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Abstract

We investigate the construction of fixed schedules for an E@¢iver that ensures
thatn disjoint frequency bands are periodically visited for aegitime interval. Two
parameters; andT;, such thad) < r; < Tj;, are given for each frequency bafidr; is
the required dwell time and; is the required revisit time for band The problem is to
compute a global schedule, such that, foriathe receiver covers baridor an interval
of lengthr; in every interval of lengttT;. We give necessary and sufficient conditions for
this problem to have solutions. We prove that the problemAsddmplete. We present a
depth-first search algorithm for obtaining a solution arstdss simplification techniques
that reduce the search space.
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Figure 1: Successive Dwells for a Frequency Band

1 Introduction

We consider the problem of constructing a fixed scan schéduéesingle EW receiver. The
receiver bandwidth is divided into disjoint frequency bands that can be covered only one
at a time. The receiver must periodically visit each of thedmnds for a specific duration.
For each band, two parameters; andT; specify how long and how often bardanust be
revisited, respectivelyl; is therevisit timeandr; thedwell timefor bandi. We assume that
7; andT; are real numbers such that< 7; < T;. The schedule is required to include, for
each frequency bangd a sequence of dwell intervals as depicted in Figure 1. Tbeiver
covers band in each intervala,, b;), and other frequency bands betwéganda;. ;.

Globally, a schedule can be describedbyriples of parameterga;, r;,T;) for i =
1,...,n, wherer; is the dwell time for band, T; the revisit time for band, anda; the start
time of the first dwell interval covering banid These parameters must satisfy the following
constraints:

O0<7<T; and 0< a; <T; — 5.

These parameters determine the successive dwell intdoradsich frequency band. How-
ever, not all possible values for the parameters;, T; are acceptable. Since the receiver
can cover only a single frequency band at a time, we must etisat the dwell intervals for
distinct bands do not overlap. The following figure shows xaneple of feasible schedule
withn =2,a; =0, 77 =0.5, 71 =2, a2 = 0.66, » = 0.33, andT> = 3.

On the other hand, it is easy to see that no feasible schexiste i case;, = 1,7, = 2, and
™ = 1, T = 3. Constructing such a schedule would amount to aligningwleesequences
of intervals below in such a way that no two intervals overlBjpis is clearly impossible.

In general, we are given pairs of parameters; and;, such thal < r; < 1;. The
problem is to find whether there existreal numbers;,...,a, suchthad < a; <T; — 75
for all 7, and the schedule defined by the parametgrs;, andT; is feasible.

A simple test is to check whether the total resource utilirais no more than 1. Assume
a schedule, defined by the above set of parameters, is feaks#ill’ be an arbitrary positive



number and letn; be the number of full dwell intervals for baradhat occur in the interval
[0, T']. Since the dwell intervals for different bands do not ovgrise have

n
i=1

Now m; is equal either td7'/T; ] or to | T/T;] + 1, and this implies tha{T /T; — 1) < m;. !
This gives

that is,

i=1

Since this inequality holds for arbitrafly, we must have

n .

?
E T < L 1)
i=1

The sum on the left-hand side of this equation is the totalues utilization. If this quantity
is more than 1, then no feasible schedule can be obtained.

Condition (1) is clearly necessary, but as shown by the pliagecounterexample, it is
not sufficient to ensure feasibility. Althoudly2 + 1/3 < 1, there is no feasible schedule
form, =1, T, = 2, and» = 1, T» = 3. In practice, it is acceptable to reduce the
revisit time for any band: spending more time covering battéin required does not usually
reduce the overall performance. In this simple example, swddcthen solve the problem
by changingl» to 2. Under these new conditions, we can construct a feasibledsié.
However, decreasing the revisit times does not always weok.example, take = 3 and
the following parameters:
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1
1
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Although the total resource utilizatidy2+1/3+1/7is smaller than 1, this set of parameters
does not admit a feasible schedule. Reducing the revisittiior band or 3 does not work
either. To accommodate bagdlit is necessary to chande to 2, but once this is done, the
resource utilization for the two first bands equals 1, andetliee no resource available for
band3.

This paper presents necessary and sufficient conditionsvetl times and revisit times
to ensure schedule feasibility. Section 2 introduces thatioms and gives basic definitions

1|1/1;] denotes the largest integer smaller than or equal/d;.



and results. Section 3 presents the essential mathemaditahs used for obtaining feasi-
bility results, namely, a generalization of the notion aéaplest common divisor to arbitrary
real numbers. Section 4 gives the key results of this papestdblishes necessary and suf-
ficient conditions of schedule feasibility. Section 5 disses the algorithmic complexity of
the problem and presents an algorithm for computing sclesd@ection 6 summarizes the
results presented in the paper.

2 Patterns and Schedules

In any schedule, the dwell intervals for a frequency bancchegacterized by three parame-
ters: the dwell time, the revisit time, and the start of thstfitwell interval. We call such a
triple of parameters acan patterror patternfor short.

Definition 1 A scan pattern is a tripléa, 7, T') of real numbers such th&t < < T and
0<agT—T.
Given a scan patterdA = (a,7,T'), the successive dwell intervdls;, b;) of A (fort € N)
are defined by the following equaticns

ag = a+tT

bt = a;+T.

All the dwell intervals are then of lengthand two successive dwell intervals are separated
by a delayl" — 7. We denote by the set of reals that belong to any of these intervals:

A = [Jlab).
teN

If A corresponds to frequency banthenA is the set of times when the receiver covers
We denote byRT the set of nonnegative real numbers. A time Rt belongs toA if
and only if there exists € N such that; < = < b;. To obtain a more convenient condition

we extend the notion of remainder of a Euclidean divisioret numbers as follows.

e Given any real, let |u] denote the largest integer smaller than or equat to

lul €Z and |u] <u < |u]+1.

e Given any reak and any positive real, letu mod v be defined by
u
umodv = wu-— [ZJ v.
The numben, mod v is to be interpreted as the remainder of the division.dfy v and,
similarly, |u/v] behaves like the usual quotient of an integer division. WWesha

umodv=r <= O0<r<wvandeZ:u=vi+r
lu/v]=i <= idi€Zandvi<u<v(i+1).
We also say thai is divisible byv or thatu is a multiple ofv if u = i v for some integei.
This is equivalent tas mod v = 0.

Using these notations, we obtain the following necessadysaifficient condition for:
to belong toA.

2Using intervals closed on the left and open on the right siieplthe analysis but is not crucial.



Lemmal If A= (a,r,T) then for anyr € R", we have

r€Ad = (r—a)modT <.

LetA = (a,7,7)andA’ = (a’, 7', T") be two scan patterns. These two pattewisrlap
if An A’ # (). Otherwise, we say that and A’ arecompatible Let [a¢, b¢):en be the dwell
intervals of patterrd and|a}, b}):cn be the dwell intervals oft’. To determine whethet
and A’ overlap, it is sufficient to consider only the starting peiaf the dwell intervals.

Lemma 2 A andA’ overlap if and only if there i$ € N such thats; € A’ or thereisu € N
such that!, € A.

The proof is trivial.

Sincea; = a +t T anda!, = o’ + u T', we obtain the following result by combining
Lemma 1 and Lemma 2.

Proposition3 Let A = (a,7,7) and A’ = (d/,7',T) be two patterns; themd and A’
overlap if and only if one of the two following conditions &isfied:

ImeN: (a—ad +mT)modT' <7’

ImeN: (@ —a+mT)modT < 7.

A scheduleS is a set ofn > 1 scan patternsl; = (a;,7;,7;) fori = 1,...,n. The
schedule iseasiblef all these patterns are pairwise compatible, that is, theldntervals for
different frequency bands do not overlap. Given desiredldimees 1, . .., 7, and desired
revisit timesT, ..., T,, the problem is to determine whether there exigteal numbers
ai, - --,a, such that

e 0<a; gTi—Tifori:].,...,’n,

¢ the schedul& defined by the patternd; = (a;, 7;, T;) is feasible.

We also need an algorithm or a technique for computing theeeal, , ..., a, when they
exist.

3 Greatest Common Divisor

Proposition 3 indicates that the feasibility problem rezhio finding the range of an expres-
sion of the form(z + m T') mod T" for m varying over the natural numbers, and for fixed
reals7’ > 0,7 > 0, andz. In other words, we must find all the real numbersuch that

¢ = (z+m T)modT' for somem € N. This is related to the more general problem of
finding the reals: such that

YieZjel:c—x=iT+;T.

In casel’ andT"’ are integers, the numbers of the foirfi’ + 7 7" are the multiples of the
greatest common divisor @ and7". To solve the general case, we start by extending the
gcd to arbitrary non-zero realsandT”.



Assume then thdf andT" are two non-zero reals. Lét be the set of numbers defined
by

E = {y|Fer,jel: y=iT+jT'}.

Clearly if z andy > 0 belong toE thenz mod y also belongs td. Also, if x € E and
i € Ztheni x € E. In the remainder of this section, we show that this set hanallast
positive elemend providedT /T" is a rational number, and that thiss the gcd ofl” andT".
We then investigate the case WHEAT” is irrational.

Lemma 4 Assumd? has a smallest positive elemehtthen we have for all rea,
yelk < dieZ: y=id.

Proof: Sinced is the smallest positive element Af we haved € E, so anyy of the form
i dis also an element df’. Conversely, assumee E and letr = y mod d. Clearly,r also
belongs toE and we havé) < r < d. Sinced is the smallest positive element &f » must
be0. This means thaj is a multiple ofd. O

Lemma5 E has a smallest positive element if and only'ffI" is a rational number.

Proof: AssumeFE has a smallest positive elemehtSince botH" andT” belong toE they
are both multiples ofl (by the previous lemma). There are then two non-zero ingagend
i’ suchthatl’ =i dandT” =i’ d, andT’/T" = i/i is rational. Conversely, assurigT" is
a rational number, that is, there are two integess 0 andq # 0 such that

r _p

T q
Letu =T /p =T'/q; then we haves # 0, T = p u, andT’ = q u. As a consequence, we
can write

E = {yl|Jie€eZjeZ: y=(>{ip+3jq) u}
Consider the set
F = {ele>0andFi€Z,j€Z: e=ip+jq}

Fis a set of positive integers; it has then a smallest eleaenf v > 0, letd = dy u and
otherwise letd = —dj u; thend is the smallest positive element &f O

Lemma 6 Assuméel’/T" is rational and letd be the smallest positive elementifthend
is the greatest common divisor Bfand1”.

Proof: SinceT andT’ belong toE, d divides both by Lemma 4. Sinagalso belongs to
E, itis of the formi T + j T' for some integers and;. If ¢ divides bothI’ andT” thenc
dividesi T+ j T', that is,c dividesd. O

In caseT’/T" is not rational,I" and7” do not have any common divisors and then they do
not have a gcd. By Lemma 5, we also know that thelselbes not have a smallest positive
element. We strengthen this result by showing th@t+ j 7' can be an arbitrarily small
positive number.



Lemma 7 If T/T" is irrational then, for any positive rea, there are two integersand j
such that
0<iTH+jT <e.

Proof: Let ET be the set of positive elements Bf then ET has a greatest lower bougd
andg > 0. By Lemma 5g does not belong t&@ ™. We have then

Ve>0:dreFE: g<aez<g+e

Since all elements o are of the form T+ j T" for some integersandj, we just have to
show thaty = 0. Assume this is not the case, thatgsy> 0. There is therr € E such that
g <z <g+g/2 andthereisalsg € E suchthayy < y < . Sincez > y, |y/z] > 1.
Letr = x mod y; thenr belongs toE* and we have

ro= z—|z/yly < z-y < g/2.
This impliesr < g and contradicts the assumption tgds the greatest lower bound &ft.
As a consequenggcannot be positive so we haye= 0. O

In summary, we have established the following results:

e If T/T" is a rational number thefi andT’ have a gcdl, and for ally € R there are
integers andj suchthayy =i 7'+ j T" if and only if d dividesy.

e If T/T" is not a rational number thefi and7” do not have a gcd and for all positive
reale, there are integerisandj suchthat < i T+ j T' < e.

4 Feasibility Conditions

4.1 Compatibility of Two Patterns

We consider two arbitrary patteras= (a,7,7) andA' = (a’,7',T") and we study condi-
tions for A and A’ to be compatible. By Proposition 3, these two patterns apéafland only
if one or both of the two following properties are satisfied:

dmeN: (a—d +mT)modT" <7’

ImeN: (@ —a+mT)modT <7

We consider a slightly more general case and study the exsstef integersn that satisfy
the inequality
(b+mT)modT < T,

whereT andT"” are positive reald) < 7 < T', andb is an arbitrary real. Two cases must be
considered depending on whetl&fT" is rational or not.



Rational Case

Lemma 8 Assumel’/T" is rational and letd be the gcd of” andT". Letc be a real such
that0 < ¢ < T'; then

(AmeN: b+m T )modT =¢) <= ddividesc —b.

Proof: If (b 4+ m T')modT = cwithm € Nthenthereig € Z suchthab+m T'+i T = ¢;
soc—b=mT'+iT and, by the preceding resultédividesc — b.

Conversely, assumé dividesc — b. There are then € Z andj € Z such thate —
b=iT+jT,andthenc = b+ j T'+i T . Sinced < ¢ < T, this implies that
[(b+7T")/T| = —iandthen

(b+jT)modT = ec.

Sinced divides bothI’ andT"”, there are two positive integefisandv such thafl’ = u d and
T' =wv d. Hence, we have T' = u T". Letk € N be large enough so that k£ « > 0 and
letn = j + k u. Thenm € N and we have
b+mT)YmodT = (b+jT"+kuT)modT
= (b+jT" +kvT)modT
(
C

b+ 7T )modT
.0

Assuming thaf’/T" is rational and thadl = gcd(T',7"), let B be the set of reals of the
form (b+ m T") mod T form € N:

B = {c|d3meN:c=(b+mT")modT}.
By Lemma 8, this set can equivalently be defined by
B = {c|0<c<T andIke€Z: c=b+kd}.

B is then a nonempty finite set and its smallest elemegf is b mod d. This leads to the
following proposition.

Proposition 9 Assuméd’/T" is rational and letd = ged(T',T"); then

@meN: b+mT)modT <7) <= bmodd<T.

Irrational Case

In caseT’/T" is irrational thenb + m T") mod T' can be arbitrarily small. To show this, we
first refine Lemma 7 as follows.

Lemma 10 If T/T" is irrational then for any positive read, the two following properties
are satisfied:

ie€Z,jeZ: 720and0<iT+jT <e

N WV

ie€eZ,jeZ: <0and0<iT+jT <e



Proof: Let @« = min(e,7"). By Lemma 7, there are two integer@nd j such that) <

iTH+jT <a.lete=iT+j T, k= |T"/z],andy = T'modz. Sinced < z < a < 1",

we havek > 1. By definition of mod, we havé < y < z and sincel'/T" is not rational,
y # 0. Furthermorey = T" — k z, SO we obtain

0<iT+jT <eand0< —kiT+(1-kjT <e.
It is easy to see thgtandl — & j cannot be both positive or both negatitze.

Proposition 11 If T'/T" is irrational then for any positive real, there ism € N such that
(b+m T mod T < e.

Proof: If € > T, the inequality is trivially true for anyn, so we can assume< 1.
Our objective is to obtain a regl of the formi 7' + m T" with m € N and such that
—b <y < e —b. For such g, we get

0<b+mT' +iT <e.
Sincee < T this implies thaf (b + m T")/T| = —i and then that
(b+mT)mod T < e.

To obtain appropriatg andm, we consider the two following cases:

e b < 0. By the preceding lemma, there arec Z andj € Z such thatj > 0 and
0<iT+jT" <e.

e b > 0. By the preceding lemma, there arec Z andj € Z such thatj < 0 and
0<iT+jT <e.

Inbothcases,let =i T+j T',k = |—b/z|+1,andy = k z. Thisimplies—b < y < e—b
andy =i kT +j kT', sowe can take: = j k. In the first casek > 1andj > 0, and, in
the second casé,< 0 andj < 0 so we haven > 0 in both cases as required.

Main Theorem

The following theorem gives a necessary and sufficient ¢mmdior two scan patterns to be
compatible. The theorem is an immediate consequence ofé¢teging propositions.

Theorem 12 Let A = (a,7,T) and A’ = (a',7',T") be two scan patternsd and A’ are
compatible if and only if'/T" is rational and the two following conditions are satisfied:

whered is the greatest common divisor Gfand7".

In the remainder of this section, we assume tHAT” is a rational number and that
d = ged(T,T"). Assumed and A’ are compatible. Using the theorem, we get

(@' —a)modd+ (a—a')modd > 7+7'.



For any real: that is not a multiple ofl we have
zmodd+ (—z) modd = d,

so the preceding inequality gives+ 7 < d. We have proved the following important
property.

Proposition 13 If A = (a,7,7) andA' = (a’,7',T") are compatible then

T+7 < d.
As a consequence, we have

AR
and sincel < T andd < T,

A

Tt S 1.

This confirms a result we already established. For two sc#rrpa to be compatible, their
resource utilization must be no more than 1.

Proposition 13 shows that the conditien+ 7' < d is necessary for two compatible
patternsd = (a,7,T) andA’ = (a’, 7', T") to exist. The condition is actually sufficient.

Proposition 14 Letr, 7/, T, and7" be such thab < 7 < T"and0 < 7' < T". There exist
a anda’' suchthatl < a < T — 7,0 <d <T' -7, and the patternsl = (a,7,7T') and
A" = (d',7',T") are compatible if and only if + 7' < d.

Proof: We have already shown that the condition was necessary. Nswneer + 7/ < d
and taken = 0 anda’ = 7. Sincel < 7 < d, we get

(' —a)modd = 7tmodd = 7T
(a—a')modd = —-tmodd = d-—7 > 7.

We haved' < T' — 7' sincea’ = randr+ 7 <d < T,andwealsohave < T — 71
sincea = 0. By Theorem 12, the two patterns = (a,7,7) and A’ = (d/,7',T") are
compatibled

4.2 Schedule Feasibility

Consider now a schedulg that consists of. patterns4; = (a;, 7, T;) fori = 1,...,n.
The schedule is feasible if all these patterns are pairvasepatible. The results from the
previous section settle the case= 2. If n = 2, S is feasible if and only if all the following
conditions are satisfied:

e Ty /T is rational,
e (ay —aj)modd > m,

e (a1 —az)modd > 7,

10



whered = ged(T3,T5). Furthermore, givem;, 72, T1, andT, such thatl /T is rational, a
corresponding feasible schedexists if and only ifr, + 7 < d.
Theorem 12 and Proposition 13 immediately generalize titraripn > 2.

Theorem 15 The schedulé is feasible if and only if, for all andj in {1,...,n} such that
i # j, the two following conditions are satisfied:

e T;/Tj is rational
e (a; —aj) mod ged(T5,T5) > 5.
Proposition 16 If the scheduleS is feasible then for alk and j in {1,...,n} such that
i # ]
Ti +7j < ng(Ti,Tj).

On the other hand, Proposition 14 does not generalize. Theittmns given by Propo-
sition 16 are necessary but not sufficient to ensure theemdstof a schedule with revisit

timest,...,7, and dwell timesTI,...,T,, unlessn = 2. To see this, consider the case
wheren = 3,7, =T = T3 = 2, andr; = » = 13 = 1. Although we have

n+n < ged(Ty,Th)

n+m < ged(Ty,Ts)

m+7 < ged(Ty, Ts),

there is no feasible schedule for these parameters sindettieesource utilization is more
than 1.

Theorem 15 shows that constructing a schedule is equivedesalving a system of in-
equalities. Assuming all the quotieff}/T; are rational numbers, schedule feasibility is
equivalent to solving a systesof n? inequalities of the following form:

(a1 —az) mod  ged(Ty,T») >

(ay —a,) mod  ged(Ty,Ty)

= Ty
(az —a1) mod  ged(Tr,T1) > 7
(a2 —ap) mod  ged(Tr,T,) = ™
(an —a1) mod ged(Ty,T1) > 7

(an —ap—1) mod ged(Ty,Tho1) = Tn-1

0 < a1 < Th—n

0 < ap < T, —Tp.
Proposition 16 and the test on resource utilization give hg@oessary conditions for this

system to have solutions. The following section gives anrigm for constructing a feasible
schedule by solving the inequalities.

11



5 Algorithms

We explore practical ways of constructing a feasible scleedyiven parameterg,, ..., T,
andr, ..., 7,. Forthis purpose, we restrict our attention to the case evakthe parame-
ters are integers and we also search for integer solutiotteeafystem of inequalities. This
is a reasonable restriction since the temporal quantities T;, ;, a;) must be multiples
of a common time unit, as an implementation must rely on a bi&smete clock. Under
these assumptions, schedule feasibility can be transtbinme a linear integer program-
ming problem that can be solved using standard algorithind{@wever, more specialized
algorithms that take into account the peculiarities of thabfem are likely to be more ef-
ficient in practice. We present one such algorithm in Sechidhbut, first, we study the
theoretical complexity of the problem and we discuss teqines for reducing the size of the
solution space.

5.1 Theoretical Complexity
The scan-scheduling feasibility problem can be descrisddlbws:

e Each instance of the problem is given by an integes 1, n dwell timesTy, ..., T,
andn revisit timesry, ..., 7,. All the dwell times and revisit times must be positive
integers and satisfy; < T;.

e The question is to determine whether there exigttegersa, ..., a, such that the
schedule defined by thepatternsd; = (a;, T, ;) is feasible.

We denote this problem byc3N-SCHEDULING. The two following propositions show that
SCAN-SCHEDULING is NP-complete.

Proposition 17 SCAN-SCHEDULING belongs to NP.

Proof: By the preceding results, solving an instance OAS-SCHEDULING is equivalent to
solving the system of inequaliti€s Because of the constraint

0<a; <T; — 1y

each variable; can take a finite number of values. There is then a finite nufiendidate
solutions. A nondeterministic algorithm folc&N-SCHEDULING need only guess values
ai,...,a, and check whether they satisfy the syst8mThis can be done in polynomial
time, as there exists a polynomial-time algorithm (Eusl@gorithm [2]) for computing the
required greatest common divisors.

Proposition 18 SCAN-SCHEDULING is NP-hard.

Proof: We show this by reducingARTITION t0 SCAN-SCHEDULING. PARTITION is de-
fined as follows [1]:

e Each instance of the problem is given by a finite 4etnd a mapping from A to N*.

e The question is to determine whether there exists a subisat A such that

Zs(w) = Z s(x).

zeA’ z€EA-A'

12



This problem is NP-complete as shown in [1].
Given an instancéA, s) of PARTITION, an instance of SAN-SCHEDULING can be con-
structed as follows:

e n=|A+1,

e We choose an arbitrary value fox, sayr, = 1, and set

Tn = T, + \‘EzEA S(w)J )
2
e Letxy,...,x,—1 bethe elements of; thenfori = 1,...,n — 1, we definer; andT;
by
7 = s(x;)
T, = 2T,

The resource utilization is maximal:

n
Ti

=1
T; ’

i=1
and we havegced(T;,T;) =Ty, if i = norj = n andged(T3, T;) = 2T, otherwise.
If A’ is a solution of the RRTITION instance, we have

Zs(m) = Z s(x).

zEA! zeA—A
We can assume without loss of generality that= {z1, . . ., z,, } forsome indexn < n—1,
and then
m n—1
i=1 i=m-+1
By definition of 7, andry, .. ., 7,1 this gives
m n—1
Zn = Z T = T, —Tp.
i=1 i=m+1
Letay,...,a, be defined as follows:
ap = 0
a; = a1+mn
Ay = Q-1+t Tm-1
Am+1 = T,
Um+2 =  Gmi1 T Tmtt
Ap—1 = Qp—2+ Tph—2
ap, = Qum+Tm = T — Ty

13



It is routine to check thaa , . . ., a,,) satisfies the system of inequalities for this instance of
SCAN-SCHEDULING. The corresponding schedule is as follows:

Tn Tn

- - -
77777777777777777777 <+

\ [ . \ [ N T ]

a8 7] <) 8m @ Amel an-1

Conversely, given a solutida, , . . . , a,,) to the SSAN-SCHEDULING instance, we obtain

a solution of the RRTITION instance by reversing the previous construction. We censid
the intervala,, a, + 2T},). Since itis of lengtlT; = 27'n, this interval must contain a dwell
interval[u;,u; + ;) foralli = 1,...,n — 1. It also contains two dwell intervals for bang
namely, the two intervalg,,, a,, + 7,) and|a,, + T, a,, + T, + 7,). We define the set’
as follows:

A" = Az | <ap+Th},
so that,

Z s(z) = Z T
zc Al Ui <An+Thn

Since the intervalBs;, u; + 7;) for z; € A’ do not overlap and are included[m, + 7., a,, +
T,), we have

Y s(@) < Th—Ta @)
zeAl
Similarly,
Z s(r) = Z 7 < Tp—Th. 3)
reA—A' Ui Zan+Ty
By construction, we know that
dost@)+ D sa) = D s@) > 2Th - ).
zeA' TeEA-A' z€EA
Using (2) and (3), we obtain then
Zs(az) = Z s(z) = T, — Tn,
zeAl TEA-A!

that is, A’ is a solution of the original ARTITION instance.

We have then shown that the®rITION instancg 4, s) has a solution if and only if the
SCAN-SCHEDULING instance constructed from it has a solution. Clearly, thestroiction
can be done in polynomial time. Sincem®ITION is NP-complete, SAN-SCHEDULING is
NP-hard.O

Propositions 17 and 18 imply that&N-SCHEDULING is NP-complete. It is then likely
that any schedule-construction algorithm has exponetimial complexity in the worst case.
The following section describes an algorithm for consingt feasible scan schedule and
gives some experimental results on its average complexity.
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5.2 Search-Space Reduction

The construction of a feasible schedule requires solviagifstem of inequalitieS defined
previously. We are given dwell timesy, ..., 7, andn revisit timesTy,...,T,, and we
look forn integersay, . . ., a, that satisfy the two following sets of constraints:

((ll — ag) mod d1,2 Z a9
So : :
(an - anfl) mod dn,nfl 2 Ap—1

0 € a1 € Tv1—7

Syt :
0 € an € Th— 7y,

whered; ; = ged(T;,T;). Because of, there are a priori at most

(Tz —T; -|—].)
1

n
i=

candidate solutions to examine. The following results stimt the solution space can often
be considerably reduced.

Lemma 19 Let(aq,...,a,) be a solution of5y. Givenk € {1,...,n}, let(a},...,al,) be
defined by

a; = (a;—a)modT;
then(al, ..., al) is a solution ofS.

Proof: For everyi, o} is equal toa; — ay, + u;T;, for some integet;. We then have
i—a; = a;—aj +uly —uyTy.

Sinced; ; divides bothl; andT}, this gives

(a; —aj)modd;; = (a;—a;)modd;;.
The tuple(ai, . . ., a;,) satisfies thers,.
Letr = (a; — ax) mod d; ;. Since(ay, . .., a,) is a solution ofSy, we have

and thenr, < r < d; — 7. We also havd; = bd; ;. for some positive integdr. Now
a; — a; is equal togd; ; + r, for someg € Z, andg can be written

qg = pb+c

15



where0 < ¢ < b— 1. This gives

a;—a = pbdig+cdig+r
pTi + Cd@k + T,

and, as a consequence,

a; = (a; —ap)modT;
= cdip+r
< (b-Ddip+dig — 7
< Tz — T;.
This shows thafa! , . . ., a},) satisfiesS;. O

This lemma says that § has any solution then there exists a solufjefy .. . , a!,) with
a;, = 0. Intuitively, this simply amounts to translating the scahedule so that the first
dwell interval for bandc starts ab. When searching for a solution £ we can then pick an
arbitrary variablez;, and set it td.

We can also reduce the interval of possible valuesifoFori € {1,...,n}, let L; be
the least common multiple of the numbers

iy dii1,diiv1, .o, din.

SinceT; is a multiple of each of these numbets,is also a multiple of_;.

Lemma 20 Assumingas, . .., ay,) iS a solution ofS, let (a1, ..., a},) be defined by
a; = a;mod L;,
then(al, ..., al) is a solution ofS.

Proof: Everya; is of the forma; + u;L; for some integew; € Z. Thena; — o} =
a; —aj; + u;L; — Uij, and, sinceii,j divides bothL; andLj,
(a; — a;) mod d,‘J = (ai — a]’) mod d,‘J.

Sincea; > 0, a} = a; mod L; cannot be larger thaa;, so we have

0 < al < Ti—Ti.

(3

Hence,d},...,a!,) is a solution ofS. O
As a consequence of this lemma, it is sufficient to searchdhutions(a, ..., a,,) of
So where0 < a; < L;. Itis also easy to see that the solutigr, ..., a),) as defined in

Lemma 20 is such th& < o} < L; — 7; for all i. This means that we can replageby the
following inequalities:
0 < a1 < Lhn—n

0 < an, < L,—7n.
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SinceL; dividesT;, the upper bound om; can be much smaller thdn — 7;. The size of the
search space is now reduced to

n

[z —7+1).

i=1

Itis possible to further reduce the search space using tlesving theorem whose proof

is given in the following section. Let/y, . .., M,, be defined as follows:
M, =1
My, = d172
Ms; = lem(dis,ds3)
Mn = lcm(d17n,...,dn_17n)

Every M; is then a divisor of_;.

Theorem 21 If Sy has solutions, thef;, has a solution(a, .. ., a,,) such that

0 < a1 < M

0 < ap < M,.

SinceM; = 1, this solution is such that; = 0 and, as shown in the proof of Lemma 19,
(a1,-..,ay) is also a solution of. To solvesS, it is then sufficient to search for solutions of
So wherea; =0, as < Ms,...,a, < M,. Since everyM; dividesL;, the search space is
potentially much smaller than that given by the precedingnte.

The theorem also suggests an incremental approach forraotisty scan schedules. We
start by setting:; to 0. Then we look for a positive integes < M> = d; » such that

((ll —az) mOddl,z Z (P and (az—al)moddl,z Z T,

or, equivalently,
T2 < ((ll — ag) mod d1,2 < d1,2 —T1.

If such ana, is found, we now look for; < M3 such that
73 < (a1 —az)moddyz < diz—T71
73 < (a2 —az)moddys < dy3 — To.
If we can find such ans, we proceed incrementally withy; otherwise, we try another value
for as.
Proof of Theorem 21

Theorem 21 relies on the following variant of the Chinese Riewher Theorem.

Proposition 22 Letd; andds be two non-zero integers and let anda-» be two integers.
There exists an integer such thatd; dividesz — a; andd, dividesz — a, if and only if
ng(dl,dg) dividESa1 — ay.

17



Proof: If d; dividesz — a; andd, dividesz — a», thenged(d,, d2) divides bothe — a; and
x — az, and, as a consequenged(d; , d») divides(xz — a2) — (v — a1) = a1 — as.

Conversely, let us assumged(d;, d-) dividesa; — a2. By definition, there are two
integersu andv such thaged(d; , d2) = ud; + vds; a; — as can then be written

a1 —ax = audy + avds,
wherea € Z. Letz = a; — aud;; then we have

rT—a = -—oud;

T—ay = a;—az—oaud; = avds.

Henced,; dividesz — a; andd, dividesz — ay. O

The Chinese Remainder Theorem is a special case of the psepioposition wherd,;
andd, are mutually prime, that isgcd(d;,d>) = 1. The following lemmas are used to
generalize Proposition 22 tonumbersiy, ..., d,.

Lemma 23 Letz be an integer such thal, dividesz — a; andds dividesz — a-. For any
integery, the two following propositions are equivalent:

e (; dividesy — a; andds dividesy — a»
e lcm(d;,ds) dividesy — «.

Proof: If d, dividesy — a; andd, dividesy — a» thend, divides(y —a1) — (z—a1) =y —=x
andd, divides(y — a2) — (x — as) = y — x SOy — x is a common multiple ofl; andds,
that is,lcm(d; , d») dividesy — .

Conversely, iflcm(d; , d») dividesy — z thend, dividesy — x andd, dividesy — z, so
d; divides(y — z) + (z — a;) andd, divides(y — z) + (z — ap), that is,d; dividesy — a;
andd, dividesy — a,. O

Lemma 24 For all non-zero integers, y, andz, we have
ged(z,lem(y, 2)) = lem(ged(w,y), ged(w, 2))-

Proof: Let p1,...,pr be the prime factors of, y, andz. There are natural numbers
Q1y -y Qs B, - -+, B, @ndry, ...y, such that

r = pit...ppt
= pfl...pf’“
= pit...pk.

Let §; = min(a;, max(8;,v;)) ando; = max(min(«;, 8;), min(«;,v;)); then

ged(z,lem(y, 2)) = p‘fl .. .pi’“
lem(ged(z,y),ged(z,2)) = pit...pek-
Itis easy to check thal;, = o; so the left-hand sides of these two equations are equal.

The general form of Proposition 22 is the following.
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Proposition 25 Letdy,...,d, ben non-zero integers and, ..., a, ben integers. If we
have

ged(d;, dj)  divides a; — aj
for all i andj such thatl < i < j < n, then there exists an integersuch that

dy divides z —a;

d, divides z—a,.

Proof: We reason by induction om. The proposition is trivially true ifi = 1.

Now we assume the proposition true for> 1. Letdy,...,d,+1 anday, ..., a,+1 be
numbers such thajd(d;, d;) dividesa; — a; whenever < j.

By Proposition 22, sincged(d,,, d,,+1) dividesa,, — a,+1, there isty € Z such that

d, divides z¢—a, (4)
dn+1 divides Lo — Ap41- (5)
Letd!,...,d], andai,...,a, be defined as follows:
di = d;ifi<n
d, = lem(dy,dy+1)
a; = a ifi<n
a, = .

For two indices andj such thall < i < j < n, ged(d;, d}) dividesa; — a); by assumption.
Fori < n andj = n, Lemma 24 gives

ged(dj, df) = ged(d;, lem(dy, 1))
= lem(ged(ds, dn), ged(di, dnt))-
By assumptiongcd(d;, d,,) dividesa; — a,. By (4), and sincegcd(d;, d,,) is a divisor of
dy, ged(d;, dy,) also dividesty — ay,. It follows thatged(d;, d,,) dividesa; — xo = a — al,.
Using (5), we get by a similar reasoning tiatl(d;, d,,+1) dividesa} — a!,. Henceg] —al,
is a common multiple ofcd(d;, d,,) andged(d;, dy,41) SO
ged(d},d;) divides a} —al,.

We can then use the induction hypothesis wifh. .., d], andaj, ...
integerz such that

,ar,: there is an

d; divides z —aj

! F— !
d, divides z— a,.
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Thend!, = lem(d,,,d,+1) dividesz — zy. By Lemma 23, this implies that, dividesz —a,,
andd,,+ dividesz — a,+1. We have then found an integeisuch that

dy divides z —a;

d, divides z —a,

dpy1  divides = —apy1.

The proposition is then satisfied far+ 1. By induction it is true for arbitrary. O

LetTs,..., T, ben positive integers and let; ; = gcd(T;,T;). To prove Theorem 21,
we show that for any tuple of integefs,,. .., a,), there exists a tuplé&i!, ..., al,) such
that

0 < af < M

0 < a, < M,,

n

and

dij divides (aj —a;) — (aj —a;)

foralli € {1,...,n}andj € {1,...,n} — {i}.
The construction is incremental. Given an indesuch thatl < & < n — 1 andk
numbergai, . .., a},) that satisfy

0 < af < M

0<ak<Mk,

and

dij divides (aj —a;) — (aj —a; ) (6)

foralli € {1,...,k}andj € {1,...,k} — {i}, we show that there exists an integgr, ,
suchthat < aj_, < My, and

di g1 divides (apy; — apqr) — (@) —ar)

dk,k+1 divides (G;H_l - ak+1) - (a;c - ak)'
First, giveni € {1,...,k}andj € {1,...,k} such that < j, we have

ged(dikr1,dj 1) =  ged(ged(Th, Thva), ged(Ty, Th1))
ng(Tia Tja Tk+1)
= ng(d,'7j,Tk+1).
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By (6), this implies thatcd(d; k+1,djk+1) divides(a} — a;) — (a; — a;). Using Proposi-
tion 25, there is then an integersuch that

dig+1 divides z — (a}] —ay)

dik+1 divides z — (a), — ag).

Letay,, = (agy1 + ) -m.o_d Myy1. We haved < aj,, < Mgy and My, divides
ay4, — agy1 — . By definition,

M1 = lem(di kg1, die k1),
so we have

. ,
digyr divides (ap, —apy1) — @

di g1 divides (ap,; —apy1) — .
We then obtain

di g1 divides (apyq — apgr) — (@ —ar)

di g1 divides  (ap, —aps1) — (af — ax),

as required.
Starting witha] = 0 and iterating this construction fér = 1,...,n — 1, we obtain a
tuple(ai,...,al,) such that

dij divides (aj —a;) — (aj — a;)

wheneven < i < j < n. Given two such indicesandj, we get that

dij divides (aj —aj) — (a; —a; ),

which is equivalent to

(a; —aj)modd;; = (a;—a;)modd;;.

Hence, if(ay, ..., a,) is a solution of the systeifiy of inequalities(a},...,a!,) is another
solution of Sy and, by construction, it satisfies

0 < a'l < Ml

0 < a, < M,

n

This completes the proof of Theorem 21.
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5.3 Schedule Construction Algorithm

To perform some experiments, we developed a schedule ootistr algorithm based on
Theorem 21. The algorithm is based on a depth-first seardh beéitktracking. A tuple
(a1,...,a) is a partial solution ofj if the constraints

(ai — aj) mod di,j 2 Tj

are satisfied for all € {1,...,k} andj € {1,...,k} — {i}. The algorithm attempts to
extend such a partial solution by finding a valtye ; such that

Th41 < (@1 —appr)moddigrr < digyr — 71

Terr < (ap —appr) mod dipp1 < dppgr — Tk

If such anay41 can be found, thefu, ... ,axy1) is a partial solution o6,. The algorithm
then attempts to extend it incrementally until a full saduti(ay,...,a,) is obtained. If
no suchay41 can be found, the algorithm backtracks and looks for anqibdial solution
(af,...,a}). The algorithm terminates either when a full solution iscresd or when all
partial solutions have been tried and eliminated. As showifiieorem 21, the search can
be limited toay,...,a, such that) < a; < M;. Pseudo code is given in Figure 2 that
describes the recursive search procedure used by thethigoriGiven a numbek and

a partial solutiorw = (ay,...,ar), the procedur&ear ch(k, a) either returns a full
solution that extend§z,, . . ., ax) orni | if no such solution can found. It uses an auxiliary
functionConsi st ent (a, x) thattests whethd,,...,ax,z) is a partial solution, that
is, whetherr satisfies the constraints

Tr+1 < (@ —2)moddipr1 < digyr — T

The search is initiated by callifgear ch(0,[]) .
Our actual implementation is based on this simple algoritutnuses a more sophisti-
cated approach to detect early that a partial solutign. . ., a; ) cannot be extended. For this

purpose, we associate domaibg. 1, ..., D, with the remaining variablegyi,...,a,.
EachD; is the set of values fat; that are consistent witfuy, . .., ax):

D;, = {CL’ | 0<x< M; ande <k:71; < (ai —CL’) moddi,j < di,j —Tj}.
If D; is empty ther(aq,...,a;) cannot be extended to a full solution. In addition, we use a
heuristic based on the size of the domafhs 4, . .., D,, to order the search.

Initial experiments show that random instances of the stdreduling problem are very
likely to violate the necessary conditions of the form

n+71 < ged(T3,T5).

Forn randomly chosen revisit times, it is very likely that at lease ofgcd(T;, Tj) is very
small.

To obtain random instances that do not violate these camditiwe use the following
approach. First we choose a base nuniband two integerg, andk; such thatsy < k.
Then we construct randomty revisit timesT; that are all multiples of", and all between
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/1 The problemis stored in two gl obal arrays
/1 T[1],...,T[n]: revisit tines
/1 t[1],...,t[n]: dwell tinmes

Search(k, a):

if k=n

return a /1l a full solution has been found
el se

found := fal se

X :=0

while (not found and x<M k])
if (Consistent(a, x))
b := Search(k+1, add(a, x))
found := b !'= nil
endi f
X :=x +1
endwhi | e
if found
return b
el se
return nil
endi f
endi f

Figure 2: Schedule Construction Algorithm

Tmin = koT andTmax = ki T'. For any two sucll; andT}, ged(T5, ;) is then a multiple
of the base numbéF. We then select a maximal dwell timg,,, no larger tharf’/2 and
generate randomly, dwell timesry,..., 7, in the rangel, ... mh.x. This ensures that
7; + 7; < T and then the necessary conditions are satisfied.

By choosing appropriate values @t kg, k1, Twax, andn, we can control the average
utilization of randomly generated instances. Initial expents show that the practical per-
formance of the search algorithm and the likelihood of atainse being feasible are strongly
related to the utilization. Table 1 summarizes some of oat ékperiments witll" = 100,
Tmin = 1000, andT,.x = 1500. Each row of the table corresponds to a different choice
of Tmax, @nd then a different average utilizatioh In each case, we generated 100 random
instances consisting &6 revisit times and0 dwell times, and ran the algorithm on each of
these instances with a timeout of 60 s (CPU time). The expariswere performed on a PC
with a 550 MHz Pentium llI, running Linux 2.2.5-15. The lasiwmn of Table 1 shows the
average search time for the instances that did not causesadim

6 Conclusion

Determining whether a set of dwell times and a set of revisit times are compatible is a
central issue in periodic scan scheduling. We have giventhenaatical characterization of
schedule feasibility as a set of linear inequalities. Thibfam can be solved algorithmically
but is NP-complete. We proposed an algorithm that searaires $olution in a depth-first
manner and defined several simplifications that reduce taeclsespace. Initial (and par-
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Tinax U || Feasible| Infeasible| Timeout | CPU time
49 | 1.00 0 100 0 0.05s
441 0.90 0 100 0 0.19s
39| 0.80 0 100 0 0.35s
34| 0.70 0 98 2 3.03s
29 | 0.60 5 63 32 18.13s
24 | 0.50 60 0 40 1.54s
19| 0.40 86 0 14 0.34s
14 | 0.30 93 0 7 0.13s

90.20 100 0 0 0.18s
41 0.10 100 0 0 0.33s

Table 1: Algorithm Performance

tial) experiment showed that high sensor utilization isdhitarreach for randomly generated
instances.

Openissues include a more careful study of the achievattilgatibn for a given set ofy
revisit times. It can be shown that a utilizationlofan be obtained under certain conditions
on the revisit times, for example, if the revisit times arenhanic. One such example is
used in the proof of Proposition 18. In general, studyingainses of the problem with a
special structure that make them easier to solve or thatemisome other desirable property
remains unexplored.
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