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Abstract

We investigate the construction of fixed schedules for an EW receiver that ensures
thatn disjoint frequency bands are periodically visited for a given time interval. Two
parameters�

i

andT
i

, such that0 < �

i

< T

i

, are given for each frequency bandi: �
i

is
the required dwell time andT

i

is the required revisit time for bandi. The problem is to
compute a global schedule, such that, for alli, the receiver covers bandi for an interval
of length�

i

in every interval of lengthT
i

. We give necessary and sufficient conditions for
this problem to have solutions. We prove that the problem is NP-complete. We present a
depth-first search algorithm for obtaining a solution and discuss simplification techniques
that reduce the search space.
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Figure 1: Successive Dwells for a Frequency Bandi

1 Introduction

We consider the problem of constructing a fixed scan schedulefor a single EW receiver. The
receiver bandwidth is divided inton disjoint frequency bands that can be covered only one
at a time. The receiver must periodically visit each of thesen bands for a specific duration.
For each bandi, two parameters�

i

andT
i

specify how long and how often bandi must be
revisited, respectively.T

i

is therevisit timeand�
i

thedwell timefor bandi. We assume that
�

i

andT
i

are real numbers such that0 < �

i

< T

i

. The schedule is required to include, for
each frequency bandi, a sequence of dwell intervals as depicted in Figure 1. The receiver
covers bandi in each interval[a

t

; b

t

), and other frequency bands betweenb

t

anda
t+1

.
Globally, a schedule can be described byn triples of parameters(a

i

; �

i

; T

i

) for i =

1; : : : ; n, where�
i

is the dwell time for bandi, T
i

the revisit time for bandi, anda
i

the start
time of the first dwell interval covering bandi. These parameters must satisfy the following
constraints:

0 < �

i

< T

i

and 0 6 a

i

6 T

i

� �

i

:

These parameters determine the successive dwell intervalsfor each frequency band. How-
ever, not all possible values for the parametersa

i

; �

i

; T

i

are acceptable. Since the receiver
can cover only a single frequency band at a time, we must ensure that the dwell intervals for
distinct bands do not overlap. The following figure shows an example of feasible schedule
with n = 2, a

1

= 0, �
1

= 0:5, T
1

= 2, a
2

= 0:66, �
2

= 0:33, andT
2

= 3.

On the other hand, it is easy to see that no feasible schedule exists in case�
1

= 1,T
1

= 2, and
�

2

= 1, T
2

= 3. Constructing such a schedule would amount to aligning the two sequences
of intervals below in such a way that no two intervals overlap. This is clearly impossible.

In general, we are givenn pairs of parameters�
i

andT
i

, such that0 < �

i

< T

i

. The
problem is to find whether there existn real numbersa

1

; : : : ; a

n

such that0 6 a

i

6 T

i

� �

i

for all i, and the schedule defined by the parametersa

i

, �
i

, andT
i

is feasible.

A simple test is to check whether the total resource utilization is no more than 1. Assume
a schedule, defined by the above set of parameters, is feasible. LetT be an arbitrary positive
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number and letm
i

be the number of full dwell intervals for bandi that occur in the interval
[0; T ℄. Since the dwell intervals for different bands do not overlap, we have

n

X

i=1

m

i

�

i

6 T:

Nowm

i

is equal either tobT=T
i

 or tobT=T
i

+1, and this implies that(T=T
i

�1) < m

i

. 1

This gives

n

X

i=1

�

i

(

T

T

i

� 1) < T;

that is,

T

" 

n

X

i=1

�

i

T

i

!

� 1

#

<

n

X

i=1

�

i

:

Since this inequality holds for arbitraryT , we must have

n

X

i=1

�

i

T

i

6 1: (1)

The sum on the left-hand side of this equation is the total resource utilization. If this quantity
is more than 1, then no feasible schedule can be obtained.

Condition (1) is clearly necessary, but as shown by the preceding counterexample, it is
not sufficient to ensure feasibility. Although1=2 + 1=3 < 1, there is no feasible schedule
for �

1

= 1, T
1

= 2, and�
2

= 1, T
2

= 3. In practice, it is acceptable to reduce the
revisit time for any band: spending more time covering bandi than required does not usually
reduce the overall performance. In this simple example, we could then solve the problem
by changingT

2

to 2. Under these new conditions, we can construct a feasible schedule.
However, decreasing the revisit times does not always work.For example, taken = 3 and
the following parameters:

i �

i

T

i

1 1 2
2 1 3
3 1 7

Although the total resource utilization1=2+1=3+1=7 is smaller than 1, this set of parameters
does not admit a feasible schedule. Reducing the revisit times for band2 or 3 does not work
either. To accommodate band2, it is necessary to changeT

2

to 2, but once this is done, the
resource utilization for the two first bands equals 1, and there is no resource available for
band3.

This paper presents necessary and sufficient conditions on dwell times and revisit times
to ensure schedule feasibility. Section 2 introduces the notations and gives basic definitions

1
bT=T

i

 denotes the largest integer smaller than or equal toT=T

i

.
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and results. Section 3 presents the essential mathematicalnotions used for obtaining feasi-
bility results, namely, a generalization of the notion of greatest common divisor to arbitrary
real numbers. Section 4 gives the key results of this paper. It establishes necessary and suf-
ficient conditions of schedule feasibility. Section 5 discusses the algorithmic complexity of
the problem and presents an algorithm for computing schedules. Section 6 summarizes the
results presented in the paper.

2 Patterns and Schedules

In any schedule, the dwell intervals for a frequency band arecharacterized by three parame-
ters: the dwell time, the revisit time, and the start of the first dwell interval. We call such a
triple of parameters ascan patternor patternfor short.

Definition 1 A scan pattern is a triple(a; �; T ) of real numbers such that0 < � < T and
0 6 a 6 T � � .

Given a scan patternA = (a; �; T ), the successive dwell intervals[a
t

; b

t

) of A (for t 2 N)
are defined by the following equations2:

a

t

= a+ t T

b

t

= a

t

+ �:

All the dwell intervals are then of length� and two successive dwell intervals are separated
by a delayT � � . We denote byA the set of reals that belong to any of these intervals:

A =

[

t2N

[a

t

; b

t

):

If A corresponds to frequency bandi thenA is the set of times when the receiver coversi.
We denote byR+ the set of nonnegative real numbers. A timex 2 R

+ belongs toA if
and only if there existst 2 N such thata

t

6 x < b

t

. To obtain a more convenient condition
we extend the notion of remainder of a Euclidean division to real numbers as follows.

� Given any realu, let bu denote the largest integer smaller than or equal tou:

bu 2 Z and bu 6 u < bu+ 1:

� Given any realu and any positive realv, letumod v be defined by

umod v = u�

j

u

v

k

v:

The numberu mod v is to be interpreted as the remainder of the division ofu by v and,
similarly, bu=v behaves like the usual quotient of an integer division. We have

umod v = r () 0 6 r < u and 9i 2 Z : u = v i+ r

bu=v = i () i 2 Z and v i 6 u < v (i+ 1) :

We also say thatu is divisible byv or thatu is a multiple ofv if u = i v for some integeri.
This is equivalent toumod v = 0.

Using these notations, we obtain the following necessary and sufficient condition forx
to belong toA.

2Using intervals closed on the left and open on the right simplifies the analysis but is not crucial.
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Lemma 1 If A = (a; �; T ) then for anyx 2 R+ , we have

x 2 A () (x� a) mod T < �:

LetA = (a; �; T ) andA0

= (a

0

; �

0

; T

0

) be two scan patterns. These two patternsoverlap
if A \A

0

6= ;. Otherwise, we say thatA andA0 arecompatible. Let [a
t

; b

t

)

t2N

be the dwell
intervals of patternA and[a0

t

; b

0

t

)

t2N

be the dwell intervals ofA0. To determine whetherA
andA0 overlap, it is sufficient to consider only the starting points of the dwell intervals.

Lemma 2 A andA0 overlap if and only if there ist 2 N such thata
t

2 A

0 or there isu 2 N
such thata0

u

2 A.

The proof is trivial.

Sincea
t

= a + t T anda0
u

= a

0

+ u T

0, we obtain the following result by combining
Lemma 1 and Lemma 2.

Proposition 3 Let A = (a; �; T ) and A

0

= (a

0

; �

0

; T ) be two patterns; thenA and A

0

overlap if and only if one of the two following conditions is satisfied:

9m 2 N : (a� a

0

+m T ) mod T

0

< �

0

9m 2 N : (a

0

� a+m T

0

) mod T < �:

A scheduleS is a set ofn > 1 scan patternsA
i

= (a

i

; �

i

; T

i

) for i = 1; : : : ; n. The
schedule isfeasibleif all these patterns are pairwise compatible, that is, the dwell intervals for
different frequency bands do not overlap. Given desired dwell times �

1

; : : : ; �

n

and desired
revisit timesT

1

; : : : ; T

n

, the problem is to determine whether there existn real numbers
a

1

; : : : ; a

n

such that

� 0 6 a

i

6 T

i

� �

i

for i = 1; : : : ; n,

� the scheduleS defined by the patternsA
i

= (a

i

; �

i

; T

i

) is feasible.

We also need an algorithm or a technique for computing the valuesa
1

; : : : ; a

n

when they
exist.

3 Greatest Common Divisor

Proposition 3 indicates that the feasibility problem reduces to finding the range of an expres-
sion of the form(x+m T ) mod T

0 for m varying over the natural numbers, and for fixed
realsT 0

> 0, T > 0, andx. In other words, we must find all the real numbers such that
 = (x +m T ) mod T

0 for somem 2 N. This is related to the more general problem of
finding the reals such that

9i 2 Z; j 2 Z : � x = i T + j T

0

:

In caseT andT 0 are integers, the numbers of the formi T + j T

0 are the multiples of the
greatest common divisor ofT andT 0. To solve the general case, we start by extending the
gcd to arbitrary non-zero realsT andT 0.
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Assume then thatT andT 0 are two non-zero reals. LetE be the set of numbers defined
by

E = fy j 9i 2 Z; j 2 Z : y = i T + j T

0

g:

Clearly if x andy > 0 belong toE thenx mod y also belongs toE. Also, if x 2 E and
i 2 Z theni x 2 E. In the remainder of this section, we show that this set has a smallest
positive elementd providedT=T 0 is a rational number, and that thisd is the gcd ofT andT 0.
We then investigate the case whenT=T

0 is irrational.

Lemma 4 AssumeE has a smallest positive elementd; then we have for all realy,

y 2 E () 9i 2 Z : y = i d:

Proof: Sinced is the smallest positive element ofE, we haved 2 E, so anyy of the form
i d is also an element ofE. Conversely, assumey 2 E and letr = y mod d. Clearly,r also
belongs toE and we have0 6 r < d. Sinced is the smallest positive element ofE, r must
be0. This means thaty is a multiple ofd.2

Lemma 5 E has a smallest positive element if and only ifT=T

0 is a rational number.

Proof: AssumeE has a smallest positive elementd. Since bothT andT 0 belong toE they
are both multiples ofd (by the previous lemma). There are then two non-zero integers i and
i

0 such thatT = i d andT 0

= i

0

d, andT=T 0

= i=i

0 is rational. Conversely, assumeT=T 0 is
a rational number, that is, there are two integersp 6= 0 andq 6= 0 such that

T

T

0

=

p

q

:

Let u = T=p = T

0

=q; then we haveu 6= 0, T = p u, andT 0

= q u. As a consequence, we
can write

E = fy j 9i 2 Z; j 2 Z : y = (i p+ j q) ug:

Consider the set

F = fe j e > 0 and9i 2 Z; j 2 Z : e = i p+ j qg:

F is a set of positive integers; it has then a smallest elementd

0

. If u > 0, let d = d

0

u and
otherwise letd = �d

0

u; thend is the smallest positive element ofE.2

Lemma 6 AssumeT=T 0 is rational and letd be the smallest positive element ofE; thend
is the greatest common divisor ofT andT 0.

Proof: SinceT andT 0 belong toE, d divides both by Lemma 4. Sinced also belongs to
E, it is of the formi T + j T

0 for some integersi andj. If  divides bothT andT 0 then
dividesi T + j T

0, that is, dividesd. 2

In caseT=T 0 is not rational,T andT 0 do not have any common divisors and then they do
not have a gcd. By Lemma 5, we also know that the setE does not have a smallest positive
element. We strengthen this result by showing thati T + j T

0 can be an arbitrarily small
positive number.
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Lemma 7 If T=T 0 is irrational then, for any positive real�, there are two integersi andj
such that

0 < i T + j T

0

< �:

Proof: Let E+ be the set of positive elements ofE; thenE+ has a greatest lower boundg
andg > 0. By Lemma 5,g does not belong toE+. We have then

8� > 0 : 9x 2 E : g < x < g + �:

Since all elements ofE are of the formi T + j T

0 for some integersi andj, we just have to
show thatg = 0. Assume this is not the case, that is,g > 0. There is thenx 2 E such that
g < x < g + g=2, and there is alsoy 2 E such thatg < y < x. Sincex > y, by=x > 1.
Let r = xmod y; thenr belongs toE+ and we have

r = x� bx=y y 6 x� y < g=2:

This impliesr < g and contradicts the assumption thatg is the greatest lower bound ofE+.
As a consequenceg cannot be positive so we haveg = 0.2

In summary, we have established the following results:

� If T=T 0 is a rational number thenT andT 0 have a gcdd, and for ally 2 R there are
integersi andj such thaty = i T + j T

0 if and only if d dividesy.

� If T=T 0 is not a rational number thenT andT 0 do not have a gcd and for all positive
real�, there are integersi andj such that0 < i T + j T

0

< �.

4 Feasibility Conditions

4.1 Compatibility of Two Patterns

We consider two arbitrary patternsA = (a; �; T ) andA0

= (a

0

; �

0

; T

0

) and we study condi-
tions forA andA0 to be compatible. By Proposition 3, these two patterns overlap if and only
if one or both of the two following properties are satisfied:

9m 2 N : (a� a

0

+m T ) mod T

0

< �

0

9m 2 N : (a

0

� a+m T

0

) mod T < �

We consider a slightly more general case and study the existence of integersm that satisfy
the inequality

(b+m T

0

) mod T < �;

whereT andT 0 are positive reals,0 < � < T , andb is an arbitrary real. Two cases must be
considered depending on whetherT=T

0 is rational or not.
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Rational Case

Lemma 8 AssumeT=T 0 is rational and letd be the gcd ofT andT 0. Let  be a real such
that0 6  < T ; then

(9m 2 N : (b+m T

0

) mod T = ) () d divides� b:

Proof: If (b+m T

0

)modT = withm 2 N then there isi 2 Zsuch thatb+m T

0

+i T = ;
so� b = m T

0

+ i T and, by the preceding results,d divides� b.
Conversely, assumed divides � b. There are theni 2 Z andj 2 Z such that �

b = i T + j T

0, and then = b + j T

0

+ i T . Since0 6  < T , this implies that
b(b+ j T

0

)=T = �i and then

(b+ j T

0

) mod T = :

Sinced divides bothT andT 0, there are two positive integersu andv such thatT = u d and
T

0

= v d. Hence, we havev T = u T

0. Let k 2 N be large enough so thatj + k u > 0 and
letm = j + k u. Thenm 2 N and we have

(b+m T

0

) mod T = (b+ j T

0

+ k u T

0

) mod T

= (b+ j T

0

+ k v T ) mod T

= (b+ j T

0

) mod T

= : 2

Assuming thatT=T 0 is rational and thatd = gd(T; T

0

), letB be the set of reals of the
form (b+m T

0

) mod T for m 2 N:

B = f j 9m 2 N :  = (b+m T

0

) mod Tg:

By Lemma 8, this set can equivalently be defined by

B = f j 0 6  < T and 9k 2 Z :  = b+ k dg:

B is then a nonempty finite set and its smallest element is

0

= bmod d. This leads to the
following proposition.

Proposition 9 AssumeT=T 0 is rational and letd = gd(T; T

0

); then

(9m 2 N : (b+m T

0

) mod T < �) () bmod d < �:

Irrational Case

In caseT=T 0 is irrational then(b+m T

0

) mod T can be arbitrarily small. To show this, we
first refine Lemma 7 as follows.

Lemma 10 If T=T 0 is irrational then for any positive real�, the two following properties
are satisfied:

9i 2 Z; j 2 Z : j > 0 and 0 < i T + j T

0

< �

9i 2 Z; j 2 Z : j 6 0 and 0 < i T + j T

0

< �

8



Proof: Let � = min(�; T

0

). By Lemma 7, there are two integersi andj such that0 <

i T+j T

0

< �. Letx = i T+j T

0, k = bT

0

=x, andy = T

0

modx. Since0 < x < � 6 T

0,
we havek > 1. By definition of mod, we have0 6 y < x and sinceT=T 0 is not rational,
y 6= 0. Furthermore,y = T

0

� k x, so we obtain

0 < i T + j T

0

< � and 0 < �k i T + (1� k j) T

0

< �:

It is easy to see thatj and1� k j cannot be both positive or both negative.2

Proposition 11 If T=T 0 is irrational then for any positive real�, there ism 2 N such that

(b+m T

0

) mod T < �:

Proof: If � > T , the inequality is trivially true for anym, so we can assume� < T .
Our objective is to obtain a realy of the formi T + m T

0 with m 2 N and such that
�b < y < �� b. For such ay, we get

0 < b+m T

0

+ i T < �:

Since� < T this implies thatb(b+m T

0

)=T = �i and then that

(b+m T

0

) mod T < �:

To obtain appropriatey andm, we consider the two following cases:

� b 6 0. By the preceding lemma, there arei 2 Z andj 2 Z such thatj > 0 and
0 < i T + j T

0

< �.

� b > 0. By the preceding lemma, there arei 2 Z andj 2 Z such thatj 6 0 and
0 < i T + j T

0

< �.

In both cases, letx = i T+j T

0, k = b�b=x+1, andy = k x. This implies�b < y < ��b

andy = i k T + j k T

0, so we can takem = j k. In the first case,k > 1 andj > 0, and, in
the second case,k 6 0 andj 6 0 so we havem > 0 in both cases as required.2

Main Theorem

The following theorem gives a necessary and sufficient condition for two scan patterns to be
compatible. The theorem is an immediate consequence of the preceding propositions.

Theorem 12 LetA = (a; �; T ) andA0

= (a

0

; �

0

; T

0

) be two scan patterns.A andA0 are
compatible if and only ifT=T 0 is rational and the two following conditions are satisfied:

(a

0

� a) mod d > �

(a� a

0

) mod d > �

0

;

whered is the greatest common divisor ofT andT 0.

In the remainder of this section, we assume thatT=T

0 is a rational number and that
d = gd(T; T

0

). AssumeA andA0 are compatible. Using the theorem, we get

(a

0

� a) mod d+ (a� a

0

) mod d > � + �

0

:
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For any realx that is not a multiple ofd we have

xmod d+ (�x) mod d = d;

so the preceding inequality gives� + �

0

6 d. We have proved the following important
property.

Proposition 13 If A = (a; �; T ) andA0

= (a

0

; �

0

; T

0

) are compatible then

� + �

0

6 d:

As a consequence, we have

�

d

+

�

0

d

6 1;

and sinced 6 T andd 6 T

0,

�

T

+

�

0

T

0

6 1:

This confirms a result we already established. For two scan patterns to be compatible, their
resource utilization must be no more than 1.

Proposition 13 shows that the condition� + �

0

6 d is necessary for two compatible
patternsA = (a; �; T ) andA0

= (a

0

; �

0

; T

0

) to exist. The condition is actually sufficient.

Proposition 14 Let � , � 0, T , andT 0 be such that0 < � < T and0 < �

0

< T

0. There exist
a anda0 such that0 6 a 6 T � � , 0 6 a

0

6 T

0

� �

0, and the patternsA = (a; �; T ) and
A

0

= (a

0

; �

0

; T

0

) are compatible if and only if� + �

0

6 d.

Proof: We have already shown that the condition was necessary. Now assume� + �

0

6 d

and takea = 0 anda0 = � . Since0 < � < d, we get

(a

0

� a) mod d = � mod d = �

(a� a

0

) mod d = �� mod d = d� � > �

0

:

We havea0 6 T

0

� �

0 sincea0 = � and� + �

0

6 d 6 T , and we also havea 6 T � �

sincea = 0. By Theorem 12, the two patternsA = (a; �; T ) andA0

= (a

0

; �

0

; T

0

) are
compatible.2

4.2 Schedule Feasibility

Consider now a scheduleS that consists ofn patternsA
i

= (a

i

; �

i

; T

i

) for i = 1; : : : ; n.
The schedule is feasible if all these patterns are pairwise compatible. The results from the
previous section settle the casen = 2. If n = 2, S is feasible if and only if all the following
conditions are satisfied:

� T

1

=T

2

is rational,

� (a

2

� a

1

) mod d > �

1

,

� (a

1

� a

2

) mod d > �

2

,
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whered = gd(T

1

; T

2

). Furthermore, given�
1

, �
2

, T
1

, andT
2

such thatT
1

=T

2

is rational, a
corresponding feasible scheduleS exists if and only if�

1

+ �

2

6 d.

Theorem 12 and Proposition 13 immediately generalize to arbitraryn > 2.

Theorem 15 The scheduleS is feasible if and only if, for alli andj in f1; : : : ; ng such that
i 6= j, the two following conditions are satisfied:

� T

i

=T

j

is rational

� (a

i

� a

j

) mod gd(T

i

; T

j

) > �

j

:

Proposition 16 If the scheduleS is feasible then for alli and j in f1; : : : ; ng such that
i 6= j,

�

i

+ �

j

6 gd(T

i

; T

j

):

On the other hand, Proposition 14 does not generalize. The conditions given by Propo-
sition 16 are necessary but not sufficient to ensure the existence of a schedule with revisit
times�

1

; : : : ; �

n

and dwell timesT
1

; : : : ; T

n

, unlessn = 2. To see this, consider the case
wheren = 3, T

1

= T

2

= T

3

= 2, and�
1

= �

2

= �

3

= 1. Although we have

�

1

+ �

2

6 gd(T

1

; T

2

)

�

1

+ �

3

6 gd(T

1

; T

3

)

�

2

+ �

3

6 gd(T

2

; T

3

);

there is no feasible schedule for these parameters since thetotal resource utilization is more
than 1.

Theorem 15 shows that constructing a schedule is equivalentto solving a system of in-
equalities. Assuming all the quotientT

i

=T

j

are rational numbers, schedule feasibility is
equivalent to solving a systemS of n2 inequalities of the following form:

(a

1

� a

2

) mod gd(T

1

; T

2

) > �

2

...
(a

1

� a

n

) mod gd(T

1

; T

n

) > �

n

(a

2

� a

1

) mod gd(T

2

; T

1

) > �

1

...
(a

2

� a

n

) mod gd(T

2

; T

n

) > �

n

...
(a

n

� a

1

) mod gd(T

n

; T

1

) > �

1

...
(a

n

� a

n�1

) mod gd(T

n

; T

n�1

) > �

n�1

0 6 a

1

6 T

1

� �

1

...
0 6 a

n

6 T

n

� �

n

:

Proposition 16 and the test on resource utilization give twonecessary conditions for this
system to have solutions. The following section gives an algorithm for constructing a feasible
schedule by solving the inequalities.
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5 Algorithms

We explore practical ways of constructing a feasible schedule, given parametersT
1

; : : : ; T

n

and�
1

; : : : ; �

n

. For this purpose, we restrict our attention to the case where all the parame-
ters are integers and we also search for integer solutions ofthe system of inequalities. This
is a reasonable restriction since the temporal quantities (i.e., T

i

, �
i

, a
i

) must be multiples
of a common time unit, as an implementation must rely on a basediscrete clock. Under
these assumptions, schedule feasibility can be transformed into a linear integer program-
ming problem that can be solved using standard algorithms [2]. However, more specialized
algorithms that take into account the peculiarities of the problem are likely to be more ef-
ficient in practice. We present one such algorithm in Section5.3 but, first, we study the
theoretical complexity of the problem and we discuss techniques for reducing the size of the
solution space.

5.1 Theoretical Complexity

The scan-scheduling feasibility problem can be described as follows:

� Each instance of the problem is given by an integern > 1, n dwell timesT
1

; : : : ; T

n

andn revisit times�
1

; : : : ; �

n

. All the dwell times and revisit times must be positive
integers and satisfy�

i

< T

i

.

� The question is to determine whether there existn integersa
1

; : : : ; a

n

such that the
schedule defined by then patternsA

i

= (a

i

; T

i

; �

i

) is feasible.

We denote this problem by SCAN-SCHEDULING. The two following propositions show that
SCAN-SCHEDULING is NP-complete.

Proposition 17 SCAN-SCHEDULING belongs to NP.

Proof: By the preceding results, solving an instance of SCAN-SCHEDULING is equivalent to
solving the system of inequalitiesS. Because of the constraint

0 6 a

i

6 T

i

� �

i

;

each variablea
i

can take a finite number of values. There is then a finite numberof candidate
solutions. A nondeterministic algorithm for SCAN-SCHEDULING need only guessn values
a

1

; : : : ; a

n

and check whether they satisfy the systemS. This can be done in polynomial
time, as there exists a polynomial-time algorithm (Euclid’s algorithm [2]) for computing the
required greatest common divisors.2

Proposition 18 SCAN-SCHEDULING is NP-hard.

Proof: We show this by reducing PARTITION to SCAN-SCHEDULING. PARTITION is de-
fined as follows [1]:

� Each instance of the problem is given by a finite setA and a mappings fromA toN+ .

� The question is to determine whether there exists a subsetA

0 of A such that
X

x2A

0

s(x) =

X

x2A�A

0

s(x):

12



This problem is NP-complete as shown in [1].
Given an instance(A; s) of PARTITION, an instance of SCAN-SCHEDULING can be con-

structed as follows:

� n = jAj+ 1,

� We choose an arbitrary value for�
n

, say�
n

= 1, and set

T

n

= �

n

+

�

P

x2A

s(x)

2

�

:

� Let x
1

; : : : ; x

n�1

be the elements ofA; then fori = 1; : : : ; n� 1, we define�
i

andT
i

by

�

i

= s(x

i

)

T

i

= 2T

n

:

The resource utilization is maximal:
n

X

i=1

�

i

T

i

= 1;

and we havegd(T
i

; T

j

) = T

n

if i = n or j = n andgd(T
i

; T

j

) = 2T

n

otherwise.
If A0 is a solution of the PARTITION instance, we have

X

x2A

0

s(x) =

X

x2A�A

0

s(x):

We can assume without loss of generality thatA

0

= fx

1

; : : : ; x

m

g for some indexm < n�1,
and then

m

X

i=1

s(x

i

) =

n�1

X

i=m+1

s(x

i

):

By definition ofT
n

and�
1

; : : : ; �

n�1

this gives

m

X

i=1

�

i

=

n�1

X

i=m+1

�

i

= T

n

� �

n

:

Let a
1

; : : : ; a

n

be defined as follows:

a

1

= 0

a

2

= a

1

+ �

1

...

a

m

= a

m�1

+ �

m�1

a

m+1

= T

n

a

m+2

= a

m+1

+ �

m+1

...

a

n�1

= a

n�2

+ �

n�2

a

n

= a

m

+ �

m

= T

n

� �

n

:

13



It is routine to check that(a
1

; : : : ; a

n

) satisfies the system of inequalities for this instance of
SCAN-SCHEDULING. The corresponding schedule is as follows:

τn τ n

T T

a a a a a a a1 2 3 m n m+1 n-1

nn

Conversely, given a solution(a
1

; : : : ; a

n

) to the SCAN-SCHEDULING instance, we obtain
a solution of the PARTITION instance by reversing the previous construction. We consider
the interval[a

n

; a

n

+2T

n

). Since it is of lengthT
i

= 2Tn, this interval must contain a dwell
interval[u

i

; u

i

+ �

i

) for all i = 1; : : : ; n� 1. It also contains two dwell intervals for bandn,
namely, the two intervals[a

n

; a

n

+ �

n

) and[a
n

+ T

n

; a

n

+ T

n

+ �

n

). We define the setA0

as follows:

A

0

= fx

i

j u

i

< a

n

+ T

n

g;

so that,
X

x2A

0

s(x) =

X

u

i

<a

n

+T

n

�

i

:

Since the intervals[u
i

; u

i

+ �

i

) for x
i

2 A

0 do not overlap and are included in[a
n

+ �

n

; a

n

+

T

n

), we have
X

x2A

0

s(x) 6 T

n

� �

n

: (2)

Similarly,
X

x2A�A

0

s(x) =

X

u

i

>a

n

+T

n

�

i

6 T

n

� �

n

: (3)

By construction, we know that
X

x2A

0

s(x) +

X

x2A�A

0

s(x) =

X

x2A

s(x) > 2(T

n

� �

n

):

Using (2) and (3), we obtain then
X

x2A

0

s(x) =

X

x2A�A

0

s(x) = T

n

� �

n

;

that is,A0 is a solution of the original PARTITION instance.
We have then shown that the PARTITION instance(A; s) has a solution if and only if the

SCAN-SCHEDULING instance constructed from it has a solution. Clearly, the construction
can be done in polynomial time. Since PARTITION is NP-complete, SCAN-SCHEDULING is
NP-hard.2

Propositions 17 and 18 imply that SCAN-SCHEDULING is NP-complete. It is then likely
that any schedule-construction algorithm has exponentialtime complexity in the worst case.
The following section describes an algorithm for constructing a feasible scan schedule and
gives some experimental results on its average complexity.
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5.2 Search-Space Reduction

The construction of a feasible schedule requires solving the system of inequalitiesS defined
previously. We are givenn dwell times�

1

; : : : ; �

n

andn revisit timesT
1

; : : : ; T

n

, and we
look forn integersa

1

; : : : ; a

n

that satisfy the two following sets of constraints:

S

0

:

8

>

<

>

:

(a

1

� a

2

) mod d

1;2

> a

2

...
(a

n

� a

n�1

) mod d

n;n�1

> a

n�1

S

1

:

8

>

<

>

:

0 6 a

1

6 T

1

� �

1

...
0 6 a

n

6 T

n

� �

n

;

whered
i;j

= gd(T

i

; T

j

). Because ofS
1

there are a priori at most

n

Y

i=1

(T

i

� �

i

+ 1)

candidate solutions to examine. The following results showthat the solution space can often
be considerably reduced.

Lemma 19 Let (a
1

; : : : ; a

n

) be a solution ofS
0

. Givenk 2 f1; : : : ; ng, let (a0
1

; : : : ; a

0

n

) be
defined by

a

0

i

= (a

i

� a

k

) mod T

i

then(a0
1

; : : : ; a

0

n

) is a solution ofS.

Proof: For everyi, a0
i

is equal toa
i

� a

k

+ u

i

T

i

, for some integeru
i

. We then have

a

0

i

� a

0

j

= a

i

� a

j

+ u

i

T

i

� u

j

T

j

:

Sinced
i;j

divides bothT
i

andT
j

, this gives

(a

0

i

� a

0

j

) mod d

i;j

= (a

i

� a

j

) mod d

i;j

:

The tuple(a0
1

; : : : ; a

0

n

) satisfies thenS
0

.

Let r = (a

i

� a

k

) mod d

i;k

. Since(a
1

; : : : ; a

n

) is a solution ofS
0

, we have

(a

i

� a

k

) mod d

i;k

> �

k

(a

k

� a

i

) mod d

i;k

> �

i

;

and then�
k

6 r 6 d

i;k

� �

i

. We also haveT
i

= bd

i;k

for some positive integerb. Now
a

i

� a

j

is equal toqd
i;j

+ r, for someq 2 Z, andq can be written

q = pb+ 

15



where0 6  6 b� 1. This gives

a

i

� a

k

= pbd

i;k

+ d

i;k

+ r

= pT

i

+ d

i;k

+ r;

and, as a consequence,

a

0

i

= (a

i

� a

k

) mod T

i

= d

i;k

+ r

6 (b� 1)d

i;k

+ d

i;k

� �

i

6 T

i

� �

i

:

This shows that(a0
1

; : : : ; a

0

n

) satisfiesS
1

. 2
This lemma says that ifS has any solution then there exists a solution(a

0

1

; : : : ; a

0

n

) with
a

0

k

= 0. Intuitively, this simply amounts to translating the scan schedule so that the first
dwell interval for bandk starts at0. When searching for a solution toS, we can then pick an
arbitrary variablea

k

and set it to0.

We can also reduce the interval of possible values fora

i

. For i 2 f1; : : : ; ng, letL
i

be
the least common multiple of the numbers

d

i;1

; : : : ; d

i;i�1

; d

i;i+1

; : : : ; d

i;n

:

SinceT
i

is a multiple of each of these numbers,T

i

is also a multiple ofL
i

.

Lemma 20 Assuming(a
1

; : : : ; a

n

) is a solution ofS, let (a0
1

; : : : ; a

0

n

) be defined by

a

0

i

= a

i

mod L

i

;

then(a0
1

; : : : ; a

0

n

) is a solution ofS.

Proof: Every a0
i

is of the forma

i

+ u

i

L

i

for some integeru
i

2 Z. Thena0
i

� a

0

j

=

a

i

� a

j

+ u

i

L

i

� u

j

L

j

, and, sinced
i;j

divides bothL
i

andL
j

,

(a

0

i

� a

0

j

) mod d

i;j

= (a

i

� a

j

) mod d

i;j

:

Sincea
i

> 0, a0
i

= a

i

mod L

i

cannot be larger thana
i

, so we have

0 6 a

0

i

6 T

i

� �

i

:

Hence,(a0
1

; : : : ; a

0

n

) is a solution ofS.2

As a consequence of this lemma, it is sufficient to search for solutions(a
1

; : : : ; a

n

) of
S

0

where0 6 a

i

< L

i

. It is also easy to see that the solution(a0
1

; : : : ; a

0

n

) as defined in
Lemma 20 is such that0 6 a

0

i

6 L

i

� �

i

for all i. This means that we can replaceS
1

by the
following inequalities:

8

>

<

>

:

0 6 a

1

6 L

1

� �

1

...
0 6 a

n

6 L

n

� �

n

:
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SinceL
i

dividesT
i

, the upper bound ona
i

can be much smaller thanT
i

� �

i

. The size of the
search space is now reduced to

n

Y

i=1

(L

i

� �

i

+ 1):

It is possible to further reduce the search space using the following theorem whose proof
is given in the following section. LetM

1

; : : : ;M

n

be defined as follows:

M

1

= 1

M

2

= d

1;2

M

3

= lm(d

1;3

; d

2;3

)

...

M

n

= lm(d

1;n

; : : : ; d

n�1;n

)

EveryM
i

is then a divisor ofL
i

.

Theorem 21 If S
0

has solutions, thenS
0

has a solution(a
1

; : : : ; a

n

) such that

0 6 a

1

< M

1

...
0 6 a

n

< M

n

:

SinceM
1

= 1, this solution is such thata
1

= 0 and, as shown in the proof of Lemma 19,
(a

1

; : : : ; a

n

) is also a solution ofS. To solveS, it is then sufficient to search for solutions of
S

0

wherea
1

= 0, a
2

< M

2

; : : : ; a

n

< M

n

. Since everyM
i

dividesL
i

, the search space is
potentially much smaller than that given by the preceding lemma.

The theorem also suggests an incremental approach for constructing scan schedules. We
start by settinga

1

to 0. Then we look for a positive integera
2

< M

2

= d

1;2

such that

(a

1

� a

2

) mod d

1;2

> �

2

and (a

2

� a

1

) mod d

1;2

> �

1

;

or, equivalently,
�

2

6 (a

1

� a

2

) mod d

1;2

6 d

1;2

� �

1

:

If such ana
2

is found, we now look fora
3

< M

3

such that

�

3

6 (a

1

� a

3

) mod d

1;3

6 d

1;3

� �

1

�

3

6 (a

2

� a

3

) mod d

2;3

6 d

2;3

� �

2

:

If we can find such ana
3

, we proceed incrementally witha
4

; otherwise, we try another value
for a

2

.

Proof of Theorem 21

Theorem 21 relies on the following variant of the Chinese Remainder Theorem.

Proposition 22 Let d
1

andd
2

be two non-zero integers and leta
1

anda
2

be two integers.
There exists an integerx such thatd

1

dividesx � a

1

andd
2

dividesx � a

2

if and only if
gd(d

1

; d

2

) dividesa
1

� a

2

.
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Proof: If d
1

dividesx� a

1

andd
2

dividesx� a

2

, thengd(d
1

; d

2

) divides bothx� a

1

and
x� a

2

, and, as a consequence,gd(d

1

; d

2

) divides(x� a

2

)� (x� a

1

) = a

1

� a

2

.
Conversely, let us assumegd(d

1

; d

2

) dividesa
1

� a

2

. By definition, there are two
integersu andv such thatgd(d

1

; d

2

) = ud

1

+ vd

2

; a
1

� a

2

can then be written

a

1

� a

2

= �ud

1

+ �vd

2

;

where� 2 Z. Letx = a

1

� �ud

1

; then we have

x� a

1

= ��ud

1

x� a

2

= a

1

� a

2

� �ud

1

= �vd

2

:

Hence,d
1

dividesx� a

1

andd
2

dividesx� a

2

.2
The Chinese Remainder Theorem is a special case of the previous proposition whered

1

andd
2

are mutually prime, that is,gd(d
1

; d

2

) = 1. The following lemmas are used to
generalize Proposition 22 ton numbersd

1

; : : : ; d

n

.

Lemma 23 Letx be an integer such thatd
1

dividesx� a

1

andd
2

dividesx� a

2

. For any
integery, the two following propositions are equivalent:

� d

1

dividesy � a

1

andd
2

dividesy � a

2

� lm(d

1

; d

2

) dividesy � x.

Proof: If d
1

dividesy�a

1

andd
2

dividesy�a

2

thend
1

divides(y�a

1

)�(x�a

1

) = y�x

andd
2

divides(y � a

2

) � (x � a

2

) = y � x soy � x is a common multiple ofd
1

andd
2

,
that is,lm(d

1

; d

2

) dividesy � x.
Conversely, iflm(d

1

; d

2

) dividesy � x thend
1

dividesy � x andd
2

dividesy � x, so
d

1

divides(y � x) + (x� a

1

) andd
2

divides(y � x) + (x� a

2

), that is,d
1

dividesy � a

1

andd
2

dividesy � a

2

.2

Lemma 24 For all non-zero integersx, y, andz, we have

gd(x; lm(y; z)) = lm(gd(x; y); gd(x; z)):

Proof: Let p
1

; : : : ; p

k

be the prime factors ofx, y, and z. There are natural numbers
�

1

; : : : ; �

k

, �
1

; : : : ; �

k

, and
1

; : : : ; 

k

such that

x = p

�

1

1

: : : p

�

k

k

y = p

�

1

1

: : : p

�

k

k

z = p



1

1

: : : p



k

k

:

Let Æ
i

= min(�

i

;max(�

i

; 

i

)) and�
i

= max(min(�

i

; �

i

);min(�

i

; 

i

)); then

gd(x; lm(y; z)) = p

Æ

1

1

: : : p

Æ

k

k

lm(gd(x; y); gd(x; z)) = p

�

1

1

: : : p

�

k

k

:

It is easy to check thatÆ
i

= �

i

so the left-hand sides of these two equations are equal.2

The general form of Proposition 22 is the following.
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Proposition 25 Let d
1

; : : : ; d

n

ben non-zero integers anda
1

; : : : ; a

n

ben integers. If we
have

gd(d

i

; d

j

) divides a

i

� a

j

for all i andj such that1 6 i < j 6 n, then there exists an integerx such that

d

1

divides x� a

1

...

d

n

divides x� a

n

:

Proof: We reason by induction onn. The proposition is trivially true ifn = 1.
Now we assume the proposition true forn > 1. Let d

1

; : : : ; d

n+1

anda
1

; : : : ; a

n+1

be
numbers such thatgd(d

i

; d

j

) dividesa
i

� a

j

wheneveri < j.
By Proposition 22, sincegd(d

n

; d

n+1

) dividesa
n

� a

n+1

, there isx
0

2 Z such that

d

n

divides x

0

� a

n

(4)

d

n+1

divides x

0

� a

n+1

: (5)

Let d0
1

; : : : ; d

0

n

anda0
1

; : : : ; a

0

n

be defined as follows:

d

0

i

= d

i

if i < n

d

0

n

= lm(d

n

; d

n+1

)

a

0

i

= a

1

if i < n

a

0

n

= x

0

:

For two indicesi andj such that1 6 i < j < n, gd(d0
i

; d

0

j

) dividesa0
i

� a

0

j

by assumption.
For i < n andj = n, Lemma 24 gives

gd(d

0

i

; d

0

j

) = gd(d

i

; lm(d

n

; d

n+1

))

= lm(gd(d

i

; d

n

); gd(d

i

; d

n+1

)):

By assumption,gd(d
i

; d

n

) dividesa
i

� a

n

. By (4), and sincegd(d
i

; d

n

) is a divisor of
d

n

, gd(d
i

; d

n

) also dividesx
0

� a

n

. It follows thatgd(d
i

; d

n

) dividesa
i

� x

0

= a

0

i

� a

0

n

.
Using (5), we get by a similar reasoning thatgd(d

i

; d

n+1

) dividesa0
i

� a

0

n

. Hence,a0
i

� a

0

n

is a common multiple ofgd(d
i

; d

n

) andgd(d
i

; d

n+1

) so

gd(d

0

i

; d

0

n

) divides a

0

i

� a

0

n

:

We can then use the induction hypothesis withd

0

1

; : : : ; d

0

n

anda0
1

; : : : ; a

0

n

: there is an
integerx such that

d

0

1

divides x� a

0

1

...

d

0

n

divides x� a

0

n

:
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Thend0
n

= lm(d

n

; d

n+1

) dividesx�x

0

. By Lemma 23, this implies thatd
n

dividesx�a

n

andd
n+1

dividesx� a

n+1

. We have then found an integerx such that

d

1

divides x� a

1

...

d

n

divides x� a

n

d

n+1

divides x� a

n+1

:

The proposition is then satisfied forn+ 1. By induction it is true for arbitraryn.2

Let T
1

; : : : ; T

n

ben positive integers and letd
i;j

= gd(T

i

; T

j

). To prove Theorem 21,
we show that for any tuple of integers(a

1

; : : : ; a

n

), there exists a tuple(a0
1

; : : : ; a

0

n

) such
that

0 6 a

0

1

< M

1

...
0 6 a

0

n

< M

n

;

and

d

i;j

divides (a

0

i

� a

i

)� (a

0

j

� a

j

)

for all i 2 f1; : : : ; ng andj 2 f1; : : : ; ng � fig.
The construction is incremental. Given an indexk such that1 6 k 6 n � 1 andk

numbers(a0
1

; : : : ; a

0

k

) that satisfy

0 6 a

0

1

< M

1

...
0 6 a

0

k

< M

k

;

and

d

i;j

divides (a

0

i

� a

i

)� (a

0

j

� a

j

) (6)

for all i 2 f1; : : : ; kg andj 2 f1; : : : ; kg � fig, we show that there exists an integera

0

k+1

such that0 6 a

0

k+1

< M

k+1

and

d

1;k+1

divides (a

0

k+1

� a

k+1

)� (a

0

1

� a

1

)

...

d

k;k+1

divides (a

0

k+1

� a

k+1

)� (a

0

k

� a

k

):

First, giveni 2 f1; : : : ; kg andj 2 f1; : : : ; kg such thati < j, we have

gd(d

i;k+1

; d

j;k+1

) = gd(gd(T

i

; T

k+1

); gd(T

j

; T

k+1

))

= gd(T

i

; T

j

; T

k+1

)

= gd(d

i;j

; T

k+1

):
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By (6), this implies thatgd(d
i;k+1

; d

j;k+1

) divides(a0
i

� a

i

) � (a

0

j

� a

j

). Using Proposi-
tion 25, there is then an integerx such that

d

1;k+1

divides x� (a

0

1

� a

1

)

...

d

k;k+1

divides x� (a

0

k

� a

k

):

Let a0
k+1

= (a

k+1

+ x) mod M

k+1

. We have0 6 a

0

k+1

< M

k+1

andM
k+1

divides
a

0

k+1

� a

k+1

� x. By definition,

M

k+1

= lm(d

1;k+1

; : : : ; d

k;k+1

);

so we have

d

1;k+1

divides (a

0

k+1

� a

k+1

)� x

...

d

k;k+1

divides (a

0

k+1

� a

k+1

)� x:

We then obtain

d

1;k+1

divides (a

0

k+1

� a

k+1

)� (a

0

1

� a

1

)

...

d

k;k+1

divides (a

0

k+1

� a

k+1

)� (a

0

k

� a

k

);

as required.

Starting witha0
1

= 0 and iterating this construction fork = 1; : : : ; n � 1, we obtain a
tuple(a0

1

; : : : ; a

0

n

) such that

d

i;j

divides (a

0

i

� a

i

)� (a

0

j

� a

j

)

whenever1 6 i < j 6 n. Given two such indicesi andj, we get that

d

i;j

divides (a

0

i

� a

0

j

)� (a

i

� a

j

);

which is equivalent to

(a

0

i

� a

0

j

) mod d

i;j

= (a

i

� a

j

) mod d

i;j

:

Hence, if(a
1

; : : : ; a

n

) is a solution of the systemS
0

of inequalities,(a0
1

; : : : ; a

0

n

) is another
solution ofS

0

and, by construction, it satisfies

0 6 a

0

1

< M

1

...
0 6 a

0

n

< M

n

:

This completes the proof of Theorem 21.
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5.3 Schedule Construction Algorithm

To perform some experiments, we developed a schedule construction algorithm based on
Theorem 21. The algorithm is based on a depth-first search with backtracking. A tuple
(a

1

; : : : ; a

k

) is a partial solution ofS
0

if the constraints

(a

i

� a

j

) mod d

i;j

> �

j

are satisfied for alli 2 f1; : : : ; kg andj 2 f1; : : : ; kg � fig. The algorithm attempts to
extend such a partial solution by finding a valuea

k+1

such that

�

k+1

6 (a

1

� a

k+1

) mod d

1;k+1

6 d

1;k+1

� �

1

...
�

k+1

6 (a

k

� a

k+1

) mod d

k;k+1

6 d

k;k+1

� �

k

:

If such ana
k+1

can be found, then(a
1

; : : : ; a

k+1

) is a partial solution ofS
0

. The algorithm
then attempts to extend it incrementally until a full solution (a

1

; : : : ; a

n

) is obtained. If
no sucha

k+1

can be found, the algorithm backtracks and looks for anotherpartial solution
(a

0

1

; : : : ; a

0

k

). The algorithm terminates either when a full solution is reached or when all
partial solutions have been tried and eliminated. As shown by Theorem 21, the search can
be limited toa

1

; : : : ; a

n

such that0 6 a

i

< M

i

. Pseudo code is given in Figure 2 that
describes the recursive search procedure used by the algorithm. Given a numberk and
a partial solutiona = (a

1

; : : : ; a

k

), the procedureSearch(k, a) either returns a full
solution that extends(a

1

; : : : ; a

k

) or nil if no such solution can found. It uses an auxiliary
functionConsistent(a, x) that tests whether(a

1

; : : : ; a

k

; x) is a partial solution, that
is, whetherx satisfies the constraints

�

k+1

6 (a

i

� x) mod d

i;k+1

6 d

i;k+1

� �

i

:

The search is initiated by callingSearch(0,[]).
Our actual implementation is based on this simple algorithmbut uses a more sophisti-

cated approach to detect early that a partial solution(a

1

; : : : ; a

k

) cannot be extended. For this
purpose, we associate domainsD

k+1

; : : : ; D

n

with the remaining variablesa
k+1

; : : : ; a

n

.
EachD

i

is the set of values fora
i

that are consistent with(a
1

; : : : ; a

k

):

D

i

= fx j 0 6 x < M

i

and8j 6 k : �

i

6 (a

i

� x) mod d

i;j

6 d

i;j

� �

j

g:

If D
i

is empty then(a
1

; : : : ; a

k

) cannot be extended to a full solution. In addition, we use a
heuristic based on the size of the domainsD

k+1

; : : : ; D

n

to order the search.

Initial experiments show that random instances of the scan-scheduling problem are very
likely to violate the necessary conditions of the form

�

i

+ �

j

6 gd(T

i

; T

j

):

Forn randomly chosen revisit times, it is very likely that at least one ofgd(T
i

; T

j

) is very
small.

To obtain random instances that do not violate these conditions, we use the following
approach. First we choose a base numberT and two integersk

0

andk
1

such thatk
0

6 k

1

.
Then we construct randomlyn revisit timesT

i

that are all multiples ofT , and all between
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// The problem is stored in two global arrays
// T[1],...,T[n]: revisit times
// t[1],...,t[n]: dwell times

Search(k, a):
if k=n

return a // a full solution has been found
else

found := false
x := 0
while (not found and x<M[k])
if (Consistent(a, x))

b := Search(k+1, add(a, x))
found := b != nil

endif
x := x + 1

endwhile
if found
return b

else
return nil

endif
endif

Figure 2: Schedule Construction Algorithm

T

min

= k

0

T andT
max

= k

1

T . For any two suchT
i

andT
j

, gd(T
i

; T

j

) is then a multiple
of the base numberT . We then select a maximal dwell time�

max

no larger thanT=2 and
generate randomlyn dwell times�

1

; : : : ; �

n

in the range1; : : : ; �
max

. This ensures that
�

i

+ �

j

6 T and then the necessary conditions are satisfied.
By choosing appropriate values ofT , k

0

, k
1

, �
max

, andn, we can control the average
utilization of randomly generated instances. Initial experiments show that the practical per-
formance of the search algorithm and the likelihood of an instance being feasible are strongly
related to the utilization. Table 1 summarizes some of our first experiments withT = 100,
T

min

= 1000, andT
max

= 1500. Each row of the table corresponds to a different choice
of �

max

, and then a different average utilizationU . In each case, we generated 100 random
instances consisting of50 revisit times and50 dwell times, and ran the algorithm on each of
these instances with a timeout of 60 s (CPU time). The experiments were performed on a PC
with a 550 MHz Pentium III, running Linux 2.2.5-15. The last column of Table 1 shows the
average search time for the instances that did not cause a timeout.

6 Conclusion

Determining whether a set ofn dwell times and a set ofn revisit times are compatible is a
central issue in periodic scan scheduling. We have given a mathematical characterization of
schedule feasibility as a set of linear inequalities. The problem can be solved algorithmically
but is NP-complete. We proposed an algorithm that searches for a solution in a depth-first
manner and defined several simplifications that reduce the search space. Initial (and par-
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�

max

U Feasible Infeasible Timeout CPU time
49 1.00 0 100 0 0.05s
44 0.90 0 100 0 0.19s
39 0.80 0 100 0 0.35s
34 0.70 0 98 2 3.03s
29 0.60 5 63 32 18.13s
24 0.50 60 0 40 1.54s
19 0.40 86 0 14 0.34s
14 0.30 93 0 7 0.13s
9 0.20 100 0 0 0.18s
4 0.10 100 0 0 0.33s

Table 1: Algorithm Performance

tial) experiment showed that high sensor utilization is hard to reach for randomly generated
instances.

Open issues include a more careful study of the achievable utilization for a given set ofn
revisit times. It can be shown that a utilization of1 can be obtained under certain conditions
on the revisit times, for example, if the revisit times are harmonic. One such example is
used in the proof of Proposition 18. In general, studying instances of the problem with a
special structure that make them easier to solve or that ensures some other desirable property
remains unexplored.
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