AV G=L.

InUse(K,,q) =
(3N :leada(q) = WaitingForKeyAck(N, K,))

As long asK, is in use, no agent other thahand L has
access tdy,.

As discussed in [10], to show that a ke, is known
only by A andL we have to consider thidealgenerated by
the setS = {K,, P, }. This ideal is denoted h¥(S) and is
the smallest set of fields such that

e SCI(S)
o if X € Z(S)orY € Z(S) then[X,Y] € Z(S5)
e if X € Z(S)andK ¢ Sthen{X}x € Z(5).

Z(S) contains all the fields from whiclx,, or P, can be
extracted. For exampld,X,Y, K,}p, belongs taZ(S) as
any agentin possession Bf can obtaink, from this field.

For K, to remain secret, we must make sure that fields from
Z(S) never occur in the trace as long &g is in use.

The complement of (S) is called acoidealand is de-
noted byC(S). Proving thatK, remains secret amounts
then to showing thatrace(g) is included inC(S). Coideals
satisfy two important properties [10]:

Analz(C(95))
Synth(C(S))

C(S).
(S).

3)
(4)

Another useful result is that, for any set of fieldls
Parts(E)NS =0 = ECC(S).

This is the Ideal-Parts Lemma of [10]. To apply these results
to Enclaves, we start with the following lemma whose proof
is an easy induction.

Lemma 1 For any reachable statg and any session key
K,, we have

InUse(K,,q) = K, € Parts(trace(q)).

This simply means that ond&, is in use, it is no longer

The proof of the second inclusion is very similar and relies
on the preceding lemmal

The remainder of the proof of secrecy consists of show-
ing that the property

InUse(K,,q) = trace(q) CC(S) (5)
is invariant. Itis trivially true in the initial state,. Now, let
q be a state that satisfies (5) and¢ébe a successor qf
We have

g5 by G
for some messagk/ and agent. Assumingk, is in use
in¢', we have to showrace(q') C C(S), thatis,trace(q)U

{M} C C(S). Three cases must be considered:

e K, isnotinuse in. K, hasthen been freshly gen-
erated byL in response to aAuthInitReq message:
G = L andK, € FreshKeys(q). This means that
K, & Parts(trace(q)). As we have shown in the
previous sectionP, ¢ Parts(trace(q)). SinceS =
{K,, P,}, the properties of coideals giveace(q) C
C(S). The messag#/ is of the form

AuthKeyDist, L, A, {4, L, N,, Ni, K, } p,

and itis easy to see that the contéhbf this message
— namely, the field A, L, N,, N;, K, } p, — does not
belong toZ(S). So we haveérace(q') C C(S).

K, is in use ing and@ is an agent other thaa and
L. We know thatd] € Gen(G, q). SincekK, isin use
in ¢, we havetrace(q) C C(S). By Lemma 2, this
impliesM € C(S) and thentrace(q') C C(S).

K, isin use ing and(is eitherA or L. By inspec-
tion, we can see that the content of messafjés of
the form{...}x,. Such a field does not belong to
Z(S) so we haveld € C(S). We can then conclude
thattrace(q’) C C(S) as in the previous case.

fresh and thus any key that nontrusted agents might generate

in the future will be distinct frond,, .

Lemma 2 If G is an agent other thanl and L, andq is
a reachable state such thatUse(K,, q) andtrace(q) C
C(9), then the two following properties are satisfied:

)
).
Proof: By assumption, we havearts(/(G)) NS = §) and

thenI(G) C C(S). Sincetrace(q) C C(S), we obtain
I(G) Utrace(q) C C(S), andthen

Know(G, q)
Gen(G,q)

(s

C
c oS

-

Know(G, q) Analz(I(G) U trace(q))

Analz(C(S5)) C(S).

By induction, we have then shown that property (5) is true

in all reachable states. We conclude by the following propo-

sition, which is an easy consequence of the previous result,
of Lemma 2, and of the fact th&f, ¢ C(5).

Proposition 3 Given a session kel(,, an agentG and a
reachable stat@, we have

InUse(K,,q) A K, € Know(G,q) = G=AV G =L.
5.3. System Abstraction

Figure 4 shows a verification diagram (cf. [15, 8]) that
represents an abstraction of the overall transition system
Each box in the diagram is labeled with a predic@i€q)
that relatesusra(q), leada(q), andtrace(q). (Only the

The proof is a simple case analysis.df = A, ¢’ satis-
fles@Q,; If G = L, ¢’ satisfies),»; otherwise¢' satisfies
Q1. The proof thatQ).(¢') is satisfied wherG = A or
that@12(¢") is satisfied wheii = L uses the fact that the
nonces created by the transition are fresh.

In most other cases, we use the secrecy theorems estab-
lished previously to discharge the proof obligations. For
@ example, the proof obligation fa@p; is

7ReqClose

NotConnected
WaitingForkeyAck

Qs(9) A a5 qd'byG = Qs(d)VQu(d), (6)

where@s(q) andQ4(q) are as follows:

nnnnnn

Q3(q) = ENa,N[,Ka, :
usra(g) = WaitingForKey(Na) A
lead a(q) = WaitingForKeyAck(IN;, Kq) A
(VN,K : {L,A,N.,N,K}p, € Parts(trace(q)) =
N=NAK =K. A
(VN : {A7 L, Ny, N}Ka g Parts(m(q))) A
{A, L}k, ¢ Parts(trace(q))

Q4(q) = ElNaaNlaKa :
usra(gq) = Connected(Ng, Ku) A
leada(q) = WaitingForKeyAck(IN;, Kq) A
(VN :{A,L,N;, N}k, € Parts(trace(q)) = N = Ng) A
(VN : {L7 A’ NMN}Ka ¢ Parts(w(q») A
{A,L}x, ¢ Parts(trace(q)).

Figure 4. Protocol Abstraction

local user and leader states are shown in the figure.) For
example, the predicatég;, (>, and@),-» are as follows:

Qi(q) =

usra(q) = NotConnected A leada(q) = NotConnected

Q12(q) = AN, Ko :
usra(q) = NotConnected A
lead a(q) = WaitingForKeyAck(IN;, Ko) A
VN : {A,L,N;, N}k, & Parts(trace(q))

Q2(q) = 3Na :
usra(g) = WaitingForKey(Ng) A
leada(q) = NotConnected A
VN,K : {L,A,N,,N,K}p, ¢ Parts(trace(q)).

Assume tha satisfie€); and thay M, q' by G. Itis easy
to see that no transition d@fis enabled iy so we must have
eitherG = A or GG is an agent other thaa and L.

e If G = AthenA has just received a key-distribution
message of the form

AuthKeyDist, L, A, {L, A, N,, N, K} p,

The whole diagram can be constructed in a systematic way
as explained in [15]. In our case, the construction is based
on examining the successive transitichsr L can execute,
starting from a state that satisfi@s. A complete list of the
abstraction predicates is given in [4].

To prove that the diagram is a correct abstraction of the
protocol model, we must show for each bblabeled by
predicate)); that the diagram captures all the possible tran-
sitions out of a state wher@; holds. If the successor boxes
of ¢ are numbered,, .. ., i, the proof obligation is

and has answered with the key acknowledgment
AuthAckKey, A, L, {A, L, N,N! } k,

whereN/ is a freshly generated noncel moves to
stateConnected(N/, K).

SinceA has received it, the fielflL, A, N,, N, K } p,
belongs taParts(trace(q)). By definition of @3, we
must haveN = N; andK = K,. The only field of
the form{ A4, L, N;, N}k, in trace(q') is the content
of the message that has just sent and thesi = V.
Since nonceéV), is fresh, there cannot be a field of the

Va,d, MG Qig) A ¢ 5 ¢'by G =

Qi ()V...vVQ;. ().

Although this is not shown explicitly in Figure 4is always
a successor of itself. In addition, we must also showdghat
the initial state, satisfies predicatg.

Fori = 1, we must then show that for statgandq/, all
agents7 and all message¥/, we have

Qi) A g5 qd by G = Qud)V Qa(d) V Qua(d).

form {L, A,N.,N'} g, in trace(q'). Itis also clear
that {A, L}k, does not belong terace(q'). This
shows that’ satisfies predicat@,.

If G # AandG # L, we knowM € Gen(G,q) and
we must show thaf);(¢') is satisfied. This amounts
to showing that)/ cannot contain a part of the form
{L,A,N,,N,K}p,,unlessN = N, andK = K,,

and thatl/ cannot contain a subfiefd, A, N;, N}k,
or {4, L}k,. Now, Q3(q) impliesInUse(K,,q) so
we can use the preceding results — namély, ¢
Know(G, q) and K, ¢ Know(G,q). Then, by def-
inition of Synth (cf. [10]), G cannot synthesize fields

by showing that the list of acceptance events frbrs a
prefix of the list of requests to join from.

Another important property follows from the verification
diagram: Wheneved andL are both in &onnected state,
they agree on the session key and on the most recent nonce

of the form{...}p, or {...} .. but can only replay ~ Produced byi:

them. For{L,A,N,,N,K}p, to be inGen(G,q),
we must then have

{L7 A? Na7N7 K}Pa e KnoW(G7 q)'

SinceKnow(G, q) C Parts(I(G))UParts(trace(q)),
this implies that

{L,A,N,,N,K}p, € Parts(trace(q)).

By the third clause of)s3, N = N; andK = K,.

By a similar reasoning, we obtain that no partidf
can be of the form{L, A, N;, N}k, or {A, L}k,
since no such field belongs Rarts(trace(q)). We
can then conclude that satisfies)s.

usra(q) = Connected(N, K) A
lead a(q) = Connected(N', K')
= N=N A K=K"

The diagram also shows that whenevers in possession
of a session key ., thenL is also in possession éf,, that
is, InUse(K,, q) is satisfied.

6. Related Work

Existing approaches for achieving intrusion tolerance in
distributed systems rely on redundancy and secret sharing
(e.g., [3])- In the Enclaves context, our objective was more

The remainder of the verification relies on proof obliga- limited and our approach was to design a robust crypto-
tions that are very similar to property (6). The reasoning graphic protocol. Such an approach can apply to other sys-
is always the same: transitions Byor L from a state that ~ tems such as Antigone [9] that are based on a centralized
satisfies); lead to a state that satisfies a new predicate group leader. The advantage of such an architecture is sim-
Transitions performed by other agents le@yginvariant, plicity. User authentication is centralized and membegrshi
essentially because agents other thaand L do not have information is easily collected and distributed. On theeoth
access tdP, andK,. hand, such an architecture is not scalable and the leader is
clearly a single point of failure. The protocol we propose
tolerates compromised users but still requires the leader t
be trusted and trustworthy. For better resilience to intru-

The proof diagram of Figure 4 is the support for further sions, more complex systems such as Rampart [13] or the
analysis of the Enclaves protocol. In particular, the faatt ~ SecureRing [7] use fault-tolerant protocols to distriballe
group-management messages are received in the order theyecisions about group management. Centerpieces of such
were sent without duplication can be almost read off the di- systems are intrusion-tolerant distributed agreemertbpro
agram. In more detail, we first extend the transition system cols that tolerate some forms of Byzantine failures by rely-
by recording the list of group-management messages sening on failure detectors, or other forms of Byzantine agree-
by L and received byd. In a stateg, these two lists are ment protocols (e.g., [2]). These distributed architezsur
kept in state-variablesnd4(q) andrcva(q), respectively. can provide stronger intrusion-tolerance guaranteeghbut
The lists are initially empty. A new element is appended to agreement protocols are complex and can cause important
snda(q) whenL sends arAdminMsg M, and a new ele- performance degradation. These infrastructures arevexser
ment is appended tav 4 (q) when A executes a transition for critical applications with high-integrity requiremisn In
triggered by the reception of ahdminMsg M. rcva(q) other systems such as Secure Spread [1], Ensemble [14],
is emptied whem! leaves a session ardd 4 (g) is emptied or Horus [17], security services are built on top of an ex-
whenL receiveReqClose from A. Itis then easy to prove isting group communication infrastructure. The infrastru
from the verification diagram that the listv 4 (¢) is a prefix ture provides group-membership and multicast servicés tha
of snd 4 (q) in all reachable states. support a variety of network-level faults, including neto

Proper user authentication can be derived from the dia-partitioning. Key-agreement or key-distribution prottsco
gram by a similar methodL acceptsd as a member when (e.g., [16]) are implemented on top of these services, and
the system enters a state whef@dl 4 (¢) = Connected(.. .). cryptography ensures confidentiality and integrity of grou
This happens whenevédr accepts a message of type- communication. These systems typically provide security
thAckKey. Similarly, A requests to enter by sending a mes- against outsider attacks but do not consider misbehaving
sage of typeAuthinitReq. Proper user authentication re- group members.
quires that thenth AuthAckKey accepted byl was pre- The formalization and verification methods we use are
ceded by theith AuthlnitReq from A. This can be proved based on Paulson’s inductive approach to verifying crypto-

5.4. Diagram Analysis

graphic protocols [11], with extensions proposed by Millen

and Ruel [10]. Proof diagrams were proposed by Manna

and Pnueli [8]. The type of diagrams we use was discussed
by Rushby [15] and has been applied to the verification of
fault-tolerant protocols [12].

7. Conclusion

We define a new Enclaves protocol for performing user
authentication and for distributing group-managementmes

sages. This protocol improves over the existing Enclaves

[5]

[6]

[7]

L. Gong. Enclaves: Enabling Secure Collaboration
over the Internet/EEE Journal of Selected Areas in
Communicationsl5(3):567-575, April 1997.

S. Keung and L. Gong. Enclaves in Java: APIs and
Implementations. Technical Report SRI-CSL-96-07,
SRI International, 1996.

K. Kihlstrom, L. Moser, and P. Melliar-Smith. The
SecureRing Protocols for Securing Group Communi-
cation. InIEEE 31st Hawaii International Conference
on System Sciencgsmges 317-326, January 1998.

protocols by providing correct services evenin the presenc [8] Z. Manna and A. Pnueli. Temporal Verification Di-
of faulty insiders (past or present group member). We give
a proof of correctness of the protocol that combines model-
ing and verification techniques developed for cryptographi
protocols, and system abstraction techniques.

The main limit of the current Enclaves architecture is its [9]
reliance on a central group leader. In future work, we intend
to develop a more robust and scalable version of the system

where the single leader is replaced by a distributed set of

group managers.

Acknowledgments

The work presented in this paper was partially funded by
the Defence Evaluation and Research Agency under con
tract CU009-0000002017, and by the Space and Naval War-
fare Systems Center under contract N66001-00-C-8001.

Our thanks go to Sathish Gopalakrishnan who imple- [12]
mented the new Enclaves protocol. Our PVS formaliza-
tion and verification relied on libraries developed by Hdral
Ruess and Jon Millen.

References

[1] Y. Amir et al. Secure Group Communication in Asyn-

(2]

[3]

[4]

chronous Networks with Failures: Integration and Ex-
periments. Ir20th IEEE International Conference on
Distributed Computing System&ipei, April 2000.

M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. InThird Symposium on Operating Systems
Design and Implementatioppages 173—-186, New Or-
leans, LA, February 1999.

Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion
Tolerance in Distributed Computing Systems. In
IEEE Symposium on Research in Security and Pri-
vacy, pages 110-121, Oakland, CA, May 1991.

B. Dutertre and H. Saidi.
Group-Management Services. Technical report, Sys-
tem Design Laboratory, SRI International, July 2000.

10

[

[

[

[

[15

10]

11]

13]

14]

]

[16]

Verification of Enclaves [17]

agrams. Ininternational Symposium on Theoreti-
cal Aspects of Computer Software (TACS;943ges
726-765, Sendai, Japan, April 1994. Springer-Verlag,
LNCS 769.

P. McDaniel, A. Prakash, and P. Honeyman. Antigone:
A Flexible Framework for Secure Group Communica-
tion. In 8th USENIX Security Symposiupages 99—
114, Washington, DC, August 1999.

J. Millen and H. Ruel3. Protocol-Independent Secrecy.
In IEEE Symposium on Research in Security and Pri-
vacy, pages 110-119, Oakland, CA, May 2000.

L. Paulson. The Inductive Approach to Verifying
Cryptographic ProtocolsJournal of Computer Secu-
rity, 6(1):85-128, 1998.

H. Pfeifer. Formal Verification of the TTP Group
Membership Algorithm. IFORTE/PSTV 20QMPisa,
Italy, October 2000.

M. Reiter. The Rampart Toolkit for Building High-

Integrity Services. InTheory and Practice in Dis-

tributed Systemspages 99-110. Springer Verlag,
LNCS 938, 1995.

O. Rodeh et al. Ensemble Security. Technical Report
TR98-1703, Department of Computer Science, Cor-
nell University, September 1998.

J. Rushby. \erification Diagrams Revisited: Dis-
junctive Invariants for Easy Verification. I€om-
puter Aided Verification (CAV 2000pages 508-520,
Chicago, IL, July 2000. Springer-Verlag, LNCS 1855.

M. Steiner, G. Tsudik, and M. Waidner. CLIQUES:
A New Approach to Group Key Agreement. Ii8th
International Conference on Distributed Computing
Systems (ICDCS’'98)pages 380-387, Amsterdam,
The Netherlands, May 1998.

R. van Renesse, K. Birman, and S. Maffeis. Horus: A
Flexible Group Communications Syster@ommuni-
cations of the ACM39(4):76-83, April 1996.

