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Abstract

Common real-time operating systems rely on priority-based, preemptive scheduling. Re-
source sharing in such systems potentially leads to priority inversion: processes of high
priority can be prevented from entering a critical section and be delayed by processes of
lower priority. Since uncontrolled priority inversion can cause high-priority processes to
miss their deadlines, a real-time operating system must use resource-sharing mechanisms
that limit the effects of priority inversion. The priority ceiling protocol is one such mech-
anism. It ensures mutual exclusion and absence of deadlocks, and minimizes the length of
priority inversion periods. This paper presents a formal specification and analysis of the
protocol using PVS and the rigorous proof of associated schedulability results.



Chapter 1

Introduction

Fixed-priority, preemptive scheduling is being increasingly used in real-time safety-critical
applications. This approach to real-time scheduling is more flexible than static scheduling,
and the runtime behavior of a system is still sufficiently predictable to obtain guarantees
that timing constraints are satisfied. Many theoretical results provide such guarantees for
different classes of systems, with different assumptions about tasks and deadlines [19, 20,
32, 37].

Subtle issues arise in this context when processes of different priorities are allowed to
share resources. Mutual exclusion can cause high-priority tasks to be blocked and delayed
by tasks of lower priority. To still obtain guarantees that timing constraints are satisfied,
one must ensure that the delays caused by blocking are bounded and that the bounds can
be determined statically. Since high-priority tasks are usually the most urgent, it is also
important to minimize blocking delays. The priority ceiling protocol is a resource allocation
mechanism introduced by Sha et al. [33,34] that achieves these two objectives. The protocol
ensures mutual exclusion, minimizes blocking, prevents deadlocks, and allows a bound on
blocking to be computed statically.

For systems based on the priority ceiling protocol to support safety-critical applications,
one needs high assurance that the protocol is correct and properly implemented, and that the
associated schedulability results are valid. Unfortunately, the description given by Sha et
al. [34] is quite informal and possibly open to misinterpretation. The key properties are
also proved in a fairly informal manner, and the reasoning relies more on intuition than on
rigorous arguments. The main objective of this paper is to provide precise specifications
of the priority ceiling protocol and develop rigorous proofs that the associated results are
valid. The developments are supported by the PVS theorem prover [24].

Chapter 2 gives an overview of the priority ceiling protocol. Chapter 3 presents a state-
machine specification of the protocol in PVS and the proof of key properties, such as mutual
exclusion and absence of deadlocks. Chapter 4 describes the PVS model used to establish
schedulability properties. Bounds on blocking and on the amount of processing time allo-
cated to jobs according to their priority are obtained. Chapter 5 shows how this model can
be used to derive a schedulability test for sets of sporadic tasks. 1 In Chapter 6, we com-

1This result extends immediately to periodic tasks since the latter can be considered as a subclass of sporadic
tasks
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pare our model and verification approach with related work in formal analysis of real-time
operating systems and real-time scheduling.
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Chapter 2

Overview of the Priority Ceiling
Protocol

2.1 Assumptions
Only uniprocessor systems are considered in this document. A real-time application is
modeled as a finite set of tasks that run concurrently on a single processor. A task consists
of a succession of jobs, each requiring a finite amount of computation. In other words,
the computation associated with each job always terminates. Each job is characterized
by its release or dispatch time and by the amount of processing it requires. For example, a
process sampling an input signal at a frequency of 100 Hz can be modeled as a periodic task
of period 10ms. The successive jobs of this task are released at time t0, t0+10ms, t0+20ms,
and so forth, and the length of each job is the amount of time required for processing a
single sample.

Other resources than the processor are shared by the different jobs. For example, the
jobs may share common I/O channels or communicate with each other via shared variables.
Access to these shared resources is controlled by binary semaphores that ensure mutual
exclusion. The operations for requesting and releasing the lock on a semaphore S are
denoted by P (S) and V (S), respectively.

Each task and job has a fixed priority; the priority of a job is the priority of the task to
which it belongs. Jobs are executed in priority order: if two jobs of different priorities are
ready to run at the same time, then the one with the highest priority is allocated the proces-
sor. If two competing jobs have the same priority and different dispatch times, the one that
was dispatched first is given the processor. If two competing jobs have both the same prior-
ity and the same dispatch time, the processor is allocated to one of them, arbitrarily. For full
generality, we do not exclude the latter case but in practice, priority assignment techniques
such as the rate monotonic or the deadline monotonic approaches avoid this situation by
giving different priorities to the different tasks.
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2.2 Priority Inversion
At time t, all jobs that have been dispatched before t and are not completed yet are ready
to execute. In systems where all the tasks are independent, there is no resource sharing and
the active job at time t is the job of highest priority among those that are ready. Because of
the need for mutual exclusion, this cannot be guaranteed anymore if resources are shared.
A job j can be prevented from entering a critical section guarded by a semaphore S if a
job of lower priority has locked S before j was dispatched. As a result, a job j of top
priority can be unable to execute and a job of lower priority than j can become active. This
phenomenon is called priority inversion: the top-priority job j is blocked and delayed by
jobs of lower priority.

J1

J2

J3

P(S) V(S)

V(S)

Blocking Time

P(S)

Timet2 t3 t4 t5 t6t1

Figure 2.1: Blocking Time Caused by Priority Inversion

To ensure mutual exclusion, a job j is blocked when executing P (S) if the semaphore
S is locked by another job k. In such a case, j remains blocked until k releases the lock
via a call to V (S). As illustrated by Figure 2.1, this can lead to long blocking periods. The
figure shows a system execution involving three jobs J1, J2, and J3 in decreasing priority
order. J1 and J3 synchronize by using a semaphore S. J3 starts first and enters in critical
section at time t1. At time t2, job J1 is released and preempts J3. At time t3, J1 attempts
to enter a critical section guarded by S and is blocked by J3. J3 is then restarted and runs
until it is preempted by the job J2 of intermediate priority. At time t5, J2 terminates and J3
restarts. J3 stays active until it releases S at time t6. Overall, J1 is delayed for the interval
[t3, t6]: J1 waits not only for J3 to release S but also for J2 to execute. The high-priority
job J1 can then be delayed by the low-priority job J3 that locks S but also by any job of
intermediate priority that might preempt J3. Since high-priority jobs are usually the most
urgent and may have tight deadlines, such unrestricted priority inversion can be disastrous.

2.3 Priority Inheritance
To limit the effects of priority inversion, one must ensure that a low-priority job releases a
semaphore S as soon as possible once a high-priority job has requested S. In the example
above, this means that J2 must not be allowed to preempt J3 as long as J1 is blocked by J3.
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A simple way to prevent such preemption is to momentarily increase J3’s priority to that of
J1. More generally, when a high-priority job j is blocked by a low-priority job k that owns
a semaphore S, then k inherits the priority of j until it releases S. During the interval, only
jobs of higher priority than j can preempt k.

J1

J2

J3

P(S)

P(S)

V(S)

V(S)

J3 has J1’s priority

t1 t4 t5t2 t3

Figure 2.2: Priority Inheritance

Figure 2.2 illustrates the benefits of priority inheritance. As previously, J3 locks
semaphore S at time t1 and is preempted at time t2 when J1 starts. J1 runs until time
t3 where it is blocked by J3. According to the priority-inheritance principle, J3 runs with
J1’s priority from t3 to t5. When J2 is dispatched at time t4, it cannot preempt J3 anymore
and then cannot indirectly delay J1. J1 is blocked only for the interval [t3, t5], that is, for
the delay needed by J3 to exit its critical section.

The basic priority inheritance protocol described by Sha et al. [34] relies on this sim-
ple priority adjustment scheme. This approach was also discussed earlier, for example by
Lampson and Redell [18]. Under the assumption that deadlocks do not occur, this protocol
ensures that blocking delays are bounded. For each semaphore S used by a job j, at most
one job k of lower priority can block j by locking S. The corresponding blocking delay
cannot be longer than the longest critical section of k guarded by S. The worst-case block-
ing of j can then be bounded a priori by finding the semaphores used by j and examining
the jobs of lower priority than j that share a semaphore with j.

Although this basic protocol is an improvement on the preceding scheme, it still suffers
from two limitations. First, the protocol does not prevent deadlocks by itself, and some
other deadlock-prevention technique must be used. Second, blocking chains can occur, that
is, a job j can be blocked by several jobs of lower priority in succession. For example,
this happen if j needs to access two semaphores S1 and S2 successively, and S1 and S2

are locked by two different jobs of lower priority than j. Job j will be delayed by the time
required for both jobs to exit their respective critical sections. To address these issues, Sha
et al. [34] designed the priority ceiling protocol that prevents both deadlocks and blocking
chains.
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2.4 The Priority Ceiling Protocol
The problem with the basic protocol is that job priorities are not taken into account when
access to critical sections is granted. If a semaphore S is free, a job j executing P (S) ob-
tains access to S, irrespective of any other jobs already in a critical section. Two jobs j1 and
j2 can then lock two distinct semaphores S1 and S2. If the two semaphores are requested
later on by a job k of higher priority than j1 and j2, two successive blocking periods will
occur. To prevent such a situation, the priority ceiling protocol enforces stronger rules for
accessing a critical section. If two jobs j1 and j2 could potentially block a common job
k via two semaphores S1 and S2, the protocol does not grant S1 to j1 and S2 to j2 at the
same time. For example, if j1 has lower priority than j2 and enters a critical section first,
then the request P (S2) by j2 will not be granted even though S2 may be free.

To decide whether it is safe to allocate a semaphore S to a job j, the protocol must have
some information about the other jobs that might request S in the future. For this purpose,
each semaphore S is assigned a fixed ceiling that is equal to the highest priority among the
jobs that need access to S. If S is allocated to j then jobs of priority higher than j and lower
than or equal to the ceiling of S might become blocked by j. The rule for entering critical
sections is based on the priority of the requesting job and the ceiling of the semaphores
already locked:

A job j executing P (S) is granted access to S if the priority of j is strictly
higher than the ceiling of any semaphore locked by a job other than j. Other-
wise, j becomes blocked and S is not allocated to j.

In the previous example, since S1 and S2 are both accessed by k, the ceiling of these two
semaphores is at least equal to the priority of k and is then higher than the priority of j1
or j2. The above rule ensures that j1 cannot obtain access to S1 if S2 is locked by j2, and,
conversely, that j2 cannot obtain access to S2 if S1 is locked by j1.

Apart from the new rule for accessing semaphores, the priority ceiling protocol works
like the basic priority inheritance protocol. A job k is said to block j if k has lower priority
than j and owns a semaphore of ceiling at least equal to the priority of j. Such a job k
prevents j from entering a critical section. If j requests access to a semaphore, then j
becomes blocked and k inherits j’s priority. An essential property of the protocol is that j
cannot have more than one blocker k.

Figure 2.3 illustrates how the priority ceiling protocol operates. The ceiling of S1 and
S2 is at least as high as the priority of J1. At time t1, the job J4 of lowest priority obtains
access to S1. At time t2, job J3 attempts to lock semaphore S2 but is denied access to S2

even though S2 is free. Instead, J3 is blocked because the semaphore S1 locked by J4 has
higher ceiling that J3’s priority. Since J4 blocks J3, J4 inherits J3’s priority and runs until
it is preempted by J1. J1 is blocked by J4 when executing P (S2) and, at this point, J4
inherit J1’s priority. J4 keeps J1’s priority until it releases semaphore S1. In the interval
[t3, t4], priority inheritance prevents J2 from preempting J4 and indirectly delaying J1.
The figure also shows that the priority ceiling protocol avoids a deadlock that would occur
if J1 were allowed to lock S2 at time t3.
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Figure 2.3: Priority Ceiling Protocol

2.5 Formalizing the Protocol
The priority ceiling protocol is fairly subtle, and it is difficult to give an informal description
that is precise and complete enough to enable rigorous analysis. In particular, it is difficult
to specify precisely how job priorities should be adjusted on entering or exiting critical
sections. In this respect, the short description given above is far from complete. Sha et
al. [34] give a better definition, including rules for managing resources and priorities when
V (S) is executed, but the specifications are still very informal and may be erroneous in
places.1

The objective of this paper is to develop a PVS model of the protocol suitable not
only for proving absence of deadlock or mutual exclusion, but also for developing various
schedulability results. We start by building a state-machine model of the protocol behavior
for a fixed but arbitrary set of jobs. We then show that the model satisfies the following key
properties: distinct jobs cannot be allocated the same semaphore at the same time (mutual
exclusion), every job can have at most one blocker, and blocking is intransitive (which
implies that deadlocks cannot occur).

Schedulability analysis proceeds by examining the execution traces of the state-machine
model. A bound on the worst-case blocking time that a job can encounter is obtained
from the single-blocker property. General results can then be established, concerning the
allocation of processing time to jobs according to priority and blocking. These general
properties do not refer to tasks or deadlines but are the basis for further schedulability
analysis.

In a last step, we apply the general results to the specific case of sporadic tasks. From
assumptions on the inter-arrival time between successive jobs of a task and the maximal

1Sha et al. [34] erroneously state that when a job exits a critical section, it should resume the priority it had on
entering the critical section.
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length of each job, we obtain standard schedulability conditions that ensure that all the jobs
meet their deadline. The proof essentially reproduces a fairly standard argument based on
calculating the worst-case response time for jobs at a given priority level.

The PVS formalization is presented in the following chapters. Some familiarity with the
PVS notation is assumed. More information about the PVS language and system, including
manuals [25–27] and tutorials [8, 9, 31], can be obtained via the PVS web site: http:
//pvs.csl.sri.com.
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Chapter 3

The Protocol in PVS

A set of PVS theories defines the basic concepts used to build the protocol model. These
theories introduce types to represent priorities, semaphores, and programs, and define re-
lated notions such as the critical sections of a program. The protocol is modeled as a state
machine and we show that the machine satisfies various invariant properties, including mu-
tual exclusion and the uniqueness of blockers.

3.1 Basic Notions

3.1.1 Priorities and Semaphores
Task and job priorities are represented by integers in the range i0, . . . , maxprio− 1 where
maxprio is a positive constant; 0 is the lowest priority and maxprio− 1 the highest. An
uninterpreted type is used to represent semaphores, and a fixed function ceil assigns a
ceiling to every semaphore. The corresponding PVS definitions are shown in Figure 3.1.
The type below(maxprio) corresponds to the natural numbers smaller than maxprio1

and rsrc set is an abbreviation for set[semaphore], the type of sets of semaphores.
For simplicity, all these basic notions are fixed throughout the whole PVS development.
When necessary, constraints relating job priorities and semaphore ceilings are introduced
as assumptions on programs and jobs.

3.1.2 Programs and Critical Sections
To obtain timeliness guarantees in real-time systems, one must assume that jobs have finite
length. The runtime activity of a job can then be modeled as a finite sequence of com-
mands or instructions performed by the processor. As far as the priority ceiling protocol
is concerned only two classes of commands are relevant, namely, the instructions of the
form P (S) or V (S) for requesting and releasing semaphores. We also use a third class of
commands representing any other instruction performed in one step. These three classes of
commands are represented as an abstract datatype in PVS:

1For any natural number n, below(n) is defined as {x:nat | x<n}.
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basic_types : THEORY

BEGIN

%--------------------
% Priority of jobs
%--------------------

maxprio: posnat

priority: NONEMPTY_TYPE = below(maxprio)

%--------------------------
% Semaphores and ceiling
%--------------------------

semaphore: NONEMPTY_TYPE

ceil: [semaphore -> priority]

rsrc_set: TYPE = set[semaphore]

END basic_types

Figure 3.1: Priorities, Semaphores, and Ceiling

command : DATATYPE
BEGIN
IMPORTING basic_types
P(request: semaphore): P?
V(sem: semaphore): V?
Step: step?

END command.

A program is a nonempty finite sequence of commands. A program p of length l can
then be represented as an array of commands numbered from 0 to l−1. Given an integer i in
the range 0, . . . , l, we denote by needs(p, i) the set of semaphores p owns after successfully
executing the commands 0, . . . , i−1. More precisely, a semaphore S belongs to needs(p, i)
if the command P (S) occurs at some point j of p such that j < i and the command V (S)
does not occur in the interval [j + 1, i− 1]. The set needs(p, i) allows us to define critical
sections as follows:

• A critical section of p is an interval [i, j) where i < j 6 l and needs(p, k) 6= ∅ for
all k such that i 6 k < j.
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• A critical section [i, j) is said to be of level n if, for all k such that i 6 k < j,
needs(p, k) contains a semaphore of ceiling at least n.

According to these definitions, any nonempty subinterval of a critical section is also a
critical section. A critical section is maximal if it is not a proper subinterval of another
critical section. Proper nesting of critical sections is not required. A maximal critical
section is enclosed by two commands P (S) and V (S′) where S and S′ may be distinct.
For example, a program of the form

. . . P (S1) . . . P (S2) . . . V (S1) . . . V (S2) . . .

contains a maximal critical section starting after the request for S1 and ending after the
release of S2. This critical section is of level n for any n that is smaller than the ceiling of
S1 and of S2.

The concrete PVS definition of programs, critical sections, and related notions is given
in theory programs. Figure 3.2 shows an excerpt from this theory. A program p is a
record of type prog with two components: a length length(p) and a list of commands
clist(p).2 The definition uses PVS’s dependent types: clist(p) is a mapping whose
domain, below(length(p)), depends on the first component of p. The important func-
tions and predicates defined in theory programs are:

• cmd(p, i): Command of index i.

• complete(p, i): p is finished after i steps.

• needs(p, i): Set of semaphores owned by p after i steps.

• resources(p): Set of semaphores used by p.

• well behaved(p): p releases all its semaphores on termination.

• cs(p, i): p is in a critical section after i steps.

• cs(p, i, n): p is in a level-n critical section after i steps.

• critical section(p, i, j): [i, j) is a critical section of p.

• critical section(p, i, j, n): [i, j) is a level-n critical section of p.

• max cs(p): Length of the longest critical section of p.

• max cs(p, n): Length of the longest level-n critical section of p.

A semaphore s belongs to resources(p) if the command P(s) occurs in clist(p).
In case p does not use any semaphore, or any semaphore of ceiling at least n, then
max cs(p) or, respectively, max cs(p, n), is equal to 0.

In addition to the above functions, the type pc(p) denotes integers in the range
0, . . . ,length(p). Such indices play the role of program counters in the protocol model.

An expression of the form cmd(p, i) is type-correct if the index i is of type
below(length(p)), that is, in the range 0, . . . ,length(p)− 1. Similarly, in all the

2PVS 2.3 offers an alternative syntax for record components: length(p) and clist(p) could be written
p‘length and p‘clist.
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programs: THEORY

BEGIN
...
prog: TYPE = [# length: posnat, clist: [below(length) -> command] #]

p: VAR prog
s: VAR semaphore
n: VAR priority

pc(p): NONEMPTY_TYPE = upto(length(p))

complete(p, (i: pc(p))): bool = i = length(p)

cmd(p, (i: below(length(p)))): command = clist(p)(i)

needs(p, (i: pc(p))): RECURSIVE rsrc_set =
IF i=0 THEN emptyset ELSE
CASES cmd(p, i-1) OF

P(s): add(s, needs(p, i-1)),
V(s): remove(s, needs(p, i-1)),
Step: needs(p, i-1)

ENDCASES
ENDIF

MEASURE i

...

well_behaved(p): bool = empty?(needs(p, length(p)))

cs(p, (i: pc(p))): bool = not empty?(needs(p, i))

cs(p, (i: pc(p)), n): bool =
EXISTS s: member(s, needs(p, i)) AND ceil(s) >= n

...

critical_section(p, (i, j: pc(p))): bool =
i < j AND FORALL (k: pc(p)): i <= k AND k < j IMPLIES cs(p, k)

critical_section(p, (i, j: pc(p)), n): bool =
i < j AND FORALL (k: pc(p)): i <= k AND k < j IMPLIES cs(p, k, n)

Figure 3.2: Programs and Associated Notions
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priority_ceiling [ (IMPORTING programs)
job: TYPE,
prio: [job -> priority],
dispatch: [job -> nat],
prog: [job -> prog] ] : THEORY

BEGIN

ASSUMING

j: VAR job
s: VAR semaphore

good_ceiling: ASSUMPTION
member(s, resources(prog(j))) IMPLIES prio(j) <= ceil(s)

good_programs: ASSUMPTION well_behaved(prog(j))

ENDASSUMING

Figure 3.3: Parameters to the priority ceiling Theory

other expressions above, i and j must be of type pc(p), that is, integers between 0 and
length(p). The PVS type system enforces these constraints by generating proof obli-
gations known as type-correctness conditions (TCCs). The TCC mechanism is described
in [25].

3.1.3 Jobs
The priority ceiling protocol is specified in a parameterized theory priority ceiling
with the parameters representing a fixed set of jobs and their attributes. Each job is charac-
terized by its dispatch time, its priority, and its program, that is, a finite list of commands as
described previously. The corresponding declarations and assumptions are shown in Fig-
ure 3.3. We use discrete time: the dispatch time of a job is a natural number. Assumption
good ceiling requires that all the semaphores accessed by a job j have a ceiling at least
as high as the priority of j. Assumption good programs requires that all the jobs release
all the semaphores they have acquired on termination.

Using these parameters, a precedence relation on jobs is defined as follows:

precedes(j, k): bool =
prio(j) > prio(k) OR prio(j) = prio(k) AND dispatch(j) <= dispatch(k).

This relation between jobs is the basis of the processor allocation policy. In the absence
of blocking, jobs of high priority are executed first, and jobs of equal priority are executed
in dispatch order. A first useful property is that every nonempty set of jobs has a maximal
element with respect to this precedence relation:
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A: VAR (nonempty?[job])

topjob_exists: LEMMA
EXISTS (j: (A)): FORALL (k: (A)): precedes(j, k).

There can be more than one maximal element since two jobs can have the same priority
and be dispatched at the same time.

3.2 State-Machine Model
The state-machine specifications are organized in two parts: a resource management sub-
system controls the allocation of semaphores to jobs, and a scheduling subsystem selects
the job to activate.

3.2.1 Resource Management
The global state of the system contains a resource management component that stores the
set of semaphores allocated to or requested by each job. This component is a record of
type rsrc state defined in Figure 3.4. Given a job j and a resource allocation state r,
r‘alloc(j) is the set of semaphores owned by j in r, and r‘request(j) is the set
of semaphores that j has requested but has not obtained.3 This set is empty unless j has
attempted and failed to enter a critical section.

The set blk(r, j) is the set of jobs other than j that own a semaphore of ceiling
as high as j’s priority. These jobs will block j if j ever tries to enter a critical section.
As defined by predicate blocked, a job j is then blocked in r if both blk(r, j) and
request(r, j) are nonempty. Informally, this happens if j has attempted to enter a
critical section in a state r0 where blk(r0, j) was not empty. Job j remains blocked
until a state r1 is reached where blk(r1, j) is empty.

Three operations control semaphore allocation and deallocation:

• alloc step(r, j, s) executes command P(s) on behalf of j. The
semaphore s is allocated to j if blk(r, j) is empty; otherwise, s is stored in
r‘request(j) and j becomes blocked.

• release step(r, j, s) executes command V(s) on behalf of j. It simply
removes s from the set of semaphores allocated to j. After this operation, some jobs
that were blocked by j may be no longer blocked. The operation has no effect if j
does not own s.

• wakeup(r, j) allocates to j all the semaphores j requested. This operation is
intended for a job j that is reactivated after having been blocked.

3The expressions r‘alloc(j) and r‘request(j) use the new PVS2.3 syntax for record components. In
previous versions of PVS, these expressions would be written alloc(r)(j) and request(r)(j), respec-
tively.
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rsrc_state: TYPE = [# alloc, request: [job -> rsrc_set] #]

r: VAR rsrc_state
s: VAR semaphore
j, k: VAR job

blk(r, j): set[job] =
{ k | k /= j AND

EXISTS s: member(s, r‘alloc(k)) AND ceil(s) >= prio(j) }

blocked(r, j): bool =
not empty?(blk(r, j)) AND not empty?(r‘request(j))

alloc_step(r, j, s): rsrc_state =
IF empty?(blk(r, j)) THEN

r WITH [ ‘alloc(j) := add(s, r‘alloc(j)) ]
ELSE

r WITH [ ‘request(j) := add(s, r‘request(j)) ]
ENDIF

release_step(r, j, s): rsrc_state =
r WITH [ ‘alloc(j) := remove(s, r‘alloc(j)) ]

wakeup(r, j): rsrc_state =
r WITH [ ‘alloc(j) := union(r‘alloc(j), r‘request(j)),

‘request(j) := emptyset ]

Figure 3.4: Semaphore Allocation and Blocking

3.2.2 Scheduler
The state-machine that models the priority ceiling protocol operates on a global state:

sch_state: TYPE = [#
rsrc: rsrc_state,
pc: [j:job -> pc(prog(j))],
time: nat #].

Every state includes a resource management component, a global time counter, and a pro-
gram counter for every job. The definition uses dependent types: for every job j and every
q of type sch state, the program counter q‘pc(j) is of type pc(prog(j)). In other
words, if the program associated with job j is of length n then q‘pc(j) is in the range
0, . . . , n. A program counter between 0 and n − 1 points to the next instruction to be
executed by j, and a counter equal to n indicates that j is complete.

The time counter is incremented with every transition of the machine. Each transition
corresponds either to an idle step when there is no job ready or to a single instruction
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finished(q, j): bool = complete(prog(j), q‘pc(j))

ready(q, j): bool = dispatch(j) <= q‘time AND not finished(q, j).

topjob(q, j): bool =
ready(q, j) AND (FORALL k: ready(q, k) IMPLIES precedes(j, k)).

eligible(q, j): bool =
topjob(q, j) AND not blocked(q‘rsrc, j)

OR (EXISTS k: topjob(q, k) AND blocked(q‘rsrc, k) AND
member(j, blk(q‘rsrc, k))).

Figure 3.5: Eligible Jobs

run_step(r, j, cmd): rsrc_state =
CASES cmd OF

P(s): alloc_step(wakeup(r, j), j, s),
V(s): release_step(wakeup(r, j), j, s),
Step: wakeup(r, j)

ENDCASES

step(q, (j | ready(q, j))): sch_state =
(# rsrc := run_step(q‘rsrc, j, cmd(prog(j), q‘pc(j))),

pc := q‘pc WITH [(j) := q‘pc(j) + 1],
time := q‘time + 1 #)

Figure 3.6: Step Function

performed by the active job. For simplicity, we have not modeled delays caused by context
switching, that is, we assume that changing active jobs is instantaneous.

The remainder of the scheduler specification is shown in Figure 3.5 and defines which
jobs are ready to execute and which jobs can be activated in a state q. A job j is ready to
execute in q if the time in q is larger than the dispatch time of j and j is not completed in
q. A job j can be activated in state q either if it is a ready job of highest precedence and is
not blocked or if it is currently blocking a job of highest precedence.

3.2.3 Next State
If job j is activated in state q, then the resulting successor state is defined by the function
step shown in Figure 3.6. First, function wakeup is applied to the resource management
component of q. If j was blocked, j’s pending requests are granted; otherwise, wakeup
has no effect. The command indicated by q‘pc(j) is then executed, and both the time
counter and j’s program counter are incremented.
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The function step requires two arguments q and j such that ready(q, j) holds.
This constraint on the domain of step ensures that the function is well defined. When
typechecking the definition, PVS generates the two following TCCs:

step_TCC1: OBLIGATION
FORALL (q, j: job | ready(q, j)): q‘pc(j) + 1 <= prog(j)‘length;

step_TCC2: OBLIGATION
FORALL (q, j: job | ready(q, j)): q‘pc(j) < prog(j)‘length;

The first one ensures that the result of step(q, j) is effectively a record of type
sch state. This amounts to checking that the expression

q‘pc WITH [(j) := q‘pc(j) + 1]

is of the expected dependent type, which reduces to showing that q‘pc(j) + 1 is smaller
than or equal to length(prog(j)). The second TCC is caused by the occurrence
of cmd(prog(j), q‘pc(j)) in the definition of step. This expression requires
q‘pc(j) to be of type below(length(prog(j))). The assumption that ready(q,
j) holds is sufficient to prove the two TCCs.

3.2.4 Complete Protocol
The resource manager and the scheduler define the basic functions necessary to specify the
protocol. It remains to define the initial state and transition relation. The initial resource
management and scheduler states are defined as follows:

init_rsrc: rsrc_state =
(# alloc := lambda j: emptyset,

request := lambda j: emptyset #)

init_sch: sch_state =
(# rsrc := init_rsrc, pc := lambda j: 0, time := 0 #)

Initially, program counters point to the first command of each program, and the allocation
and request sets are all empty.

The transition relation needs to distinguish two cases. If no job is eligible in state
q, then no job is active in q and the next state, idle step(q), is obtained by simply
incrementing the time counter:

idle(q): bool = not EXISTS j: eligible(q, j)

idle_step(q): sch_state = q WITH [time := q‘time + 1]

If there are jobs eligible in q, then one of them is activated and the next state is step(q,
j) where j is the job selected. A tentative definition of the transition relation could then
be as follows:
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T(q1, q2): bool =
idle(q1) AND q2 = idle_step(q1)

OR EXISTS j: eligible(q1, j) AND q2 = step(q1, j).

Unfortunately, this definition does not typecheck. Since the function step requires j to
be ready in q1, we must show that any job that is eligible in q1 is also ready in q1. This is
true if j satisfies topjob(q1, j), but j can also be eligible in q1 by blocking a job k of
top priority. In this case, we know that j belongs to blk(q1, k) and that topjob(q1,
k) holds. This is not sufficient to show that j is ready in q1.

The solution is to restrict our attention to the states that are reachable from init sch.
We want to show that, in such states, every eligible job is ready. For this purpose, we are
looking for a predicate P on sch state that satisfies the following properties for all q
and j:

P1: P(q) AND eligible(q, j) IMPLIES ready(q, j)

P2: P(init_sch)

P3: P(q) AND idle(q) IMPLIES P(idle_step(q))

P4: P(q) AND eligible(q, j) IMPLIES P(step(q, j)).

This technique is the usual approach for proving invariants of a transition system. Condition
P1 ensures that, in all the states satisfying P, eligibility implies readiness. Conditions P2
to P4 show that P is an inductive invariant: P is true initially and is preserved by legal
transitions. If conditions P1 to P4 are satisfied, then all the reachable states satisfy P and
every job eligible in a reachable state is ready.

An adequate P is shown in Figure 3.7. The first clause in the definition of P
states that the set of semaphores owned or requested by a job j in state q is equal to
needs(prog(j), q‘pc(j)). The second clause states that the program counter of a
job that has not started is zero. In conjunction with assumption good programs, pred-
icate P implies that a job that has not started yet or has already finished cannot own a
semaphore. As a consequence, a job that is not ready cannot block any other job and then
cannot be eligible.

The lemmas in Figure 3.7 are used to prove that P is invariant. Conditions P3 and
P4 above are replaced by stronger lemmas idle P and step P that are easier to prove.
It is also trivial to show that init sch satisfies P. Once the invariance of P has been
established, we define the type good states to denote the states that satisfy P, and it is
straightforward to prove the following properties:
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Invariant for type correctness %
% ensures that eligible jobs are ready %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

P(q): bool =
(FORALL j:

union(q‘rsrc‘alloc(j),
q‘rsrc‘request(j)) = needs(prog(j), q‘pc(j)))

AND (FORALL j: q‘time <= dispatch(j) IMPLIES q‘pc(j) = 0)

%-------------------
% Invariance of P
%-------------------

alloc_P: LEMMA
union(alloc_step(r, j, s)‘alloc(k),

alloc_step(r, j, s)‘request(k)) =
IF j=k THEN add(s, union(r‘alloc(k), r‘request(k)))

ELSE union(r‘alloc(k), r‘request(k)) ENDIF

wakeup_P: LEMMA
union(wakeup(r, j)‘alloc(k), wakeup(r, j)‘request(k)) =

union(r‘alloc(k), r‘request(k))

release_P: LEMMA
union(release_step(r, j, s)‘alloc(k),

release_step(r, j, s)‘request(k)) =
IF j=k THEN union(remove(s, r‘alloc(k)), r‘request(k))

ELSE union(r‘alloc(k), r‘request(k)) ENDIF

step_P: LEMMA P(q) AND ready(q, j) IMPLIES P(step(q, j))

idle_P: LEMMA P(q) IMPLIES P(idle_step(q))

%-------------------------
% States that satisfy P
%-------------------------

good_state: NONEMPTY_TYPE = (P)

Figure 3.7: Good States
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g, g1, g2: VAR good_state

alloc_not_ready: LEMMA
not ready(g, j) IMPLIES empty?(g‘rsrc‘alloc(j))

eligible_ready: LEMMA eligible(g, j) IMPLIES ready(g, j)

ceiling_prop1: LEMMA
member(s, g‘rsrc‘alloc(j)) IMPLIES prio(j) <= ceil(s)

ceiling_prop2: LEMMA
member(s, g‘rsrc‘request(j)) IMPLIES prio(j) <= ceil(s)

Lemma eligible ready is the essential result: in any state that satisfies P, eligible
jobs are also ready. The proof relies on lemma alloc not ready, which says that a
job that has not started yet or is already finished cannot hold any resource. From assump-
tion good ceiling we also immediately obtain that in all good states the semaphores
allocated to j or requested by j have ceiling at least as high as j’s priority.

The protocol specifications can now be completed as shown in Figure 3.8. The transi-
tion relation T is the same as shown above but restricted to good states. This ensures
that the definition of T typechecks. PVS generates a TCC that is easily discharged using
lemma eligible ready.

%%%%%%%%%%%%%%%%%%%%%%%%%%
% Transition system %
%%%%%%%%%%%%%%%%%%%%%%%%%%

%------------------
% initial state
%------------------

init_rsrc: rsrc_state =
(# alloc := lambda j: emptyset,

request := lambda j: emptyset #)

init_sch: good_state =
(# rsrc := init_rsrc, pc := lambda j: 0, time := 0 #)

%------------------------
% transition relation
%------------------------

T(g1, g2): bool = (idle(g1) AND g2 = idle_step(g1))
OR (EXISTS j: eligible(g1, j) AND g2 = step(g1, j))

Figure 3.8: Transition System
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3.2.5 Modeling Choices
Our model differs from traditional descriptions of the priority ceiling protocol by avoiding
dynamic priorities and priority inheritance. The essential requirements of the protocol are
captured by the blocking rules and by the definition of eligible jobs. The key property is
that if a job of highest precedence is blocked by job j then j must be eligible irrespective
of its priority. Priority inheritance is a mechanism for ensuring this property but is not a
fundamental requirement.

The organization of jobs in tasks and the associated timing constraints are irrelevant to
the basic mechanisms of the protocol, and our PVS model ignores these aspects. Modeling
tasks or processes more explicitly, as is done by Fowler and Wellings [14] or by Pilling et
al. [28], would lead to a more complex state machine. The current status of each process
(e.g., suspended, ready, or running) would need to be included and the transitions between
process states to be specified.

In real implementations, the number of semaphores and tasks must be finite but we do
not make such an assumption. The only finiteness property we use is given by the definition
of priority. There are only finitely many priorities and this ensures that there is always a
job of top precedence among the ready jobs. Other finiteness assumptions are not necessary
and would only complicate the formalization. Our model does not exclude the possibility
that an infinite number of jobs may be ready to execute at the same time but this does not
create any difficulty.

The use of dependent types may seem an extra complication. The type of a program
counter is constrained to be between zero and the length of the corresponding program. This
forces us to prove the invariance of predicate P to ensure that the protocol specifications
are well typed. The specifications could be written differently to avoid having to discharge
a TCC. However, this would not provide any gain. Property P is a useful invariant that
would have to be proved anyway. Avoiding dependent types would require us to extend
the domain of program counters to arbitrary natural numbers but then their actual range
would have to be established by other means, that is, by proving another invariant. Using
subtypes and dependent types is a more natural approach in PVS and does not require extra
work. The constraint on q‘pc(j) is also known and used by the PVS decision procedures,
which makes proofs simpler and more automatic.

3.3 Properties of the Protocol

3.3.1 Inductive Invariants
All the important properties of the protocol are invariant properties. They are proven using
several auxiliary inductive invariants. The most important such invariant is specified by
predicate P2 in Figure 3.9. P2 is a property of resource management components that
holds in all reachable states of the model. Given two distinct jobs j and k of priority pj and
pk, respectively, P2 states that if j owns a semaphore of ceiling cs and pj 6 pk 6 cs then
k does not own any semaphore. This property essentially ensures that any job that might
be blocked by j cannot have any blocker other than j.
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The proof of the invariance of P2 is decomposed in several lemmas shown in Figure 3.9.
The main steps are alloc P2, wakeup P2, and release P2, which give sufficient con-
ditions for P2 to be preserved by the three resource management operations. The lemmas
rely on an auxiliary predicate P3, which states that all the resources allocated to any job j
have ceiling at least equal to the priority of j:

• P2 is preserved by a resource allocation step performed in r, provided P3 holds in
r.

• P2 is preserved after reactivation (via wake up) of a job j in state r, provided P3
holds in r and j is not blocked in r.

• P2 is preserved by any resource release step.

The proofs of these three properties are straightforward. They are obtained by case analysis
after expansion of the definition of each of the three operations.

Lemma intransitive blocking implies that, in a state that satisfies P2, the
blocker of a job of top priority cannot be blocked. The proof is again a simple case analy-
sis. Once this result has been established, the invariance of P2 is straightforward since the
auxiliary property P3 holds in all good states. P2 is true in the initial state and is preserved
by the transition relation T.

Predicate Q is another useful invariant that is straightforward to prove:

Q(g): bool = FORALL j, k: ready(g, j) AND prio(k) <= prio(j) AND
dispatch(j) < dispatch(k) IMPLIES empty?(g‘rsrc‘alloc(k)).

If j is ready in g, then jobs of lower or equal priority and that have been dispatched after j
cannot own any resource.

3.3.2 Essential Protocol Properties
Proving the inductive invariants is the main part of the protocol analysis. The essential
protocol properties are direct consequences of P2 and Q.

Absence of deadlocks follows from the fact that blocking is not transitive and that
a job cannot block itself. We have already encountered related properties, such as
step P2 aux, which states that eligible jobs cannot be blocked. The absence of deadlocks
is actually subsumed by the schedulability results to be presented in the sequel. Showing
that all the jobs meet their deadlines implies that they all terminate and then that deadlocks
cannot occur.

Mutual exclusion is a straightforward consequence of P2. Assume j and k are dis-
tinct jobs and, without loss of generality, that j has lower priority than k. Assume s is
a semaphore owned by j. If s has ceiling as high as k’s priority, then P2 ensures that k
cannot own any resource. Otherwise, s has ceiling lower that k’s priority and, in such a
case, s is not accessed by k. Hence, the same semaphore cannot be allocated to both j and
k: the protocol ensures mutual exclusion.

Mutual exclusion and absence of deadlocks are important properties but do not play a
major role in schedulability analysis. The most relevant properties are those from which
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P2(r): bool = FORALL j, k, s: member(s, r‘alloc(j)) AND
prio(j) <= prio(k) AND prio(k) <= ceil(s) AND j /= k
IMPLIES empty?(r‘alloc(k))

P3(r): bool =
FORALL j, s: member(s, r‘alloc(j)) IMPLIES prio(j) <= ceil(s)

%-------------------------
% Induction step for P2
%-------------------------

alloc_P2: LEMMA P3(r) AND P2(r) IMPLIES P2(alloc_step(r, j, s))

wakeup_P2: LEMMA
P3(r) AND P2(r) AND not blocked(r, j) IMPLIES P2(wakeup(r, j))

release_P2: LEMMA P2(r) IMPLIES P2(release_step(r, j, s))

%---------------------------------
% Auxiliary results:
% - blocking is intransitive
% - P3 holds in good states
% - eligible job is not blocked
%---------------------------------

intransitive_blocking: LEMMA
P2(r) AND member(j1, blk(r, k)) AND prio(j2) <= prio(k)

IMPLIES NOT member(j2, blk(r, j1))

invar_P2_aux: LEMMA P3(g‘rsrc)

invar_P2_aux2: LEMMA P3(wakeup(g‘rsrc, j))

step_P2_aux: LEMMA
P2(g‘rsrc) AND eligible(g, j) IMPLIES not blocked(g‘rsrc, j)

%--------------------
% Invariance of P2
%--------------------

init_P2: LEMMA P2(init_rsrc)

step_P2: LEMMA P2(g1‘rsrc) AND T(g1, g2) IMPLIES P2(g2‘rsrc)

Figure 3.9: Main Inductive Invariant
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%-------------------------------------------------------------
% Job of lower priority than j that can run when j is ready
%-------------------------------------------------------------

blockers(r, j): set[job] =
{ k | member(k, blk(r, j)) AND prio(k) < prio(j) }

unique_blocker: LEMMA
P2(r) AND member(j1, blockers(r, k)) AND

member(j2, blockers(r, k)) IMPLIES j1 = j2

blockers_in_cs: LEMMA
member(k, blockers(g‘rsrc, j)) IMPLIES

cs(prog(k), g‘pc(k), prio(j))

eligible_prio: LEMMA
Q(g) AND ready(g, j) AND eligible(g, k) IMPLIES

precedes(k, j) OR member(k, blockers(g‘rsrc, j))

blockers_step: LEMMA
Q(g1) AND ready(g1, j) AND T(g1, g2) IMPLIES

subset?(blockers(g2‘rsrc, j), blockers(g1‘rsrc, j))

Figure 3.10: Definition and Properties of Blockers

blocking bounds can be derived: a job can have at most one blocker, and this blocker is
within a critical section of a level equal to j’s priority. The PVS developments actually in-
clude two variants of these properties. The definition of blockers and associated properties
are shown in Figure 3.10.

The set blockers(r, j) contains the jobs of lower priority than j that own a
semaphore of ceiling as high as j’s priority. As shown by lemma unique blocker,
either this set is empty or it contains a single element k. This follows immediately from
invariant P2. By definition of blockers, and because of invariant P, the program counter
for this job k is within a critical section of a level equal to j’s priority.

Although blockers(r, j) is defined in any state r, it is relevant only if j is ready
to run in r. In such a case, blockers(r, j) contains the job that prevents j from en-
tering a critical section. The eligibility conditions ensure that, in a state r where j is ready,
either the active job has precedence over j4 or it is the unique element of blockers(r,
j). Another important property is that the set of blockers of j in a successor state of r
is a subset of the blockers of j in r. This ensures that once the set blockers(r, j)
becomes empty, it remains empty until j terminates.

A generalization of the set of blockers of j is shown in Figure 3.11. The set
blockers(r, p) contains the jobs of priority less than p that own a semaphore of ceil-
ing at least p. Properties similar to those above are satisfied by blockers(r, p). This

4As we have defined it, the precedence relation is reflexive, so the active job can be j itself.
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%------------------------------------------------------------------
% Jobs of priority less than p that can block jobs of priority p
%------------------------------------------------------------------

blockers(r, p): set[job] =
{ k | prio(k) < p AND

EXISTS s: member(s, r‘alloc(k)) AND ceil(s) >= p }

unique_blocker2: LEMMA
P2(r) AND member(j1, blockers(r, p)) AND

member(j2, blockers(r, p)) IMPLIES j1 = j2

blockers_in_cs2: LEMMA
member(k, blockers(g‘rsrc, p)) IMPLIES

cs(prog(k), g‘pc(k), p)

eligible_prio2: LEMMA
(EXISTS j: prio(j) >= p AND ready(g, j)) AND eligible(g, k)

IMPLIES prio(k) >= p OR member(k, blockers(g‘rsrc, p))

blockers_step2: LEMMA
(EXISTS j: prio(j) >= p AND ready(g1, j)) AND T(g1, g2)

IMPLIES subset?(blockers(g2‘rsrc, p), blockers(g1‘rsrc, p))

Figure 3.11: Generalization of Blockers

generalized notion is actually more useful than blockers(u, j) when schedulability
properties are being established.

3.3.3 Verification Effort
The protocol properties presented above are all fairly easy to prove with PVS. The only
slight difficulty is determining the inductive invariants P2 and Q. The streamlined specifi-
cation of the protocol is crucial for simplifying the proofs. In particular, eliminating priority
inheritance and avoiding the associated priority adjustment rules is an essential simplifica-
tion. Similarly, the choice of using jobs as parameters makes the notion of “readiness”
trivial and simplifies the analysis.

As a result of the PVS verifications, one can see that the protocol works under weaker
assumptions than originally made by its authors. Sha et al. assume that the critical sections
of a job are properly nested [34], but this requirement is actually unnecessary. All the
important properties of the protocol are satisfied even if critical sections overlap.

25



Chapter 4

General Scheduling Properties

Various PVS developments support schedulability analysis. From the state-machine spec-
ifications, we first construct the traces of the protocol. Each trace is an infinite sequence
of states representing a possible execution of the protocol. As previously, the traces are
parameterized by a fixed set of jobs characterized by their priority, dispatch time, and pro-
gram.

To obtain schedulability results that are independent of the particular state represen-
tation chosen, we map each trace to a more abstract notion of schedule. Schedules are
sequences that record the successive active jobs in each state of a trace. Schedulability
analysis examines the amount of processing time allocated to a job or a set of jobs in spe-
cific intervals of a given schedule.

4.1 Traces
A trace of the protocol is a sequence w of good states such that w(0) is equal to
init sch and two successive states of w are related by the transition relation T. The cor-
responding definition is shown in Figure 4.1; trace is a nonempty subtype of sequences of
good states. Nonemptiness is shown by constructing a sequence tr of good states
and proving that tr satisfies the constraints of trace.

The two lemmas init trace and step trace state the two basic properties of
traces. Although these properties are only repeating the definition, it is convenient to restate
them separately. The two lemmas can be used as rewrite rules and provide short cuts in
proofs.1 The other lemmas of Figure 4.1 state that Q and P2 are satisfied in all the states of
a trace u.

Some notions defined in priority ceiling are reformulated in a more convenient
form that hides the details of the state machine:

1For example, a single (REWRITE "step trace") replaces a (TYPEPRED ...) command followed
by propositional simplifications and quantifier instantiation.
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%-----------------------
% Existence of traces
%-----------------------

next_state_exists: LEMMA EXISTS g2: T(g1, g2)

tr(t): RECURSIVE good_state =
IF t=0 THEN init_sch ELSE epsilon! g: T(tr(t-1), g) ENDIF

MEASURE t

%----------
% traces
%----------

w: VAR [nat -> good_state]

trace: NONEMPTY_TYPE =
{ w: [nat -> good_tate] | w(0) = init_sch AND FORALL t: T(w(t), w(t+1)) }

CONTAINING tr

u, v: VAR trace

init_trace: LEMMA u(0) = init_sch

step_trace: LEMMA T(u(t), u(t+1))

%-------------------
% Main invariants
%-------------------

invariance_P2: PROPOSITION FORALL t: P2(u(t)‘rsrc)

invariance_Q: PROPOSITION FORALL t: Q(u(t))

time_invariant: PROPOSITION FORALL t: u(t)‘time = t

Figure 4.1: Traces
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pc(u, j, t): pc(prog(j)) = u(t)’pc(j)

ready(u, j, t): bool = ready(u(t), j)

blockers(u, j, t): set[job] = blockers(u(t)‘rsrc, j)

busy(u, p, t): bool = EXISTS j: prio(j) >= p AND ready(u, j, t)

busy(u, p, t1, t2): bool =
FORALL t: t1 <= t AND t <= t2 IMPLIES busy(u, p, t)

...

We also define a predicate that indicates whether job j is active in trace u at time t. It is
trivial to show that no more than one job is active at a time:

active(u, j, t): bool = eligible(u(t), j) AND u(t+1) = step(u(t), j)

Various properties that follow immediately from these definitions and the results established
in priority ceiling are also included. For example, the lemmas shown in Figure 4.2
summarize the important properties of blockers.

Redefining functions and predicates from prio ceiling and restating the associated
properties in a slightly different form is not absolutely necessary. However, it has the advan-
tage of making the development of further properties of traces cleaner and less dependent
on the internals of the state-machine model. This increases flexibility and limits the impact
of any change in state representation on the remainder of the analysis.

4.2 Schedules
A schedule records the sequence of active jobs and idle steps corresponding to a particular
trace. The PVS definition relies on a parameterized datatype some or none[T] defined
as follows:

some_or_none[T: TYPE] : DATATYPE
BEGIN
none: none?
some(the_one: T): some?

END some_or_none.

A schedule is a sequence sch of elements of type some or none[job]. The value
sch(t) is either of the form some(j) to indicate that job j is active at time t or equal
to none to indicate that no job is active at that time.
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active_prio: LEMMA
active(u, k, t) AND ready(u, j, t)
IMPLIES precedes(k, j) OR member(k, blockers(u, j, t))

single_blocker: LEMMA
member(j1, blockers(u, k, t)) AND member(j2, blockers(u, k, t))
IMPLIES j1 = j2

blocker_in_cs: LEMMA
member(j, blockers(u, k, t)) IMPLIES
cs(prog(j), pc(u, j, t), prio(k))

blocker_step: LEMMA
ready(u, j, t) IMPLIES

subset?(blockers(u, j, t+1), blockers(u, j, t)).

active_prio2: LEMMA
busy(u, p, t) AND active(u, k, t) IMPLIES

prio(k) >= p OR member(k, blockers(u, p, t))

single_blocker2: LEMMA
member(j1, blockers(u, p, t)) AND member(j2, blockers(u, p, t))

IMPLIES j1 = j2

blocker_in_cs2: LEMMA
member(k, blockers(u, p, t)) IMPLIES cs(prog(k), pc(u, k, t), p)

blocker_step2: LEMMA
busy(u, p, t) IMPLIES

subset?(blockers(u, p, t+1), blockers(u, p, t))

Figure 4.2: Trace-level Formulation of Blocker Properties

4.2.1 Measuring Processing Time
The functions that are essential for scheduling analysis measure the amount of processing
time allocated to a job or set of jobs in an interval [t1, t2). The most general form of such
functions is

process_time(sch, t1, t2, E): nat =
sum(sch, t1, t2, { x | some?(x) AND E(the_one(x)) })

It relies on a generic sum function defined for sequences of arbitrary types. If u is of
type [nat -> T] and E is of type set[T] then sum(u, t1, t2, E) counts the
elements among u(t1),. . . , u(t2-1) that belong to E. If t2 is not larger than t1, the
result is zero:
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sum(u, t1, t2, E): RECURSIVE nat =
IF t2 <= t1 THEN 0

ELSIF E(u(t2-1)) THEN 1 + sum(u, t1, t2-1, E)
ELSE sum(u, t1, t2-1, E) ENDIF

MEASURE max(t2 - t1, 0)

Given a schedule sch and a set of jobs E, process time(sch, t1, t2, E) is then
the amount of processing time allocated to jobs of E between t1 and t2-1.

Variants of this function are given for the case where E is a singleton and the case where
t1=0:

process_time(sch, t, E): nat =
process_time(sch, 0, t, E)

process_time(sch, t1, t2, j): nat =
process_time(sch, t1, t2, singleton(j))

process_time(sch, t, j): nat =
process_time(sch, t, singleton(j)).

In a similar way, function idle time measures the amount of time where no job is ac-
tive:2

idle_time(sch, t1, t2): nat = sum(sch, t1, t2, none?)

idle_time(sch, t): nat = idle_time(sch, 0, t).

4.2.2 Support Theories
A large part of the overall PVS developments provide various properties of the functions
process time and idle time. A typical example of such properties is

E: VAR set[job]
A: VAR finite_set[index]
F: VAR [index -> set[job]]

process_time_partition: LEMMA
partition(E)(A, F) IMPLIES

process_time(sch, t1, t2, E) =
sum(A, lambda i: process_time(sch, t1, t2, F(i))).

Written in more standard mathematical notations, this lemma states that, if E =
⋃

i∈A Fi

and the sets Fi are pairwise disjoint, then

process time(sch, t1, t2, E) =
∑
i∈A

process time(sch, t1, t2, Fi).

2In PVS, sets are represented by predicates. The datatype recognizer none?, which is of type
[some or none -> bool], can be used as a set expression and it is equal to the singleton set {none}.
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schedules3

schedules2

schedules

sum_sequences

sum_indexed_partitions

fsets_sum indexed_partitions

Figure 4.3: Support Theories

Although it is not difficult to prove this lemma, a fair amount of work is required in devel-
oping the underlying theories. The function sum for finite sets is already defined in a PVS
library. The finite set library also provides elementary results, but they were not sufficient
and the library had to be extended.3 Other basic notions such as partitions and sums over
sequences had to be defined from scratch.

An overview of the hierarchy of support theories is given in Figure 4.3. Each node
in the graph represents a PVS theory, and the edges indicate theory dependencies. The
theories shown contain a total of 134 lemmas and theorems. The most important prop-
erties are in theories schedules, schedules2, and schedules3. These three
theories establish useful properties of function process time that are very similar to
process time partition above. Examples are shown in Figure 4.4.

These support theories have been developed in a systematic way and are intended to be
general and reusable in different contexts. In particular, all the results related to finite sets
and sums over sequences could be useful in completely different PVS applications. On the
other hand, the support theories are not minimal and many theorems are not actually used
in the schedulability analysis.

4.3 Bounds on Allocation of Processing Time
With a given trace u of the protocol model, one can immediately associate a schedule
sch(u). Given a time t and a job j, we have

3Some of these extensions were due to the new judgment facilities of PVS2.3. The finite set library was
designed with earlier versions of PVS that did not include judgments that were as powerful.
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total_cpu: LEMMA
t1 <= t2 IMPLIES

process_time(sch, t1, t2, fullset) +
idle_time(sch, t1, t2) = t2 - t1

max_process_time: LEMMA
t1 <= t2 IMPLIES process_time(sch, t1, t2, E) <= t2 - t1

split_process_time: LEMMA
t1 <= t2 AND t2 <= t3 IMPLIES

process_time(sch, t1, t2, E) +
process_time(sch, t2, t3, E) = process_time(sch, t1, t3, E)

increasing_process_time: LEMMA
t1 <= t2 AND t2 <= t3 IMPLIES

process_time(sch, t1, t2, E) <= process_time(sch, t1, t3, E)

process_time_subset: LEMMA
subset?(E1, E2) IMPLIES

process_time(sch, t1, t2, E1) <= process_time(sch, t1, t2, E2)

Figure 4.4: Example Lemmas from Theory schedule
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sch(u)(t) = some(j) IFF active(u, j, t),

and sch(u)(t) = none when there is no active job at time t in u. General results
establish lower and upper bounds on the amount of processing time allocated to a job or a
set of jobs in sch(u). These bounds will allow us to establish schedulability conditions,
that is, sufficient conditions to ensure that all the jobs will meet specified deadlines.

The following properties relate the amount of processing time allocated to a job j and
the program counter of j:

process_time1: LEMMA process_time(sch(u), t, j) = pc(u, j, t)

process_time2: LEMMA
t1 <= t2 IMPLIES

process_time(sch(u), t1, t2, j) = pc(u, j, t2) - pc(u, j, t1).

Using these lemmas and the properties of blockers shown in Figure 4.2, we can bound the
blocking time of a job j:

blocker(u, j): set[job] = blockers(u, j, dispatch(j))

...

blockers_in_critical_section: LEMMA
ready(u, j, t) AND member(k, blocker(u, j)) AND t1=dispatch(j)
IMPLIES pc(u, k, t) = pc(u, k, t1) OR
critical_section(prog(k), pc(u, k, t1), pc(u, k, t), prio(j))

blocking(u, j): nat =
IF empty?(blocker(u, j)) THEN 0

ELSE max_cs(prog(the_blocker(u, j)), prio(j)) ENDIF

blocking_time: LEMMA
ready(u, j, t2) AND t1=dispatch(j) IMPLIES

process_time(sch(u), t1, t2, blocker(u, j)) <= blocking(u, j).

As defined previously, blockers(u, j, t) is the set of jobs of priority less than j’s
and that own a semaphore of ceiling at least as high as j’s priority at time t. The bound on
blocking is obtained by examining the set blockers(u, j, t) at times t where j is
ready to run.

First, blocker(u, j) denotes the above set at the time when j is dispatched. Using
the previous properties of blockers, either this set is empty or it contains a single element
denoted by the blocker(u, j). From lemma blocker step, one can also show
that as long as j is ready, the set blocker(u, j, t) stays equal to blocker(u, j)
or becomes empty. Since any element of blockers(u, j, t) is in a critical section of
level prio(j) at time t, the blocking time for j cannot be longer than the longest critical
section of the blocker(u, j) of the same level.
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A second lemma allows us to evaluate the amount of processing time allocated to a job
j in an interval [t1,t2], where t1 is j’s dispatch time and j is not completed at time
t2.

H(j): set[job] = { k | k /= j AND precedes(k, j) }

process_time_ready_job: LEMMA
ready(u, j, t2) AND t1 = dispatch(j) IMPLIES

process_time(sch(u), t1, t2, j) = (t2 - t1)
- process_time(sch(u), t1, t2, H(j))
- process_time(sch(u), t1, t2, blocker(u, j)).

As long as j is ready, there is an active job. This job is either j itself, or the blocker of j, or
a job that has precedence over j. The lemma above follows from this fact and elementary
properties of sums that are given in support theories.

In conjunction with the bound on blocking, the latter lemma gives a lower bound on the
amount of processor time allocated to a job j in the interval [t1, t2]. A similar result
is proven in exactly the same way for the generalized notion of blockers:

K(p): set[job] = { j | prio(j) >= p }

busy_time2: LEMMA busy(u, p, t1, t2) AND t1 <= t2 IMPLIES
process_time(sch(u), t1, t2, K(p)) >= t2 - t1 - blocking(u, p, t1).

In this property, blocking(u, p, t1) refers to the longest critical section of level p
of the unique job that belongs to blockers(u, p, t1). In the interval [t1,t2],
there is always a job of priority at least p ready to run. The lemma gives a lower bound on
the processing time allocated to jobs of priority at least p in this interval.
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Chapter 5

Schedulability of Sporadic Tasks

We use the preceding results we have described to derive a sufficient schedulability condi-
tion for a set of sporadic tasks. A sporadic task τ consists of jobs separated by a minimal
inter-arrival time T . Denoting by τ1, τ2, . . . the successive jobs of τ and by dispatch(τi)
the dispatch time of job τi, we have

∀i, dispatch(τi+1)− dispatch(τi) > T.

A fixed deadlineD is assigned to τ and the timing requirement is to ensure that every job of
τ is completed no later than D time units after it is dispatched. Job τi must then be finished
at time dispatch(τi) +D or earlier.

Sporadic tasks can be used to model interrupt-driven activities if the interrupt signals
have a known maximal frequency. The deadline associated with a task specifies the urgency
of the associated interrupt. Periodic activities can also be represented by sporadic tasks
since a periodic task of period T can be considered as a special case of sporadic tasks
where dispatch(τi+1)− dispatch(τi) = T .

We assume that a finite set of sporadic tasks is given. Each task is characterized by its
job inter-arrival time and its deadline. The tasks have a fixed priority, and the length of
all the jobs in a task is bounded. The tasks are scheduled according to the priority ceiling
protocol. The problem is to obtain sufficient conditions to guarantee a priori that all the
jobs meet their deadlines.

5.1 Task Model
In PVS, we denote by nbtasks the number of tasks. Each task is represented by a number
in the interval [0, nbtasks− 1]. A task i in this interval is characterized by the following
parameters:

• prio(i): the task priority

• T(i): the minimal inter-arrival delay between successive jobs of task i

• D(i): the deadline of task i

• C(i): the maximal length of the jobs of task i.
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Since we use discrete time, the latter three constants are positive natural numbers.
We represent the jobs corresponding to a set of tasks by pairs of integers: a job j =

(i, n) is the n-th job of task i. As required by the priority ceiling model, each job has the
following attributes:

• prio(i, n): job priority

• dispatch(i, n): dispatch time

• prog(i, n): program

The priority of a job is the priority of the task to which it belongs, that is, prio(i, n)
= prio(i). Finally, there is a constant B(p) that bounds the blocking delay that jobs of
priority p can experience.

The assumptions we make about these parameters are listed in Figure 5.1. The dispatch
time between two successive jobs of task i is at least the delay T(i). The length of a job
of task i is no more than C(i). The jobs of priority less than p have no critical section of
level p longer than B(p). The priority of jobs is consistent with the ceiling of semaphores
and every job is well-behaved, that is, it releases all the semaphores it uses on termination.

We also assume that the total processor utilization is less than 1, that is,

nbtask−1∑
i=0

C(i)

T (i)
< 1.

If the total utilization is greater than 1 then the task set requires more processing resource
than is available, and some jobs never terminate. The task set can be feasible in case the
total utilization is equal to 1, but only in very particular circumstances.1 In the general case,
it is reasonable to assume that the processor utilization is strictly less than 1.

We also use a more technical assumption 2 to simplify the PVS verifications. We assume
that at least one task is given the highest priority possible:

topprio_is_used: ASSUMPTION EXISTS i: prio(i) = maxprio - 1.

This does not cause any loss of generality and avoids dealing with a special case.

5.2 Schedulability Analysis
Our model of the priority ceiling protocol defines the possible traces and schedules corre-
sponding to the execution of a set of jobs satisfying the above assumptions. Using the above
notations, the deadline for a job j=(i, n) is equal to dispatch(j)+D(i). Task i
is said to be feasible if all the jobs of task i terminate before their deadline in all possi-
ble executions. In many cases, the protocol is deterministic and there is actually only one
execution possible. However, multiple traces are possible if several tasks have the same
priority and contain jobs that are dispatched at the same time.

1This is possible only if the tasks are periodic, their periods are harmonic, and other conditions on job lengths
are satisfied.

2Some people might call that a hack.
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good_dispatch: ASSUMPTION dispatch(i, n) + T(i) <= dispatch(i, n + 1)

bound_length: ASSUMPTION length(prog(i, n)) <= C(i)

blocking: ASSUMPTION prio(j) < p IMPLIES max_cs(prog(j), p) <= B(p)

good_ceiling: ASSUMPTION
member(s, resources(prog(j))) IMPLIES prio(j) <= ceil(s)

good_programs: ASSUMPTION well_behaved(prog(j))

cpu_usage: ASSUMPTION sum(fullset[task], lambda i: C(i)/T(i)) < 1

Figure 5.1: Model of Sporadic Tasks
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To determine whether a task i is feasible, one can compute its worst-case response
time M(i), that is, the worst-case execution time of a job of task i. The task is feasible if
D(i) 6 M(i). This general approach to determining feasibility by computing response times
was initiated by Joseph and Pandya [17] and by Harter [16]. Algorithms for computing
M(i) have been proposed for different classes of jobs and with different assumptions about
deadlines [3, 5, 6, 15, 35, 37]. In case D(i) is no more than T(i) and all the tasks have
different priorities, M(i) is the smallest solution of the following equation:

C(i) + B(p) +
∑

l∈H(i)

C(l)×
⌈
M(i)

T(l)

⌉
= M(i), (5.1)

where p is the priority of task i and H(i) is the set of tasks of higher priority than i.3

The fact that the total processor utilization is less than 1 ensures that equation (5.1) has
solutions. The smallest one can be obtained by computing the sequence (un)n∈N defined
by

u0 = C(i) + B(p)

un+1 = C(i) + B(p) +
∑

l∈H(i)

C(l)×
⌈
un
T(l)

⌉
until a fixed point is reached. This fixed point is equal to M(i). Other initial values can be
chosen for u0, as long as the following condition is satisfied:

u0 < C(i) + B(p) +
∑

l∈H(i)

C(l)×
⌈
u0
T(l)

⌉
.

The following sections present PVS proofs of these results. First, we examine equations
of a form similar to equation (5.1) above. We show that these equations have solutions
under the following assumption: ∑

l∈H(i)

C(l)

T(l)
< 1.

We also show that the fixed-point construction sketched above yields the smallest solution.
This part of the analysis is independent of the protocol model but relies on several of the
support theories used previously.

Using the general bounds on process time and blocking obtained before, we then es-
tablish a link between the solutions of equations of the previous form and the length of
so-called busy periods. The schedulability condition mentioned above, namely, the fact
that the smallest solution of equation (5.1) is the worst-case response time for task i in the
case D(i) 6 T(i), is an easy corollary.

5.3 Ceiling Equations
Figure 5.2 summarizes the main results related to the fixed-point construction described
earlier. Given an arbitrary index type U (U is a parameter of the PVS theory), the expression

3dxe denotes the ceiling of x, that is, the smallest integer at least equal to x. The same integer is denoted by
ceiling(x) in PVS.
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i: VAR U
A: VAR finite_set[U]
E: VAR non_empty_finite_set[U]
C, T: VAR [U -> posreal]
B: VAR nonneg_real
x: VAR nonneg_real

...

F(C, T, x)(i): nonneg_real = C(i) * ceiling(x / T(i))

...

G(A, C, T, x): nonneg_real = sum(A, F(C, T, x))

...

u(E, B, C, T)(n): RECURSIVE posreal =
IF n=0 THEN B + sum(E, C)
ELSE B + G(E, C, T, u(E, B, C, T)(n - 1))

ENDIF
MEASURE n

fixed_point: LEMMA
(EXISTS n: u(E, B, C, T)(n + 1) = u(E, B, C, T)(n))

OR (EXISTS c: FORALL n: u(E, B, C, T)(n) >= n * c + B + sum(E, C))

least_fixed_point: LEMMA
B + G(E, C, T, z) = z IMPLIES FORALL n: u(E, B, C, T)(n) <= z

fixed_point_prop: LEMMA
z < u(E, B, C, T)(n) IMPLIES z < B + G(E, C, T, z)

...

upper_bound1: LEMMA
sum(E, lambda i: C(i)/T(i)) < 1 IMPLIES

EXISTS z: G(E, C, T, z) + B <= z

...

smallest_solution2: LEMMA
sum(E, lambda i: C(i)/T(i)) < 1 IMPLIES

EXISTS z: G(E, C, T, z) + B = z AND
(FORALL w: G(E, C, T, w) + B <= w IMPLIES z <= w)

Figure 5.2: Ceiling Equations
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G(A,C, T, x) is defined as the sum∑
i∈A

C(i)×
⌈

x

T (i)

⌉
,

where A is a finite set of indices, and T and C are mappings from U to the positive reals.
The function G is monotonic:

x 6 y ⇒ G(A,C, T, x) 6 G(A,C, T, y),

and it is bounded as follows:

G(A,C, T, x) 6 x×
∑
i∈A

C(i)

T (i)
+
∑
i∈A

C(i).

Equation (5.1) can be generalized slightly. For a fixed real B and a nonempty set of
indices E, we consider equations of the form

G(E,C, T, z) +B = z, (5.2)

where z is a non-negative number. To obtain the smallest solution of this equation if one
exists, we can construct the sequence (un)n∈N such that

u0 = B +
∑
i∈E

C(i)

and

un+1 = B +G(E,C, T, un)

= B +
∑
i∈E

C(i)×
⌈
un
T (i)

⌉
.

Let c be the smallest of all C(i) for i ∈ E; we have either un+1 = un or un+1 > un + c.
It follows that the sequence is either unbounded (i.e., un > n.c+ u0 for all n) or it reaches
a fixed point (i.e., there exists n such that un+1 = un). In case∑

i∈E

C(i)

T (i)
< 1,

the bound on G above implies that there exists z such that

G(E,C, T, z) +B 6 z.

By construction of u and since G is monotonic, it is easy to see that un 6 z for all n ∈ N.
As a result, the sequence u is bounded and by the previous remark it must reach a fixed
point. This fixed point is the smallest solution of equation (5.2).

The PVS definition of u and the lemmas corresponding to the main stages of this rea-
soning are shown in Figure 5.2. The function ceiling is predefined in the PVS prelude.
The rest of the development relies on the generic theories of sums over finite sets and other
auxiliary results, such as the fact that a nonempty finite set of reals has a minimal element.
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5.4 Schedulability Conditions
Given a fixed set of sporadic traces with the attributes described in Section 5.1, let u be an
arbitrary trace obtained by scheduling these tasks using the priority ceiling protocol. Let
[t1, t2] be an interval such that for any t between t1 and t2 there is a job of priority at least p
ready to execute at time t in u. The important result used to derive schedulability conditions
is lemma busy time2 of Section 4.3: In the interval [t1, t2], we have

process_time(sch(u), t1, t2, K(p)) >= t2 - t1 - blocking(u, p, t1),

where K(p) is the set of jobs of priority at least p. The constant blocking(u, p,
t1) is defined by

blocking(u, p, t): nat =
IF empty?(blockers(u, p, t)) THEN 0
ELSE max_cs(prog(the_blocker(u, p, t)), p) ENDIF,

so B(p) is larger than or equal to blocking(u, p, t1). We then obtain the following
inequality:

process_time(sch(u), t1, t2, K(p)) >= t2 - t1 - B(p).

Now, let K(p, t1, t2) be the set of jobs of priority at least p that are dispatched
between t1 and t2:

K(p, t1, t2): set[job] =
{ j | prio(j) >= p AND t1 <= dispatch(j) AND dispatch(j) < t2 }.

Using various properties of sums over sequences, and the assumptions about job inter-
arrival time and job length, one obtains the following important lemma:

process_time_K: LEMMA
t1 <= t2 IMPLIES

process_time(sch(u), t1, t2, K(p, t1, t2)) <=
sum(A(p), lambda i: C(i) * ceiling((t2 - t1)/T(i)))

where A(p) is the set of tasks of priority p or higher. In more standard notations, this
lemma states that the amount of processing time allocated in [t1, t2] to jobs of priority at
least p that started between t1 and t2 is bounded by∑

i∈A(p)

C(i)×
⌈
t2 − t1
T (i)

⌉
.

For a fixed priority p, we say that a time t is quiet if the jobs of priority at least p that
started before t are all finished at time t. An interval [t1, t2] is called a busy period of
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busy_interval: LEMMA
quiet(u, p, t1) AND t1 <= t2 IMPLIES

process_time(sch(u), t1, t2, K(p)) =
process_time(sch(u), t1, t2, K(p, t1, t2))

busy_interval2: LEMMA
quiet(u, p, t1) AND t1 <= t2 IMPLIES

process_time(sch(u), t1, t2, K(p)) <=
sum(A(p), lambda i: C(i) * ceiling((t2 - t1)/T(i)))

...

critical_interval: PROPOSITION
quiet(u, p, t1) IMPLIES

EXISTS t2: t1 < t2 AND t2 <= t1 + M(p) AND quiet(u, p, t2)

delay_to_quiet_time: LEMMA
FORALL t: EXISTS t2: quiet(u, p, t2) AND t < t2 AND t2 <= t + M(p)

busy_period_length: LEMMA
busy_period(u, p, t1, t2) IMPLIES t2 - t1 <= M(p)

Figure 5.3: Bounding the Length of Busy Periods

level p if t1 and t2 are quiet times, there is no quiet time between t1 and t2, and one job of
priority at least p is ready at time t1:

quiet(u, p, t): bool =
FORALL j: dispatch(j) < t AND prio(j) >= p IMPLIES finished(u, j, t)

busy_period(u, p, t1, t2): bool =
t1 < t2 AND busy(u, p, t1) AND quiet(u, p, t1) AND quiet(u, p, t2) AND
FORALL t: t1 < t AND t < t2 IMPLIES not quiet(u, p, t)

busy_period_prop: LEMMA
busy_period(u, p, t1, t2) AND t1 <= t AND t < t2 IMPLIES busy(u, p, t).

All along the interval [t1, t2] there is a job of priority at least p ready to execute. All these
jobs have started at or after t1 and strictly before t2 and all these jobs are finished at time
t2. The schedulability result presented above can now be proven by bounding the length of
busy periods. Let M(p) be the smallest solution of the equation

M(p) = B(p) + sum(A(p), lambda i: C(i) * ceiling(M(p) / T(i)).

Then a busy period of level p cannot have a length larger than M(p).
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The PVS proof is decomposed in several lemmas shown in Figure 5.3. The main step is
lemma critical interval, which shows that successive quiet points cannot be distant
by a delay larger than M(p). This immediately implies that busy periods cannot be longer
than M(p).

The proof of critical interval is based on the following argument: Let t1 be
a quiet point and consider the interval [t1, t1 + M(p)]. If there is a point t2 in this interval
where no job of priority p or higher is ready, then t2 is a quiet point. Otherwise, for all t
such that t1 6 t 6 t1 + M(p), there is a job of K(p) ready to run at time t. This implies
that

1

process_time(sch(u), t1, t1+M(p), K(p)) >= M(p) - B(p).

Since t1 is a quiet time, jobs of K(p) started before t1 are finished at t1 and then they do
not use any processing time in the interval [t1, t2]. Since jobs that start after or at t2 are not
allocated processing time in [t1, t2], we have

process_time(sch(u), t1, t1+M(p), K(p)) =
process_time(sch(u), t1, t1+M(p), K(p, t1, t2).

By lemma process time K, it follows that

2

process_time(sch(u), t1, t1+M(p), K(p)) <=
sum(A(p), lambda i: C(i) * ceiling(M(p)/T(i))).

By definition of M(p), inequalities 1 and 2 give

process_time(sch(u), t1, t1+M(p), K(p) =
sum(A(p), lambda i: C(i) * ceiling(M(p)/T(i))).

This equality implies that a job j = (i, n) of K(p) that started between t1 and t1 + M(p)
has been allocated C(i) units of processing time in [t1, t1 + M(p)]. This means that job j
is finished at time t1 + M(p) since the length of j is no more than C(i). As a consequence,
t2 = t1 + M(p) is a quiet time: all the jobs of K(p) that started between t1 and t2 are
finished at t2, and, since t1 is quiet, all the jobs of K(p) started before t1 are finished at t1
(and then at t2).

Since zero is a quiet time, lemma critical interval implies by induction that
any instant t is between two quiet times t1 and t2 such that t1 6 t < t2 and t2− t1 6 M(p).
Since t2 is a quiet point, any job of priority p that is dispatched at time t is finished at
time t2 and then before time t + M(p). This is sufficient to prove the schedulability result
presented earlier. If all the tasks have different priorities, the deadlines D(i) are not larger
than the delays T(i), and for all task i there is M 6 D(i) such that

B(prio(i)) + C(i) +
∑

l∈H(i)

C(l)×
⌈

M

T(l)

⌉
= M,
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then the set of sporadic tasks is schedulable. All the jobs meet their deadlines. This follows
from the fact that such an M is a solution of the equation

B(p) +
∑

l∈A(p)

C(l)×
⌈

M

T(l)

⌉
= M,

where p is the priority of task i. M is then larger than or equal to M(p).
The main schedulability conditions we obtained are listed in Figure 5.4. Lemma

termination1 is a very general result that holds for any set of sporadic tasks: a job
of priority p dispatched at time t is finished at t+M(p). This gives a simple schedulabil-
ity test stated as lemma schedulability1. This bound is sufficient to obtain directly
the standard schedulability criterion in the case where tasks have different priorities and
deadlines are not larger than periods (lemma schedulability criterion).

5.5 Discussion
The overall approach we used for developing schedulability conditions for sporadic tasks in
PVS is fairly standard. Our PVS proofs follow the well-known method based on the notion
of busy periods introduced by Lehoczky [19]. However, a notable difference between our
PVS approach and more traditional methods is to avoid the search for a worst-case scenario.
Many results on real-time schedulability refer to Liu and Layland’s theorem 1, which states
that the worst-case response time for a task τ is obtained when all the tasks of priority
higher than τ are dispatched at the same time as τ [20]. In general, schedulability analysis
can then concentrate on the worst possible case, where all the tasks are released at the same
time t. Such a t is called a critical instant and the analysis is based on finding the response
time for jobs released at a critical instant or the length of busy periods that start at a critical
instant.

The notion of critical points is not adequate when jobs can share resources and block
each other. The worst-case response time must take blocking into account, and assuming
that all the tasks are released at the same time is not sufficient by itself. Furthermore,
looking for worst-case scenarios is an unnecessary detour since the essential bound given
by lemma busy interval2 is satisfied by any busy period of level p whether it starts at
a critical instant or not.

The results presented in this chapter were concerned essentially with the case where
deadlines are less than or equal to job inter-arrival delays. This corresponds to a very
important practical case. Still, many results necessary for handling the more general case,
where D(i) can be larger than T (i), have already been established. The general case could
then be formally analyzed in PVS with some extra work.
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%---------------------------
% First termination bound
%---------------------------

termination1: PROPOSITION
prio(j) = p IMPLIES finished(u, j, dispatch(j) + M(p))

%------------------------------------------------------
% First schedulability criterion: M(prio(i)) <= D(i)
%------------------------------------------------------

schedulability1: PROPOSITION
(FORALL i: M(prio(i)) <= D(i)) IMPLIES

(FORALL u, j: finished(u, j, deadline(j)))

%------------------------------------------------------
% Schedulability criterion in the more standard case
% - one task per priority
% - deadline before period
%------------------------------------------------------

l, l1, l2: VAR task

M: VAR posnat

H(i): set[task] = { l | prio(l) > prio(i) }

J(i): set[task] = { l | prio(l) = prio(i) }

B(i): nat = B(prio(i))

schedulability_criterion: PROPOSITION
(FORALL l1, l2: prio(l1) = prio(l2) IMPLIES l1 = l2)

AND (FORALL i: D(i) <= T(i))
AND (FORALL i: EXISTS M:

sum(H(i), lambda l: C(l) * ceiling(M/T(l))) + B(i) + C(i) = M
AND M <= D(i))

IMPLIES (FORALL u, j: finished(u, j, deadline(j)))

Figure 5.4: Sufficient Schedulability Conditions
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Chapter 6

Related Work

We compare our PVS developments with related work on formalization and analysis of
real-time scheduling algorithms and real-time kernels or scheduling protocols.

6.1 Formalization of the Priority Ceiling Protocol
Pilling et al. [28,29] give formal specifications of two variants of the priority ceiling proto-
col written in Z [36]. The specifications were based on an early description of the protocol
and clarified some aspects in the dynamic adjustment of priorities. The model used is a
state-transition system where the transitions correspond to the dispatch of a job, the ter-
mination of a job, or the locking or unlocking of semaphores. The modeling is based on
processes rather than jobs: the state of the system includes sets of active, inactive, and
blocked processes, and timing aspects are not included. The model follows very closely
the description given by Sha et al. [33, 34] and uses dynamic priorities and explicit priority
inheritance.

Since timing issues are not modeled, the analysis performed is more limited than in this
report. Schedulability tests or results such as the bound on blocking are not considered.
Instead, the paper shows that the protocol ensures absence of deadlocks, mutual exclusion,
and that a process can have at most one blocker. The developments do not use any tools;
the various proofs, though written in the Z notation, remain largely informal.

Burns and Wellings [7] present a formalization of priority inheritance for concurrent
real-time systems that communicate by message passing. The model is an automaton writ-
ten in the Z notation and is similar to the model used by Pilling et al. [28]. The paper shows
that the model satisfies simple properties. Unfortunately, the proofs are informal and the
specifications contain several errors.

6.2 Verification of Scheduling Theorems
Wilding [38] presents a formal proof of the optimality of the earliest-deadline-first (EDF)
scheduling algorithm. This is a formal specification and proof of one of Liu and Layland’s
theorems [20]. The formalization relies on the Boyer-Moore theorem prover Nqthm [4].
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Although applied to a different scheduling policy and a slightly different problem, the ap-
proach is similar to the schedulability analysis for sporadic tasks presented in Chapter 5.
The model relies on a notion of schedules represented as lists, and the analysis consists of
showing that if a set of periodic tasks has total utilization less than or equal to 1, then an
EDF schedule for these tasks ensures that all the jobs meet their deadline. This result holds
provided task deadlines are equal to periods, that is, a job of task τ must terminate before
the release of the next job of the same task.

Wilding’s work illustrates the usefulness of precise specifications and mechanically
assisted methods of verification. The original proof of the optimality of EDF published by
Liu and Layland was flawed [38].

6.3 Modeling and Analysis of Real-Time Kernels
Fowler and Wellings [14] present a PVS specification of a real-time kernel intended to be
the basis of an Ada95 runtime support system. The model is state-based and represents
a fixed set of Ada tasks communicating via protected objects. Mutual exclusion is im-
plemented using a simplified form of the priority ceiling protocol, and both sporadic and
strictly periodic tasks can be considered. Timing properties are expressed using a real-time
logic embedded in PVS.

Although the kernel model is fairly sophisticated and complete, only simple invariant
properties are verified in [14]. More complex kernel properties with some timing aspects
are proven in Fowler’s thesis [13], but the emphasis is on using the formal specifications
as a basis for developing a trusted kernel implementation. The PVS verifications focus on
showing that successive refinements steps are correct, including from a temporal perspec-
tive.

Fidge et al. [12] formalize and verify a simple real-time scheduler using the Ergo theo-
rem prover. The formalization is machine language code for an interrupt handler activated
at regular intervals by an external clock. A finite set of tasks of the same period and pri-
ority is scheduled in a round-robin fashion by the interrupt handler. The analysis relies on
a precise model of the microprocessor used. The verification consists of showing that the
scheduler periodically allocates a minimal amount of uninterrupted processing time to each
task. Although the task set and the scheduling algorithm are too simplistic for real appli-
cations, the analysis illustrates how processor characteristics can be taken into account in
real-time analysis. Processor pipelines and caches are modeled, and context switching time
is taken into account during the analysis.

More recently, Wilding et al. [39] formalize and analyze a similar round-robin scheduler
using PVS. The model is very close to [12], but the verifications have a different objective.
The kernel is intended to ensure task isolation, that is, to prevent a faulty task from adversely
affecting other tasks in the system.

Several other examples of operating system specifications using formal notations can be
found in the literature. Some examples include tool-assisted verifications. In most cases,
real-time aspects and resource sharing protocols are not considered. A comparison and
survey of these kernel specifications and verification is given in [13].
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Chapter 7

Conclusion

This report presents a complete specification and analysis of the priority ceiling protocol,
from low-level resource management and job selection aspects, to high-level schedulabil-
ity conditions for sporadic tasks. All the developments were performed with tool support,
using the PVS specification and verification system.1 This provides high assurance of cor-
rectness and ensures a complete and rigorous analysis.

The formalization is more precise, and we believe simpler, than traditional descriptions
of the protocol. Priority adjustment rules can be avoided by using a slightly modified rule
for selecting active jobs. Such a simplification may point to new ways of implementing the
protocol, but it was mostly useful for reducing the verification effort. Other results emerged
from the analysis, such as the fact that proper nesting of critical sections is not necessary.

Using the protocol model, we provided general results such as bounds on blocking time
and on the amount of processing resource allocated to a job. These results form the essential
basis for developing feasibility conditions for various sets of tasks. As an important appli-
cation, we gave the example of sporadic tasks with deadline smaller than periods. Other
classes of applications could be considered in a similar way including the more general
case of sporadic tasks with arbitrary deadlines.

As a whole, our verifications mostly confirmed several results already known and pub-
lished in the literature [34, 37]. We did not discover unexpected errors in these preexisting
results. Our contribution was to apply mechanical theorem proving to a fairly challeng-
ing problem and to provide rigorous and detailed proofs of properties often presented very
informally. As a whole, the formalization and verification effort represented between two
and three personmonths, and the PVS developments contain 417 lemmas and theorems for
around 2500 lines of specifications.

This work is a preliminary development toward the specification and analysis of real-
time kernels ensuring strong partitioning. Developing such kernels is becoming increas-
ingly important in avionics and other critical applications. The emerging integrated modu-
lar avionics architectures allow sharing of processors between independent avionics func-
tions [1, 22, 23]. In this context, it is essential to ensure that independent tasks or processes
that share a common processor cannot adversely affect each other. Real-time kernels must

1The theories are available at http://www.csl.sri.com/˜bruno/pvs/prio-ceiling.txt.
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then protect separate tasks from unwanted interference by implementing strong partition-
ing mechanisms [30]. Formal models addressing some of these issues have been proposed
recently [10, 11, 39] but the results are still preliminary and incomplete.

We are particularly interested in temporal noninterference, that is, the property that a
temporal failure of a task, such as overrun or nontermination, cannot prevent independent
tasks from satisfying their timing requirements. Simple solutions have been proposed that
rely on a very strict static scheduling [2, 39]. Since static schedulers are extremely inflex-
ible [21], there is interest in developing kernels that implement priority-based scheduling
while still ensuring strong partitioning and temporal noninterference.

In future work, we intend to extend our model of the priority ceiling protocol in two
directions. First we need to make more realistic timing assumptions in the kernel model.
In the real world, not all job instructions or kernel operations have the same duration, and
process switching delays cannot be ignored. A second objective is to extend our model of
the priority ceiling protocol with mechanisms that ensure temporal noninterference. Such
mechanisms might rely on quotas or other time management techniques to enforce temporal
partitioning.
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