
The Wel
h-Lyn
h

Clo
k Syn
hronization Algorithm

Bruno Dutertre

Te
hni
al Report 747

Mar
h 27, 1998

Department of Computer S
ien
e

Queen Mary and West�eld College, University of London

Mile End Road, London E1 4NS, UK

Abstra
t

This note des
ribes the Wel
h-Lyn
h fault-tolerant algorithm for
lo
k syn
hro-

nization. The original proof given by Wel
h and Lyn
h shows that the
lo
ks of

non-faulty nodes are maintained in approximate agreement. The worst-
ase skew is

bounded by a
onstant whi
h depends on network and algorithm parameters. We

give a simpli�ed proof of
orre
tness and obtain tight syn
hronization bounds.

Contents

1 Introdu
tion 1

2 Algorithm 2

3 Formal Analysis 4

3.1 Overview . 4

3.2 Clo
k Properties . 5

3.3 Resyn
hronization Property . 7

3.3.1 Assumptions . 7

3.3.2 Bounding v

p

. 8

3.3.3 Bounding jv

p

� v

q

j . 9

3.3.4 Bounding the Clo
k Adjustment 11

3.3.5 Summary . 12

3.4 Algorithm Parameters . 12

3.4.1 Constraints on � and P . 12

3.4.2 Optimal Syn
hronization . 14

3.5 Agreement . 16

3.6 Validity . 19

4 Con
lusion 22

1 Introdu
tion

In [2℄, Wel
h and Lyn
h present a fault-tolerant algorithm for
lo
k syn
hronization

in distributed systems. The algorithm is intended for a fully
onne
ted network of

n pro
esses, less than a third of whi
h are faulty. Byzantine failures are tolerated,

that is, the behaviour of faulty pro
esses is arbitrary.

The
ommuni
ation network is assumed to be reliable and the
ommuni
ation

delays are bounded. The minimal and maximal transmission delay are spe
i�ed

using two
onstants Æ and " su
h that 0 6 " < Æ: the delay for any message is

between Æ � " and Æ + ".

Ea
h pro
ess has a physi
al
lo
k whi
h
an drift slowly from real time at a rate

bounded by a small
onstant � su
h that 0 < � � 1. If a
lo
k C does not fail

during a real time interval [t

1

; t

2

℄ then

(1� �)(t

2

� t

1

) 6 C(t

2

)� C(t

1

) 6 (1 + �)(t

2

� t

1

);

where C(t

1

) and C(t

2

) denote the value of
lo
k C at time t

1

and t

2

, respe
tively.

The elapsed
lo
k time C(t

2

) � C(t

1

) is within �(t

2

� t

1

) of the real time delay

t

2

� t

1

. During the same interval, the physi
al
lo
ks of two pro
esses
an drift

apart by as mu
h as 2�(t

2

� t

1

). Even for small values of �, the error may be
ome

signi�
ant for large values of t

2

. In order to ensure that all the pro
esses have a

onsistent view of time, it is ne
essary to regularly resyn
hronize their
lo
ks.

We assume that a pro
ess p has no
ontrol over its physi
al
lo
k PC

p

. Instead,

the lo
al time for p is given by a virtual
lo
k V C

p

obtained by adding a
orre
tion

to PC

p

. The
orre
tion is periodi
ally
omputed by p and is stored in a lo
al

variable CORR

p

. The virtual
lo
k of pro
ess p is then de�ned by

V C

p

(t) = PC

p

(t) + CORR

p

(t);

where CORR

p

(t) denotes the
ontent of the
orre
tion variable at real time t.

The algorithm runs in su

essive rounds during whi
h pro
esses ex
hange infor-

mation about their
lo
ks and perform a
orre
tion to their lo
al
lo
k. Initially,

1

the virtual
lo
ks of non-faulty pro
esses are approximately syn
hronized: all the

non-faulty pro
esses start the �rst round within a delay � of ea
h other. Under this

assumption, the algorithm ensures the following properties:

� Agreement: The skew, that is, the di�eren
e between the virtual
lo
ks of any

two non-faulty pro
esses at any real time is bounded. There is a
onstant

su
h that, for all real time t and all non-faulty pro
esses p and q,

jV C

p

(t)� V C

q

(t)j 6
:

� Validity: The
lo
ks of non-faulty pro
esses are within a linear envelope of

real-time.

The purpose of this note is to give a simpli�ed proof of
orre
tness of the Wel
h-

Lyn
h algorithm and to provide tight syn
hronization bounds. The algorithm is

des
ribed in se
tion 2 and the proof of
orre
tness is given in se
tion 3.

2 Algorithm

The algorithm of Wel
h and Lyn
h is similar to the intera
tive
onvergen
e algo-

rithm of Lamport and Melliar-Smith [1℄. Every non-faulty pro
ess p reads the
lo
ks

of all the other pro
esses at regular intervals. From these readings, p obtains an

estimate of the drift between its virtual
lo
k and the
lo
ks of the other pro
esses.

A
orre
tion to p's lo
al
lo
k is then
omputed by applying a fault-tolerant aver-

aging fun
tion to the estimates. The two algorithms di�er only in the methods of

reading
lo
ks and in the averaging fun
tions used. Both assume that the
lo
ks

are syn
hronized initially.

The pro
esses are numbered from 1 to n. We denote by f the maximal number

of faults the algorithm
an tolerate; by assumption, we have n > 3f + 1. The

averaging fun
tion used in the algorithm of Wel
h and Lyn
h is the fault-tolerant

midpoint

1

de�ned as follows. Given an array A of n real numbers, the fault-tolerant

midpoint of A, denoted by
fn(A), is obtained by dis
arding the f largest and the

f smallest elements of A and by taking the arithmeti
 mean of the maximum and

minimum of the remaining elements. If A[1℄ 6 A[2℄ 6 : : : 6 A[n℄, we then have

fn(A) =

A[f + 1℄ +A[n� f ℄

2

:

For an arbitrary array,
fn(A)
an be obtained by �rst sorting the elements in

in
reasing order and then applying the formula above.

Figure 1 gives an informal des
ription of the algorithm. A pro
ess p exe
utes

a main program whi
h
onsists of repeatedly broad
asting a message SYNC and

waiting for a delay � before
omputing a
orre
tion to the lo
al
lo
k. In parallel,

every pro
ess stores the arrival time of any SYNC message it re
eives in an array

ARR

p

. The arrival times and the delays are of
ourse measured with respe
t to the

lo
al
lo
k V C

p

. Two lo
al variables are used in addition to ARR

p

and CORR

p

:

ADJ

p

is the
lo
k adjustment and T indi
ates the time of the next broad
ast.

The two parameters T

0

and P determine when the broad
asts take pla
e: the

�rst broad
ast is exe
uted at lo
al time T

0

and the subsequent ones at T

0

+ P ,

T

0

+ 2P , et
. The parameter � determines how long a pro
ess has to wait after a

broad
ast before performing the
lo
k
orre
tion.

For simpli
ity, we assume that broad
asting a message,
omputing the adjust-

ment, and storing arrival times are instantaneous operations. If two SYNCmessages

1

We use the terminology of [3℄.

2

T := T

0

repeat forever

wait until V C

p

= T ;

broad
ast SYNC;

wait for � time units;

ADJ

p

:= T + Æ �
fn(ARR

p

);

CORR

p

:= CORR

p

+ADJ

p

;

T := T + P

end of loop.

on re
eption of SYNC from q do ARR

p

[q℄ := V C

p

.

Figure 1: Pseudo Code for Pro
ess p.

are re
eived from two pro
esses simultaneously, the
orresponding elements of ARR

p

are then equal. Also, the
lo
k adjustment operations are exe
uted instantaneously

when the delay � has elapsed. The
orre
tion takes e�e
t immediately after this

delay, that is, at the end of the loop. We also assume that broad
ast messages are

re
eived by every pro
esses, in
luding the sender.

For a
orre
t exe
ution of the algorithm, P and � have to satisfy several
ondi-

tions whi
h depend on the network and
lo
k parameters (i.e. Æ, ", and �) and on

the degree of syn
hronization required. These
onstraints are obtained by a formal

analysis of the algorithm and will be spe
i�ed pre
isely in the sequel.

Let T = T

0

+ iP denote the starting time of an arbitrary round i. All the non-

faulty pro
esses broad
ast SYNC when their lo
al
lo
ks reads T and wait until

T +� to
ompute the adjustment to their
lo
k.

Assume p and q are two non-faulty pro
esses. Let u

p

be the real-time when

p adjust its
lo
k, that is, V C

p

(u

p

) = T + �. Let x be the arrival time at p of

the message sent by q at he start of the round. The
onstraints on � ensure that

V C

p

(x) 6 T + �, or equivalently that x 6 u

p

. Other assumptions on P imply

that the next message from q is re
eived by p after u

p

. This means that at time

u

p

, the element ARR

p

[q℄ is equal to V C

p

(x). The value ARR

p

[q℄ is used by p to

estimate the drift between its lo
al
lo
k and the
lo
k of q: The message was sent

when V C

q

was equal to T and took a delay between Æ � " and Æ + " to rea
h p.

During the interval, V C

q

has progressed to a value whi
h is around T + Æ, that is,

V C

q

(x) � T + Æ. Therefore p
an estimate that the di�eren
e between V C

q

(x) and

V C

p

(x) is approximately (T +Æ)�ARR

p

[q℄. Sin
e � is very small, the drift between

V C

p

and V C

q

remains fairly
onstant until p's
lo
k is adjusted:

V C

q

(u

p

)� V C

p

(u

p

) � (T + Æ)�ARR

p

[q℄:

The a

ura
y of this estimate depends on the impre
ision " on transmission delays

and on the rate � of
lo
k drift.

When p has re
eived a SYNC message from all the non-faulty pro
esses, it
an

ompute the
orre
tion to its
lo
k. The adjustment ADJ

p

is the fault-tolerant

average of the estimated drifts:

ADJ

p

= T + Æ �
fn(ARR

p

):

If
fn(ARR

p

) is larger than T + Æ then p's
lo
k is
urrently ahead of the average.

Conversely, if
fn(ARR

p

) is smaller than T + Æ then V C

p

is behind the average.

3

The variable CORR

p

is then updated to
an
el the average drift:

CORR

p

:= CORR

p

+ADJ

p

:

The virtual
lo
k V C

p

is set ba
k or forth by the amount jADJ

p

j.

The fun
tion
fn is essential to the
orre
tness of the algorithm. It ensures that

the
lo
k adjustment ADJ

p

is fairly insensitive to the presen
e of faulty elements in

the array ARR

p

. Furthermore,
fn has an averaging e�e
t whi
h implies that after

the adjustments, the
lo
ks V C

p

and V C

q

of two non-faulty pro
esses are better

syn
hronized than they were at the start of the round.

Between two su

essive resyn
hronization, the virtual
lo
ks
an drift apart

form one another but adjusting the
lo
ks suÆ
iently often ensure that the skew

is bounded. The algorithm assumes that all the non-faulty pro
esses start the

�rst round within a real-time delay � of one another. The values of � and P are

determined from � in order to ensure that the non-faulty pro
esses also start the

other rounds within � of one another.

From the latter invariant, a bound on the worst
ase skew
an be derived. The

lo
k adjustment
omputed during ea
h round is small in
omparison with the

length of ea
h round and this ensures that the virtual
lo
ks are within a linear

envelope of real-time.

3 Formal Analysis

3.1 Overview

We represent both real time and
lo
k time by the reals. By
onvention, lower
ase

letters are used to denote real time quantities and upper
ase letters to denote
lo
k

times. Clo
ks are de�ned as follows:

De�nition 1 A
lo
k C is a mapping from the reals to the reals su
h that, for all

t

1

and t

2

, if t

1

6 t

2

then

(1� �)(t

2

� t

1

) 6 C(t

2

)� C(t

1

) 6 (1 + �)(t

2

� t

1

):

We assume that every pro
ess p has a
lo
k PC

p

whi
h satis�es the above
onstraint;

the rate of drift of PC

p

is no more than � over the interval [t

1

; t

2

℄, whatever t

1

and

t

2

. This means that the physi
al
lo
ks are assumed to be reliable; only pro
esses

an fail. These is no loss of generality be
ause the behaviour of faulty pro
esses is

arbitrary and be
ause a pro
ess
annot a

ess another pro
ess's
lo
k dire
tly.

The
ru
ial part of the analysis is to examine the e�e
t of a single resyn
hro-

nization round on the virtual
lo
ks. Assume a non-faulty pro
ess p starts a round

at real-time t

p

su
h that V C

p

(t

p

) = T , performs the
orre
tion at real-time u

p

su
h that V C

p

(u

p

) = T + �, and starts the subsequent round at t

0

p

su
h that

V C

p

(t

0

p

) = T + P . Let
orr

p

and
orr

0

p

denote the value of the variable CORR

p

at time t

p

and t

0

p

, respe
tively. We have assumed that the
lo
k adjustment takes

e�e
t immediately after u

p

, so

V C

p

(t) =

(

PC

p

(t) +
orr

p

if t

p

6 t 6 u

p

PC

p

(t) +
orr

0

p

if u

p

< t 6 t

0

p

:

The round
an then be split in two parts. From t

p

to u

p

, p's lo
al time is given by

the
lo
k C

p

su
h that:

C

p

(t) = PC

p

(t) +
orr

p

;

4

and, from u

p

to t

0

p

, p's lo
al time is given by C

0

p

de�ned by:

C

0

p

(t) = PC

p

(t) +
orr

0

p

:

The two su

essive
lo
ks are related by the equation

C

0

p

(t) = C

p

(t) + T + Æ �
fn(ARR

p

);

where the value of the array ARR

p

is taken at time u

p

.

Two non-faulty pro
esses p and q swit
h then from old
lo
ks C

p

and C

q

to new

lo
ks C

0

p

and C

0

q

during the round. Sin
e C

p

(t

p

) = C

q

(t

q

) = T , the distan
e jt

p

�t

q

j

gives a measure of the degree of syn
hronization between C

p

and C

q

. Similarly, we

an evaluate the degree of syn
hronization of C

0

p

and C

0

q

by measuring the distan
e

jv

p

� v

q

j for two points v

p

and v

q

su
h that C

0

p

(v

p

) = C

0

q

(v

q

). Sin
e the
lo
k

orre
tions are based on estimates for
lo
k times whi
h are
lose to T + Æ, it is

natural to
hoose v

p

and v

q

su
h that

C

p

(v

p

) = C

q

(v

q

) = T + Æ:

In the �rst part of the proof, we establish the following fundamental result. If for a

given � and for all non-faulty pro
esses p and q, we have

jt

p

� t

q

j 6 �

then we also have

jv

p

� v

q

j 6 (1 + �)

�

2

+ 2";

for all non-faulty p and q. This essential property shows that the new
lo
ks are

more
losely syn
hronized with ea
h other than the old ones.

The following se
tion lists various lemmas about
lo
ks whi
h are used in the se-

quel. The essential syn
hronization property is proved in se
tion 3.3. In se
tion 3.4,

we derive
onstraints on the parameters � and P for the algorithm to exe
ute prop-

erly and a
hieve a given syn
hronization bound �. If the
onditions are satis�ed

then the algorithm guarantees that all the non-faulty pro
esses start ea
h round

within a real-time delay � of one another. The
onstraints on � and P have a

solution provided � is larger than an optimal �

min

whi
h is equal to approximately

4". The worst-
ase skew is determined in Se
t. 3.5, using the assumptions on �

and P . Se
tion 3.6 shows that the virtual
lo
ks of non-faulty pro
esses are within

two linear fun
tions of real-time.

3.2 Clo
k Properties

It is easy to see that a
lo
k is stri
tly in
reasing,
ontinuous, and not bounded.

For any real T , there is a unique t su
h that C(t) = T . The lemma below is another

easy
onsequen
e of the de�nition:

Lemma 1 For a
lo
k C and two reals t

1

, t

2

su
h that t

1

6 t

2

,

C(t

2

)� C(t

1

)

1 + �

6 t

2

� t

1

6

C(t

2

)� C(t

1

)

1� �

:

The following lemma is important for proving the resyn
hronization property.

It shows that, if C(v) is the mean of C(t) and C(u) then v is very
lose to (t+u)=2.

5

Lemma 2 If t 6 u and C(v) =

1

2

(C(t) + C(u)) then

t+ u

2

� �

u� t

2

6 v 6

t+ u

2

+ �

u� t

2

:

Proof: Let X = (C(u)�C(t))=2 so that C(v)�C(t) = C(u)�C(v) = X: Sin
e C

is in
reasing, we have t 6 v 6 u and Lemma 1 applied twi
e gives

t+X=(1 + �) 6 v 6 t+X=(1� �);

u�X=(1� �) 6 v 6 u�X=(1 + �):

Two
ases
an be distinguished:

� If X 6 (1� �

2

)(u� t)=2, we use

u�X=(1� �) 6 v 6 t+X=(1� �):

Sin
e X=(1� �) 6 (1 + �)(u� t)=2, we get

u� (1 + �)(u� t)=2 6 v 6 t+ (1 + �)(u� t)=2

whi
h simpli�es to

(u+ t)=2� �(u� t)=2 6 v 6 (u+ t)=2 + �(u� t)=2:

� If X > (1� �

2

)(u� t)=2, we use

t+X=(1 + �) 6 v 6 u�X=(1 + �)

and X=(1 + �) > (1� �)(u� t)=2 to obtain

t+ (1� �)(u� t)=2 6 v 6 u� (1� �)(u� t)=2:

By an elementary
al
ulation, this gives the same relation as previously. The

expe
ted bound holds for v in both
ases. 2

The bound is tight. X is
omprised between (1��)(u�t)=2 and (1+�)(u�t)=2 and

it is possible to have X = (1� �

2

)(u� t)=2. In su
h a
ase, the distan
e between v

and (t+ u)=2
an be equal to �(u� t)=2.

In the following lemma, two
lo
ks C and C

0

are
onsidered together with two

reals t and t

0

su
h that C(t) = C

0

(t

0

) = X . The lemma gives a bound on the delay

ju� u

0

j for u and u

0

su
h that C(u) = C(u

0

) = X + Y .

Lemma 3 If C(t) = C

0

(t

0

) = X and C(u) = C

0

(u

0

) = X + Y where Y > 0 then

ju� u

0

j 6 jt� t

0

j+

2�

1� �

2

Y:

The following lemma will be used to evaluate the skew between two
lo
ks C

and C

0

.

Lemma 4 Let X and Y be arbitrary reals. Given t and t

0

su
h that C(t) = C

0

(t

0

) =

X then, for any x su
h that X 6 C(x) 6 X +Y and X 6 C

0

(x) 6 X + Y , we have

jC(x)� C

0

(x)j 6

2�

1 + �

Y + (1� �) jt� t

0

j:

This bound
an be rea
hed provided Y > (1+�)jt�t

0

j. The situation is illustrated in

Fig. 2. The two points of
oordinates (x;C(x)) and (x;C

0

(x)) are
ontained within

the area delimited by the two oblique lines of slope (1+ �) and (1� �). The bound

an be attained at the point u su
h that u� t = Y=(1 + �). If Y < (1� �) jt� t

0

j,

no x
an satisfy the assumptions of the lemma and if Y is between (1 � �) jt � t

0

j

and (1 + �) jt� t

0

j, the skew is no more than Y .

6

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

t t’

X

X+Y

u

Figure 2: Worst-
ase Skew (Lemma 4)

3.3 Resyn
hronization Property

3.3.1 Assumptions

We assume that an arbitrary real T and a set G of m pro
esses are �xed, where

m > n� f . With every p of G are asso
iated a
lo
k C

p

and a real t

p

whi
h satisfy

C

p

(t

p

) = T: (1)

We also assume that two arrays arr

p

and ARR

p

are given for every p of G. ARR

p

and arr

p

are two arrays of n reals and satisfy the two
onstraints below:

8q 2 G : t

q

+ Æ � " 6 arr

p

[q℄ 6 t

q

+ Æ + "; (2)

8q 2 G : ARR

p

[q℄ = C

p

(arr

p

[q℄): (3)

We denote by C

0

p

the
lo
k de�ned by

C

0

p

(t) = C

p

(t) +ADJ

p

; (4)

where

ADJ

p

= T + Æ �
fn(ARR

p

): (5)

Finally, we assume that a
onstant � gives a bound on the delay between t

p

and t

q

for p and q in G:

8p; q 2 G : jt

p

� t

q

j 6 �: (6)

The intention is, of
ourse, that these assumptions are satis�ed if T is a
lo
k

time
orresponding to the start of a round, G the set of pro
esses whi
h do not

fail during that round, and C

p

and C

0

p

are the virtual
lo
ks of a pro
ess p at the

beginning and at the end of the round, respe
tively. The array arr

p

stores the

arrival time of SYNC messages re
eived by p. If q is not faulty, the message sent

by q to p at time t

q

is re
eived at time arr

p

[q℄ and the
orresponding
lo
k time is

given by ARR

p

[q℄. For a faulty pro
ess r, arr

p

[r℄ and ARR

p

[r℄ are arbitrary.

For every p of G, we denote by v

p

the time when C

0

p

rea
hes T + Æ. The main

obje
tive of this se
tion is to estimate the distan
e jv

p

� v

q

j where p and q are

arbitrary pro
esses of G. We also bound the
lo
k adjustment ADJ

p

.

7

3.3.2 Bounding v

p

Let p be an arbitrary element of G. We have C

0

p

(v

p

) = T +Æ so, using equations (4)

and (5),

C

p

(v

p

) =
fn(ARR

p

):

Let A = (A

1

; : : : ; A

n

) be the n-tuple formed by sorting the elements of ARR

p

in

in
reasing order. By de�nition of
fn, we have

C

p

(v

p

) =

A

f+1

+A

n�f

2

: (7)

Similarly, let a = (a

1

; : : : ; a

m

) be the tuple obtained by sorting in in
reasing

order the m elements of arr

p

whose index belongs to G. We then have a

1

6 a

2

6

: : : 6 a

m

, and ea
h a

i

is equal to arr

p

[q℄ for some element q of G.

Proposition 5

C

p

(a

1

) 6 A

f+1

6 C

p

(a

f+1

)

C

p

(a

m�f

) 6 A

n�f

6 C

p

(a

m

):

Proof: Sin
e C

p

is in
reasing, we have C

p

(a

1

) 6 C

(

a

2

) 6 : : : 6 C

p

(a

m

). By

onstru
tion, C

p

(a

1

); : : : ; C

p

(a

m

) is then a subsequen
e of A

1

; : : : ; A

n

; obtained by

removing fewer than f elements.

C

p

(a

1

) is equal to A

i

for some index i. There are at least m elements among

A

1

; : : : ; A

n

whi
h are larger than or equal to A

i

so i must be smaller than or equal

to n+1�m. By the assumptions on n and m, this implies that i 6 f +1 and then

C

p

(a

1

) = A

i

6 A

f+1

:

Similarly, there are at least f + 1 elements among A

1

; : : : ; A

n

whi
h are smaller

than or equal to C

p

(a

f+1

) so

A

f+1

6 C

p

(a

f+1

):

A symmetri
 reasoning proves the other part of the proposition. 2

Now, let k be any index between f + 1 and m� f ; sin
e m > 2f + 1, su
h a k

does exist. As a
onsequen
e of the previous proposition, we get

C

p

(a

1

) 6 A

f+1

6 C

p

(a

k

) 6 A

n�f

6 C

p

(a

m

)

be
ause a

f+1

6 a

k

6 a

m�f

. Using (7), we
an then bound C

p

(v

p

) as follows:

C

p

(a

1

) + C

p

(a

k

)

2

6 C

p

(v

p

) 6

C

p

(a

k

) + C

p

(a

m

)

2

: (8)

From these two bounds and Lemma 2, we obtain:

Proposition 6

a

1

+ a

k

2

� �

a

k

� a

1

2

6 v

p

6

a

k

+ a

m

2

+ �

a

m

� a

k

2

:

This proposition and relation (8) explain why the algorithm is fault-tolerant. The

midpoint
fn(ARR

p

) is equal to C

p

(v

p

) and is fairly insensitive to possibly wide

variation in f of the array elements. At worst,
fn(ARR

p

)
an be shifted towards

8

the lower or the upper ends of the interval given by relation (8). The two extremities

of the interval only depend on the values of ARR

p

for non-faulty pro
esses.

If follows immediately from the fa
t that C

p

is in
reasing and from relation (8)

that a

1

6 v

p

6 a

m

. The two reals a

1

and a

m

are the smallest and largest of the

elements arr

p

[r℄ for r 2 G. Let t

min

and t

max

be the smallest and largest of the

times t

r

for r 2 G. By (2),

a

1

> t

min

+ Æ � "

a

m

6 t

max

+ Æ + ";

and then

t

min

+ Æ � " 6 v

p

6 t

max

+ Æ + ": (9)

By (6), we also obtain for any non-faulty pro
ess q,

t

q

� � + Æ � " 6 v

p

6 t

q

+ � + Æ + ": (10)

This relation holds for arbitrary q, in parti
ular, in the
ase q = p. It will be used

to bound the
lo
k adjustment and determine a lower bound on �.

3.3.3 Bounding jv

p

� v

q

j

Assume p, k, and a = (a

1

; : : : ; a

m

) are de�ned as in the previous se
tion. Let q be

another element of G and let b = (b

1

; : : : ; b

m

) be formed by sorting in in
reasing

order the elements arr

q

[r℄ for r 2 G. The tuple b is then obtained from arr

q

in the

same way as a is obtained from arr

p

. Proposition 6 gives the following bounds for

v

p

and v

q

:

a

1

+ a

k

2

� �

a

k

� a

1

2

6 v

p

6

a

k

+ a

m

2

+ �

a

m

� a

k

2

;

b

1

+ b

k

2

� �

b

k

� b

1

2

6 v

q

6

b

k

+ b

m

2

+ �

b

m

� b

k

2

:

These bounds imply that

v

p

� v

q

6 (1 + �)

a

m

� b

1

2

+ (1� �)

a

k

� b

k

2

(11)

and, symmetri
ally,

v

q

� v

p

6 (1 + �)

b

m

� a

1

2

+ (1� �)

b

k

� a

k

2

: (12)

In order to evaluate the di�eren
e v

p

� v

q

we have to
ompare a

k

and b

k

. We need

the following lemma.

Lemma 7 Let d

1

; : : : ; d

l

and e

1

; : : : ; e

l

be two �nite sequen
es of reals, su
h that,

d

1

6 d

2

6 : : : 6 d

l

and e

1

6 e

2

6 : : : 6 e

l

. If there is a number x and a bije
tion h

from f1; : : : ; lg to f1; : : : ; lg su
h that

jd

i

� e

h(i)

j 6 x for i = 1; : : : ; l;

then we also have

jd

i

� e

i

j 6 x for i = 1; : : : ; l:

9

Proof: We reason by indu
tion on l. For the base
ase, l = 0, the property is

va
uously true. For the indu
tive
ase, assume d

1

; : : : ; d

l+1

and e

1

; : : : ; e

l+1

are two

ordered sequen
es and h and x satisfy the assumption. Let r = h(l + 1) and s be

su
h that h(s) = l + 1; we have

jd

l+1

� e

r

j 6 x; jd

s

� e

l+1

j 6 x; d

s

6 d

l+1

; and e

r

6 e

l+1

:

From these four inequalities, it is easy to see that

jd

s

� e

r

j 6 x and jd

l+1

� e

l+1

j 6 x:

Consider the mapping h

0

de�ned for i = 1; : : : ; l by

h

0

(i) =

(

r if i = s

h(i) otherwise:

It is
lear that h

0

is a bije
tion from f1; : : : ; lg to f1; : : : ; lg; in parti
ular, if r = l+1,

h

0

is the restri
tion of h to f1; : : : ; lg. We also have

jd

i

� e

h

0

(i)

j 6 x for i = 1; : : : ; l;

so we
an apply the indu
tion hypothesis. This gives jd

i

� e

i

j 6 x for i = 1; : : : ; l

and the inequality also holds for i = l + 1 as shown above. 2

As a
onsequen
e, we obtain the following property.

Proposition 8 For all i su
h that 1 6 i 6 m, ja

i

� b

i

j 6 2":

Proof: Sin
e (a

1

; : : : ; a

m

) is a permutation of the elements arr

p

[r℄ for r 2 G, there

is a bije
tion g from f1; : : : ;mg to G, su
h that

a

i

= arr

p

[g(i)℄ for i = 1; : : : ;m:

Similarly, there is a bije
tion h from f1; : : : ;mg to G su
h that

b

i

= arr

q

[h(i)℄ for i = 1; : : : ;m:

The
omposite g

0

= h

�1

Æ g is a bije
tion from f1; : : : ;mg to f1; : : : ;mg and

ja

i

� b

g

0

(i)

j = j arr

p

[g(i)℄� arr

q

[g(i)℄ j for i = 1; : : : ;m.

By assumption (2), j arr

p

[r℄ � arr

q

[r℄ j 6 2" for any r 2 G. It follows that

ja

i

� b

g

0

(i)

j 6 2" for i = 1; : : : ;m

and Lemma 7 gives

ja

i

� b

i

j 6 2" for i = 1; : : : ;m. 2

We
an now bound the di�eren
e jv

p

� v

q

j as follows.

Theorem 9

jv

p

� v

q

j 6 (1 + �)

�

2

+ 2":

10

Proof: Proposition 8 implies that (a

k

� b

k

) 6 2". By relation (11), we then have

v

p

� v

q

6 (1 + �)

a

m

� b

1

2

+ (1� �)":

Now for any two elements r and s of G, the two assumptions (2) and (6) mean that

arr

p

[r℄� arr

q

[s℄ 6 t

r

� t

s

+ 2" 6 � + 2":

This holds for arbitrary r and s so a

m

� b

1

6 � + 2" and then

v

p

� v

q

6 (1 + �)

� + 2"

2

+ (1� �)"

6 (1 + �)

�

2

+ 2":

By symmetry, we
an derive from relation (12) that

v

q

� v

p

6 (1 + �)

�

2

+ 2": 2

3.3.4 Bounding the Clo
k Adjustment

For a pro
ess p, the
lo
k adjustment ADJ

p

is the di�eren
e C

0

p

(t) � C

p

(t), whi
h

is
onstant for any t. For t = v

p

, we have C

0

p

(v

p

) = T + Æ. As noted previously,

t

p

� � + Æ � " 6 v

p

6 t

p

+ � + Æ + ";

then

C

p

(t

p

� � + Æ � ") 6 C

p

(v

p

) 6 C

p

(t

p

+ � + Æ + "):

The adjustment is then between the two limits below:

T + Æ � C

p

(t

p

+ � + Æ + ") 6 ADJ

p

6 T + Æ � C

p

(t

p

� � + Æ � "):

For the lower bound, we get

C

p

(t

p

+ � + Æ + ") 6 C

p

(t

p

) + (1 + �)(� + Æ + ");

then, sin
e C

p

(t

p

) = T ,

�(1 + �)(� + ")� �Æ 6 ADJ

p

:

The upper bound depends on whether � is smaller or larger than Æ�". If � 6 Æ�",

we obtain

C

p

(t

p

� � + Æ � ")� C

p

(t

p

) > (1� �)(�� + Æ � ");

then

ADJ

p

6 (1� �)(� + ") + �Æ:

In the other
ase,

C

p

(t

p

)� C

p

(t

p

� � + Æ � ") 6 (1 + �)(� � Æ + ");

and

ADJ

p

6 (1 + �)(� + ")� �Æ:

In both
ases, we have

ADJ

p

6 (� + ") + � j� � Æ + "j;

and the
lo
k adjustment is between the two bounds given by the following property.

Proposition 10

�(� + ")� � (� + Æ + ") 6 ADJ

p

6 (� + ") + � j� � Æ + "j:

11

Assumptions:

� jGj = m and m > n� f .

� C

p

(t

p

) = T .

� 8p; q 2 G : jt

p

� t

q

j 6 �.

� 8p; q 2 G : t

q

+ Æ � " 6 arr

p

[q℄ 6 t

q

+ Æ + ".

� 8p; q 2 G : ARR

p

[q℄ = C

p

(arr

p

[q℄).

� ADJ

p

= T + Æ �
fn(ARR

p

).

� 8t : C

0

p

(t) = C

p

(t) +ADJ

p

.

� C

0

p

(v

p

) = T + Æ.

Results:

� For any p 2 G and q 2 G,

jv

p

� v

q

j 6 (1 + �)

�

2

+ 2":

t

q

� � + Æ � " 6 v

p

6 t

q

+ � + Æ + ":

� For any p 2 G,

�(� + ")� �(� + Æ + ") 6 ADJ

p

6 (� + ") + �j� � Æ + "j:

Figure 3: Results of Se
tion 3.3

3.3.5 Summary

The main results obtained in this se
tion are summarized in Fig. 3.

3.4 Algorithm Parameters

3.4.1 Constraints on � and P

From now on, a
onstant � is �xed whi
h spe
i�es the degree of syn
hronization

to maintain. We assume that non-faulty pro
esses start a round within a real-time

delay � of one another and we want to ensure that the non-faulty pro
esses also

start the next round within � of one another. At the start of the �rst round, the

lo
al time of ea
h pro
ess is equal to T and the next round starts at lo
al time

T + P .

Using the same notations as previously, a pro
ess p
an
ompute
fn(ARR

p

)

as soon as it knows A

f+1

and A

n�f

. In the worst
ase, p has to wait for the last

message
oming from a pro
ess in G, that is, until time a

m

. Pro
ess p exe
utes

the
lo
k adjustment pro
edure a delay � after the start of a round, at real-time

u

p

su
h that C

p

(u

p

) = T + �. For the adjustment to be
orre
tly
omputed, we

must make sure that a

m

6 u

p

. As shown previously, a

m

6 t

p

+ � + Æ + ", and

12

C

p

(t

p

+ � + Æ + ") 6 T + (1 + �)(� + Æ + "). It is suÆ
ient to take � su
h that

� > (1 + �)(� + Æ + "): (13)

This ensures that u

p

> t

p

+�+ Æ+ " whi
h also implies u

p

> v

p

and u

p

> t

q

+ Æ+ "

for any non-faulty pro
ess q.

At time u

p

, p's lo
al
lo
k is equal to T +� and the adjustment ADJ

p

an be

at most (� + ") + � j� � Æ + "j. For p not to miss the next round, T + P must be

larger than the new
lo
k at the time of the
orre
tion. A lower bound for P is then

P > �+ (� + ") + � j� � Æ + "j: (14)

Assuming this
ondition is satis�ed, p starts the next round at time t

0

p

su
h that

C

0

p

(t

0

p

) = T +P . Let q be another non-faulty pro
ess and u

q

be su
h that C

q

(u

q

) =

T + �. The
lo
k
orre
tion
omputed by q at time u

q

assumes that ARR

q

[p℄ is

the arrival time of the message broad
ast by p at time t

p

. The message sent by p at

time t

0

p

must not arrive at q before time u

q

. P must then be large enough to ensure

t

0

p

+ Æ � " > u

q

:

Sin
e C

q

(u

q

)� C

q

(t

q

) = �, Lemma 1 yields:

u

q

6 t

q

+

�

1� �

:

We also have C

0

p

(t

0

p

) � C

0

q

(v

p

) = P � Æ whi
h is positive by (14). Using Lemma 1

again, we obtain

t

0

p

> v

p

+

P � Æ

1 + �

:

By (10), v

p

> t

q

� � + Æ � ", therefore

t

0

p

+ Æ � " > t

q

� � + 2Æ � 2"+

P � Æ

1 + �

:

A suÆ
ient
ondition to ensure t

0

p

+ Æ � " > u

q

is then

P � Æ

1 + �

� � + 2Æ � 2" >

�

1� �

;

or, equivalently,

P > (1 + �)(� + 2")� (1 + 2�)Æ +

1 + �

1� �

�: (15)

Depending on the value of �, � and the network parameters, this bound may be

larger or smaller than the bound given by (14).

If two non-faulty pro
esses p and q start a round at lo
al time T as measured

by their respe
tive
lo
ks C

p

and C

q

then the next round will start at real-time t

0

p

and t

0

q

su
h that

C

0

p

(t

0

p

) = T + P and C

0

q

(t

0

q

) = T + P:

By relations (13) and (14), P is larger than Æ. We also have that C

0

p

(v

p

) = C

0

q

(v

q

) =

T + Æ then using Lemma 3 and Theorem 9, we obtain

jt

0

p

� t

0

q

j 6 (1 + �)

�

2

+ 2"+ (P � Æ)

2�

1� �

2

:

13

� > (1 + �)(� + Æ + "):

P > �+ (� + ") + � j� � Æ + "j:

P > (1 + �)(� + 2")� (1 + 2�)Æ +

1+ �

1� �

�:

P � Æ 6

1� �

2

�

�

(1� �)

�

4

� "

�

:

Figure 4: Constraints on the Parameters.

For the invariant to be maintained, the delay jt

0

p

� t

0

q

j must be smaller than �. This

requires the following
ondition to be satis�ed

(P � Æ)

2�

1� �

2

6 (1� �)

�

2

� 2": (16)

The upper bound for P is then given by

P � Æ 6

1� �

2

�

�

(1� �)

�

4

� "

�

: (17)

In summary, the lower bounds for � and P ensure that for all p of G, the value

of ARR

p

at time u

p

satis�es assumptions (2) and (3). The message broad
ast by

q at time t

q

is re
eived by p before u

p

and no other message from q is re
eived by

p until after u

p

. The upper bound on P ensures that the
lo
k resyn
hronizations

are performed suÆ
iently often.

The lower bounds for � and P also guarantee that u

0

p

> u

q

for all non-faulty p

and q be
ause u

0

p

> t

0

p

+ Æ + � + " and u

q

< t

0

p

+ Æ � ". By Proposition 10 and the

onstraint on �, we have C

0

p

(u

p

) > T + Æ. The
lo
k
orre
tion
an set p's virtual

lo
k to a value smaller than T +� but more than T + Æ.

3.4.2 Optimal Syn
hronization

Figure 4 shows the ne
essary
onditions on � and P to ensure that a syn
hronization

bound � is maintained. The
onstraints
an be satis�ed if the two lower bounds

for P obtained from relations (14) and (15) by setting � = (1 + �)(� + Æ + ") are

smaller than the upper bound given by (17). This requirement is equivalent to the

three following
onstraints

(1� 11�+ 3�

2

� �

3

)

�

4

> (1 + �)"� �(1� 3�)Æ (18)

(1� 9�� �

2

+ �

3

)

�

4

> (1 + 2�� �

2

)"+ 2�

2

Æ if � 6 Æ � " (19)

(1� 10�+ �

2

)

�

4

> (1 + �)" if � > Æ � ": (20)

For small values of � these
onstraints are satis�ed in the following three
ases:

(5� 6�+ �

2

)" 6 (1� 10�+ �

2

)Æ

� >

4(1 + 2�� �

2

)"+ 8�

2

Æ

1� 9�� �

2

+ �

3

;

14

� If (5� 6�+ �

2

) " 6 (1� 10�+ �

2

) Æ then

�

min

=

4(1 + 2�� �

2

)"+ 8�

2

Æ

1� 9�� �

2

+ �

3

:

� If (1 + �)(1� �)

2

" > (1� 3�)(1� 10�+ �

2

)Æ then

�

min

=

4(1 + �)"� 4�(1� 3�)Æ

1� 11�+ 3�

2

� �

3

:

� Otherwise

�

min

=

4(1 + �)"

1� 10�+ �

2

:

Figure 5: Optimal Syn
hronization Bound.

(5� 6�+ �

2

)" > (1� 10�+ �

2

)Æ

(1 + �)(1� �)

2

" < (1� 3�)(1� 10�+ �

2

)Æ

� >

4(1 + �)"

1� 10�+ �

2

;

(1 + �)(1� �)

2

" > (1� 3�)(1� 10�+ �

2

)Æ

� >

4(1 + �)"� 4�(1� 3�)Æ

1� 11�+ 3�

2

� �

3

:

These results are obtained by a routine but lengthy
al
ulation and hold provided

� is small enough

2

. For a �xed �, the ratio Æ=" determines whi
h of the three above

ases apply. Negle
ting fa
tors of degree 2 or more, the �rst
ase
orresponds to

Æ=" > 5+44�, the se
ond to 1+12� < Æ=" < 5+44� and the last to 1 6 Æ=" 6 1+12�.

The parameter �
an be smaller than Æ � " only in the �rst
ase.

The smallest syn
hronization bound �

min

whi
h
an be maintained by the algo-

rithm is de�ned in Fig. 5. In pra
ti
e, the drift rate of hardware
lo
ks is very small;

� is typi
ally less than 10

�5

and fa
tors su
h as �", �

2

, �

2

Æ, et
. are negligible. The

optimal syn
hronization bound �

min

is approximately 4" in all three
ases and the

orresponding resyn
hronization period P is approximately 10"+ Æ.

Conversely, for a �xed resyn
hronization period P larger than 10"+ Æ, the syn-

hronization bound � given by (15) is very
lose to 4"+4�(P � Æ+ "). If P is large

and �(Æ�") is negligible in
omparison to �P , the bound is approximately 4"+4�P .

2

Requiring � 6 10

�2

is suÆ
ient.

15

T

T +�

T + Æ

t

p

t

q

u

p

u

q

u

0

q

T +R+�

u

0

p

Figure 6: Evolution of V C

p

and V C

q

3.5 Agreement

In this se
tion, we assume that the parameters satisfy the
onstraints given in

Fig. 4 and we examine the di�eren
e jV C

p

(t) � V C

q

(t)j where p and q are non-

faulty. Figure 6 illustrates how V C

p

and V C

q

an evolve from the start of a round

until the
lo
k
orre
tion of the subsequent round. Pro
ess p and q start the round

at real times t

p

and t

q

and adjust their respe
tive
lo
k at u

p

and u

q

. The next

lo
k adjustments are performed at times u

0

p

and u

0

q

.

In the interval [t

p

; u

p

℄ the
lo
k V C

p

is equal to C

p

and in (u

p

; u

0

p

℄ it is equal to

C

0

p

. Similarly, the
lo
k V C

q

is equal to C

q

in [t

q

; u

q

℄ and to C

0

q

in (u

q

; u

0

q

℄. Lemma 4

yields the following result.

Proposition 11 1. For t 2 [t

p

; u

p

℄ \ [t

q

; u

q

℄,

jC

p

(t)� C

q

(t)j 6

2�

1 + �

�+ (1� �) �:

2. For t 2 (u

p

; u

0

p

℄ \ (u

q

; u

0

q

℄,

jC

0

p

(t)� C

0

q

(t)j 6

2�

1 + �

�+ (1� �) �:

Proof. For t 2 [t

p

; u

p

℄\ [t

q

; u

q

℄, both C

p

(t) and C

q

(t) are in the interval [T; T +�℄.

Lemma 4 together with the fa
t that jt

p

� t

q

j 6 � gives the �rst part.

For the se
ond part, we know that u

p

> v

p

and u

q

> v

q

, therefore t is larger

than both v

p

and v

q

. This means that T + Æ 6 C

0

p

(t) 6 T + � + P and T + Æ 6

C

0

q

(t) 6 T +�+ P . Lemma 4
an then be applied and we get

jC

0

p

(t)� C

0

q

(t)j 6

2�

1 + �

(P +�� Æ) + (1� �)

�

(1 + �)

�

2

+ 2"

�

:

16

By assumption, P satis�es inequality (16) so

2�

1 + �

(P � Æ) 6 (1� �)

�

(1� �)

�

2

� 2"

�

:

The result follows from the last two relations. 2

The �rst part of this lemma is only used to estimate the worst
ase skew at the

start of the algorithm, that is, for T = T

0

. For all other values of T , the interval

[t

p

; u

p

℄ is in
luded in [u

p�1

; u

p

℄. Using (14) and (13), it is readily veri�ed that

(P +�� Æ) > (1 + �)

�

(1 + �)

�

2

+ 2"

�

:

This means that the skew between C

0

p

and C

0

q

an be as large as the bound given

in
ase 2) above.

We now
onsider the transient phase whi
h o

urs during a round when some

pro
esses have updated their
lo
ks and others have not. For this intermediate

phase, the worst
ase skew is given by the following proposition.

Proposition 12 If u

p

6 t 6 u

q

then

jC

0

p

(t)� C

q

(t)j 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

Proof: The lower bound on � ensures that u

p

> v

p

and u

p

> t

q

+ Æ + ". We then

have

(1� �)(t� v

p

) 6 C

0

p

(t)� C

0

p

(v

p

) 6 (1 + �)(t� v

p

);

(1� �)(t� t

q

) 6 C

q

(t)� C

q

(t

q

) 6 (1 + �)(t� t

q

):

Sin
e C

0

p

(v

p

) = T + Æ and C

q

(t

q

) = T , it follows that

C

0

p

(t)� C

q

(t) > Æ + (1� �)(t� v

p

)� (1 + �)(t� t

q

)

> Æ � 2�(t� t

q

) + (1� �)(t

q

� v

p

)

> Æ � 2�(u

q

� t

q

) + (1� �)(t

q

� v

p

);

and

C

0

p

(t)� C

q

(t) 6 Æ + (1 + �)(t� v

p

)� (1� �)(t� t

q

)

6 Æ + 2�(t� t

q

) + (1 + �)(t

q

� v

p

)

6 Æ + 2�(u

q

� t

q

) + (1 + �)(t

q

� v

p

):

Sin
e C

p

(u

p

) = T +�, we have

u

q

� t

q

6

�

1� �

;

and by (10), we also get

�(� + Æ + ") 6 t

q

� v

p

6 � � Æ + ":

As a
onsequen
e, the di�eren
e C

0

p

(t)� C

q

(t) satis�es the two inequalities below

C

0

p

(t)� C

q

(t) > �

2�

1� �

�� (1� �)(� + ") + � Æ;

C

0

p

(t)� C

q

(t) 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

17

� If u

p

< t 6 u

0

p

and u

q

< t 6 u

0

q

then

jC

0

p

(t)� C

0

q

(t)j 6

2�

1 + �

�+ (1� �) �:

� If u

p

6 t 6 u

q

then

jC

0

p

(t)� C

q

(t)j 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

Figure 7: Worst Case Skew.

The result follows by taking the absolute values of these bounds. 2

Proposition 11 and 12
over the two possible
ases. The parameter
onstraints

imply that u

p

< u

0

q

and u

q

< u

0

p

. When V C

p

= C

0

p

, i.e. between u

p

and u

0

p

, the

virtual
lo
k of q is equal to either C

q

or C

0

q

. In the worst
ase, the skew between

the
lo
ks V C

p

and V C

q

is then bounded as shown in Proposition 12:

jV C

p

(t)� V C

q

(t)j 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

The maximal skew
an be attained if t

q

= t

p

+ � and the physi
al
lo
k of p and q

run at rate (1 + �) and (1� �), respe
tively. In su
h a
ase, the skew at time u

p

is

V C

p

(u

p

)� V C

q

(u

p

) = C

p

(u

p

)� C

q

(u

p

)

=

2�

1 + �

�+ (1� �) �:

This is the maximal skew given by Proposition 11. Even though the virtual
lo
ks

of non-faulty pro
esses
annot be ahead of V C

p

, it is possible for p to further

advan
e its lo
al
lo
k at time u

p

. This may happen, for example, in the following

ir
umstan
es:

� f pro
esses are faulty and send messages whi
h arrive at p before t

p

+ Æ � ".

� A majority of the non-faulty pro
esses start the round at exa
tly the same

time as p (i.e. at time t

p

) and the messages from these non-faulty pro
esses

all arrive at p at time t

p

+ Æ � ".

As a result,
fn(ARR

p

) = T + (1 + �)(Æ � ") and ADJ

p

= (1 + �)" � �Æ. For

realisti
 values of � and Æ, the
orre
tion is positive. Pro
ess p advan
es its lo
al

lo
k and the di�eren
e between V C

p

and V C

q

in
reases. The value of v

p

in this

ase is t

p

+ Æ� ". For the remainder of the interval (u

p

; u

q

℄ the two
lo
ks
ontinue

to drift apart and it
an be shown that at time u

q

,

V C

p

(u

q

)� V C

q

(u

q

) = C

0

p

(u

q

)� C

q

(u

q

)

=

2�

1� �

�+ (1 + �)(� + ")� � Æ:

18

T

0

T

0

+ Æ

T

0

+R

T

0

+R+ Æ

T

0

+ 2R

T

0

+ 2R+ Æ

x

0

y

0

y

1

x

1

z

0

z

1

w

0

w

1

C

1

C

2

Figure 8: Envelope of the Virtual Clo
ks

3.6 Validity

Assume p is not faulty and X is a
lo
k time su
h that X > T

0

and let t be su
h

that V C

p

(t) = X . The previous se
tions have shown that the lo
al
lo
ks of other

pro
esses at time t are
lose to X . In this se
tion, we examine how
lose the virtual

lo
ks are from real-time.

The non-faulty pro
esses are assumed to be initially syn
hronized within a delay

� of one another. There are then two reals x

0

and y

0

su
h that y

0

6 x

0

+ � and all

the non-faulty pro
esses start the �rst round within the real-time interval [x

0

; y

0

℄.

From x

0

and y

0

, we
onstru
t four sequen
es (x

i

)

i2N

, (y

i

)

i2N

, (z

i

)

i2N

and (w

i

)

i2N

as follows.

z

i

= x

i

+ Æ � "

w

i

= y

i

+ Æ + "

x

i+1

= z

i

+

1

1 + �

(P � Æ)

y

i+1

= w

i

+

1

1� �

(P � Æ):

The �rst round starts at
lo
k time T

0

and for i > 1, we denote by T

i

= T

0

+ iP ,

the
lo
k time
orresponding to the start of round i. In order to simplify the

analysis, we assume

� 6

"

Æ + "

:

This
ondition holds in pra
ti
e and it implies � 6 "=(Æ � "). As a result, the two

19

following inequalities are satis�ed:

1�

"

Æ

6

1

1 + �

and

1

1� �

6 1 +

"

Æ

:

Under these assumptions, the virtual
lo
ks of all the non-faulty pro
esses are within

the area delimited by the two
urves C

1

and C

2

shown in Fig. 8. The �rst
urve, C

1

,

is the union of segments joining the points of
oordinates (x

i

; T

i

) and (z

i

; T

i

+ Æ)

and the se
ond
urve, C

2

, joins the points of
oordinates (y

i

; T

i

) and (w

i

; T

i

+ Æ).

More pre
isely, C

1

is the set of points of
oordinates (

1

(X); X) where X > T

0

and

1

is the mapping from
lo
k time to real time de�ned as follows:

1

(X) = x

i

+ (1�

"

Æ

) [X � T

i

℄ if T

i

6 X < T

i

+ Æ

1

(X) = z

i

+

1

1 + �

[X � (T

i

+ Æ)℄ if T

i

+ Æ 6 X < T

i+1

:

Similarly, C

2

is the set of points (

2

(X); X) where X > T

0

and

2

(X) = y

i

+ (1 +

"

Æ

) [X � T

i

℄ if T

i

6 X < T

i

+ Æ

2

(X) = w

i

+

1

1� �

[X � (T

i

+ Æ)℄ if T

i

+ Æ 6 X < T

i+1

:

If p is a non-faulty pro
ess and V C

p

(t) = X where X > T

0

then we show that t is

within the interval [

1

(X);

2

(X)℄.

Let T = T

i

= T

0

+ iP for an arbitrary round i. For all non-faulty pro
ess q

the
lo
ks C

q

and C

0

q

and the reals t

q

, u

q

and v

q

are de�ned as previously. The

following lemma shows that the property holds for X su
h that T 6 X 6 T + P

provided the non-faulty pro
esses start round i between x

i

and y

i

.

Lemma 13 Assuming x

i

6 t

q

6 y

i

for all non-faulty pro
ess q, then

� if T 6 X 6 T +� and C

p

(t) = X then

1

(X) 6 t 6

2

(X),

� if T + Æ 6 X 6 T + P and C

0

p

(t) = X then

1

(X) 6 t 6

2

(X).

Proof: For the �rst part, Lemma 1 yields:

t

p

+

1

1 + �

(X � T) 6 t 6 t

p

+

1

1� �

(X � T):

By assumption, t

p

is in the interval [x

i

; y

i

℄. It is easy to
he
k that the left hand

side is smaller than

1

(X) and the right hand side larger than

2

(X).

For any non-faulty pro
ess q, the algorithm ensures that jt

p

� t

q

j 6 �. The

minimal and maximal elements among the instants t

q

are between x

i

and y

i

. Using

relation (9), it follows that

x

i

+ Æ � " 6 v

p

6 y

i

+ Æ + ";

that is, z

i

6 v

p

6 w

i

. As previously, Lemma 1 gives

v

p

+

1

1 + �

[X � (T + Æ)℄ 6 t 6 v

p

+

1

1� �

[X � (T + Æ)℄;

for X > T + Æ and this implies

1

(X) 6 t 6

2

(X). 2

Within the round starting at time T , the
lo
k V C

p

is either equal to C

p

or to

C

0

p

. Let t be between t

p

and t

0

p

and let X = V C

p

(t). We have either t

p

6 t 6 u

p

20

and V C

p

(t) = C

p

(t) or u

p

< t 6 t

0

p

and V C

p

(t) = C

0

p

(t). In the �rst
ase, X must

be between T and T +�. In the other
ase, C

0

p

(u

p

) < X 6 T + P . We noted in

se
tion 3.4 that C

0

p

(u

p

) > T +Æ, therefore T +Æ < X 6 T +P . The previous lemma

implies then that

1

(X) 6 t 6

2

(X)

for all t su
h that t

p

6 t 6 t

0

p

and X = V C

p

(t). Taking t = t

0

p

we have V C

p

(t

0

p

) =

T

i+1

and

x

i+1

6 t

0

p

6 y

i+1

by de�nition of

1

and

2

. As a
onsequen
e, the assumption of Lemma 13 is satis�ed

for round i+ 1: the non-faulty pro
esses start round i+ 1 between x

i+1

and y

i+1

.

Sin
e the assumption also holds for the �rst round, we obtain by indu
tion the

following property.

Proposition 14 For all X > T

0

and all t su
h that V C

p

(t) = X,

1

(X) 6 t 6

2

(X):

The
urve C

1

an be approximated by the straight line passing through the

points of
oordinates (z

i

; T

i

+ Æ). These points are
ir
led in Fig. 8. The slope of

this line is given by

�

1

=

P

z

i+1

� z

i

= (1 + �)

P

P � "+ �(Æ + ")

:

Similarly the
urve C

2

an be approximated by the line whi
h passes through the

points of
oordinates (y

i

; T

i

+ Æ) and the slope of this line is

�

2

=

P

w

i+1

� w

i

= (1� �)

P

P + "� �(Æ + ")

:

It follows that the
lo
k V C

p

of a non-faulty pro
ess p is within a linear envelope

of real time.

Proposition 15 For all t > y

0

,

T

0

+ �

2

(t� y

0

) 6 V C

p

(t) 6 T

0

+ �

1

(t� x

0

):

From the assumption � 6 "=(Æ+ "), it is easy to see that the
oeÆ
ients �

1

and �

2

satisfy the two following inequalities

�

2

6 1� � and 1 + � 6 �

1

:

In the worst
ase, the virtual
lo
ks of non-faulty pro
esses
an then drift more

from real-time than their physi
al
lo
ks. The extra drift is
aused by the im-

pre
ision " on
ommuni
ation. During ea
h resyn
hronization, the virtual
lo
ks

an be shifted from real-time by �" depending on the a
tual transmission delays

experien
ed during the round.

Unlike the worst
ase skew, the rate of virtual drift in
reases as P diminishes.

Smaller values of P ensures that the virtual
lo
ks are better syn
hronized with one

another but may result in a faster drift from real-time.

21

4 Con
lusion

The main properties of the Wel
h-Lyn
h
lo
k syn
hronization algorithms are given

by Propositions 11 and 12, and by Propositions 14 and 15. For parameters �, �,

and P whi
h satisfy the
onditions of Fig 4, the algorithm maintains the
lo
ks of

two non-faulty pro
esses p and q in approximate agreement and the virtual
lo
ks

are limited by two linear fun
tions of real-time as shown in Proposition 15.

In order to minimize the skew, � must be as small as possible. The minimal

value of � is (1 + �)(� + Æ + ") and for this value, Proposition 11 and 12 give

jV C

p

(t)� V C

q

(t)j 6

(1 + �)

2

1� �

(� + ") +

�(1 + 3�)

1� �

Æ;

for all t > x

0

. As shown at the end of Se
t. 3.5, this bound
an be e�e
tively

attained. Negle
ting fa
tors of degree at least two in �, the above relation gives the

worst skew:

 = (1 + 3�)(� + ") + �Æ:

This improves slightly over the bound below obtained in the original analysis of the

algorithm [2℄:

 = (1 + 7�)(� + ") + 3�Æ:

This result is based on a slightly di�erent model of
lo
ks than ours but the two

are equivalent if fa
tors of degree two or more in � are negligible.

To maintain a
hosen syn
hronization level �, it is reasonable to take P as large

as possible. A

ording to relation (17), the maximal value of P is approximately:

P =

�

4�

�

"

�

�

�

4

+ Æ:

As previously, this improves a little over the original bound given in [2℄:

P =

�

4�

�

"

�

� 2� � Æ � 2":

Despite these slight improvements, the results obtained in the pre
eding se
tions

are essentially the same as given in [2℄. The di�eren
e between the two estimates for

 is not signi�
ant in pra
ti
e unless �Æ is large. Similarly, the di�eren
e between

the two upper bounds for P is fairly small, ex
ept for large values of Æ.

The new elements of the proof of
orre
tness are developed in Se
t. 3.3. In

parti
ular Theorem 9 gives an a

urate estimate of the e�e
t of the
lo
k resyn-

hronization pro
edure. As a result, the bounds on
lo
k skew given in Se
t. 3.5

are tight.

Referen
es

[1℄ L. Lamport and P. M. Melliar-Smith. Syn
hronizing Clo
ks in the Presen
e of

Faults. Journal of the ACM, 32(1):52{78, January 1985.

[2℄ J. Lundelius Wel
h and N. Lyn
h. A New Fault-Tolerant Algorithm for Clo
k

Syn
hronization. Information and Computation, 77:1{36, April 1988.

[3℄ P. Miner. Veri�
ation of Fault-Tolerant Clo
k Syn
hronization Systems. Te
h-

ni
al Report TP-3349, NASA, 1993.

22

