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Abstrat

This note desribes the Welh-Lynh fault-tolerant algorithm for lok synhro-

nization. The original proof given by Welh and Lynh shows that the loks of

non-faulty nodes are maintained in approximate agreement. The worst-ase skew is

bounded by a onstant whih depends on network and algorithm parameters. We

give a simpli�ed proof of orretness and obtain tight synhronization bounds.
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1 Introdution

In [2℄, Welh and Lynh present a fault-tolerant algorithm for lok synhronization

in distributed systems. The algorithm is intended for a fully onneted network of

n proesses, less than a third of whih are faulty. Byzantine failures are tolerated,

that is, the behaviour of faulty proesses is arbitrary.

The ommuniation network is assumed to be reliable and the ommuniation

delays are bounded. The minimal and maximal transmission delay are spei�ed

using two onstants Æ and " suh that 0 6 " < Æ: the delay for any message is

between Æ � " and Æ + ".

Eah proess has a physial lok whih an drift slowly from real time at a rate

bounded by a small onstant � suh that 0 < � � 1. If a lok C does not fail

during a real time interval [t

1

; t

2

℄ then

(1� �)(t

2

� t

1

) 6 C(t

2

)� C(t

1

) 6 (1 + �)(t

2

� t

1

);

where C(t

1

) and C(t

2

) denote the value of lok C at time t

1

and t

2

, respetively.

The elapsed lok time C(t

2

) � C(t

1

) is within �(t

2

� t

1

) of the real time delay

t

2

� t

1

. During the same interval, the physial loks of two proesses an drift

apart by as muh as 2�(t

2

� t

1

). Even for small values of �, the error may beome

signi�ant for large values of t

2

. In order to ensure that all the proesses have a

onsistent view of time, it is neessary to regularly resynhronize their loks.

We assume that a proess p has no ontrol over its physial lok PC

p

. Instead,

the loal time for p is given by a virtual lok V C

p

obtained by adding a orretion

to PC

p

. The orretion is periodially omputed by p and is stored in a loal

variable CORR

p

. The virtual lok of proess p is then de�ned by

V C

p

(t) = PC

p

(t) + CORR

p

(t);

where CORR

p

(t) denotes the ontent of the orretion variable at real time t.

The algorithm runs in suessive rounds during whih proesses exhange infor-

mation about their loks and perform a orretion to their loal lok. Initially,
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the virtual loks of non-faulty proesses are approximately synhronized: all the

non-faulty proesses start the �rst round within a delay � of eah other. Under this

assumption, the algorithm ensures the following properties:

� Agreement: The skew, that is, the di�erene between the virtual loks of any

two non-faulty proesses at any real time is bounded. There is a onstant 

suh that, for all real time t and all non-faulty proesses p and q,

jV C

p

(t)� V C

q

(t)j 6 :

� Validity: The loks of non-faulty proesses are within a linear envelope of

real-time.

The purpose of this note is to give a simpli�ed proof of orretness of the Welh-

Lynh algorithm and to provide tight synhronization bounds. The algorithm is

desribed in setion 2 and the proof of orretness is given in setion 3.

2 Algorithm

The algorithm of Welh and Lynh is similar to the interative onvergene algo-

rithm of Lamport and Melliar-Smith [1℄. Every non-faulty proess p reads the loks

of all the other proesses at regular intervals. From these readings, p obtains an

estimate of the drift between its virtual lok and the loks of the other proesses.

A orretion to p's loal lok is then omputed by applying a fault-tolerant aver-

aging funtion to the estimates. The two algorithms di�er only in the methods of

reading loks and in the averaging funtions used. Both assume that the loks

are synhronized initially.

The proesses are numbered from 1 to n. We denote by f the maximal number

of faults the algorithm an tolerate; by assumption, we have n > 3f + 1. The

averaging funtion used in the algorithm of Welh and Lynh is the fault-tolerant

midpoint

1

de�ned as follows. Given an array A of n real numbers, the fault-tolerant

midpoint of A, denoted by fn(A), is obtained by disarding the f largest and the

f smallest elements of A and by taking the arithmeti mean of the maximum and

minimum of the remaining elements. If A[1℄ 6 A[2℄ 6 : : : 6 A[n℄, we then have

fn(A) =

A[f + 1℄ +A[n� f ℄

2

:

For an arbitrary array, fn(A) an be obtained by �rst sorting the elements in

inreasing order and then applying the formula above.

Figure 1 gives an informal desription of the algorithm. A proess p exeutes

a main program whih onsists of repeatedly broadasting a message SYNC and

waiting for a delay � before omputing a orretion to the loal lok. In parallel,

every proess stores the arrival time of any SYNC message it reeives in an array

ARR

p

. The arrival times and the delays are of ourse measured with respet to the

loal lok V C

p

. Two loal variables are used in addition to ARR

p

and CORR

p

:

ADJ

p

is the lok adjustment and T indiates the time of the next broadast.

The two parameters T

0

and P determine when the broadasts take plae: the

�rst broadast is exeuted at loal time T

0

and the subsequent ones at T

0

+ P ,

T

0

+ 2P , et. The parameter � determines how long a proess has to wait after a

broadast before performing the lok orretion.

For simpliity, we assume that broadasting a message, omputing the adjust-

ment, and storing arrival times are instantaneous operations. If two SYNCmessages

1

We use the terminology of [3℄.
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T := T

0

repeat forever

wait until V C

p

= T ;

broadast SYNC;

wait for � time units;

ADJ

p

:= T + Æ � fn(ARR

p

);

CORR

p

:= CORR

p

+ADJ

p

;

T := T + P

end of loop.

on reeption of SYNC from q do ARR

p

[q℄ := V C

p

.

Figure 1: Pseudo Code for Proess p.

are reeived from two proesses simultaneously, the orresponding elements of ARR

p

are then equal. Also, the lok adjustment operations are exeuted instantaneously

when the delay � has elapsed. The orretion takes e�et immediately after this

delay, that is, at the end of the loop. We also assume that broadast messages are

reeived by every proesses, inluding the sender.

For a orret exeution of the algorithm, P and � have to satisfy several ondi-

tions whih depend on the network and lok parameters (i.e. Æ, ", and �) and on

the degree of synhronization required. These onstraints are obtained by a formal

analysis of the algorithm and will be spei�ed preisely in the sequel.

Let T = T

0

+ iP denote the starting time of an arbitrary round i. All the non-

faulty proesses broadast SYNC when their loal loks reads T and wait until

T +� to ompute the adjustment to their lok.

Assume p and q are two non-faulty proesses. Let u

p

be the real-time when

p adjust its lok, that is, V C

p

(u

p

) = T + �. Let x be the arrival time at p of

the message sent by q at he start of the round. The onstraints on � ensure that

V C

p

(x) 6 T + �, or equivalently that x 6 u

p

. Other assumptions on P imply

that the next message from q is reeived by p after u

p

. This means that at time

u

p

, the element ARR

p

[q℄ is equal to V C

p

(x). The value ARR

p

[q℄ is used by p to

estimate the drift between its loal lok and the lok of q: The message was sent

when V C

q

was equal to T and took a delay between Æ � " and Æ + " to reah p.

During the interval, V C

q

has progressed to a value whih is around T + Æ, that is,

V C

q

(x) � T + Æ. Therefore p an estimate that the di�erene between V C

q

(x) and

V C

p

(x) is approximately (T +Æ)�ARR

p

[q℄. Sine � is very small, the drift between

V C

p

and V C

q

remains fairly onstant until p's lok is adjusted:

V C

q

(u

p

)� V C

p

(u

p

) � (T + Æ)�ARR

p

[q℄:

The auray of this estimate depends on the impreision " on transmission delays

and on the rate � of lok drift.

When p has reeived a SYNC message from all the non-faulty proesses, it an

ompute the orretion to its lok. The adjustment ADJ

p

is the fault-tolerant

average of the estimated drifts:

ADJ

p

= T + Æ � fn(ARR

p

):

If fn(ARR

p

) is larger than T + Æ then p's lok is urrently ahead of the average.

Conversely, if fn(ARR

p

) is smaller than T + Æ then V C

p

is behind the average.
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The variable CORR

p

is then updated to anel the average drift:

CORR

p

:= CORR

p

+ADJ

p

:

The virtual lok V C

p

is set bak or forth by the amount jADJ

p

j.

The funtion fn is essential to the orretness of the algorithm. It ensures that

the lok adjustment ADJ

p

is fairly insensitive to the presene of faulty elements in

the array ARR

p

. Furthermore, fn has an averaging e�et whih implies that after

the adjustments, the loks V C

p

and V C

q

of two non-faulty proesses are better

synhronized than they were at the start of the round.

Between two suessive resynhronization, the virtual loks an drift apart

form one another but adjusting the loks suÆiently often ensure that the skew

is bounded. The algorithm assumes that all the non-faulty proesses start the

�rst round within a real-time delay � of one another. The values of � and P are

determined from � in order to ensure that the non-faulty proesses also start the

other rounds within � of one another.

From the latter invariant, a bound on the worst ase skew an be derived. The

lok adjustment omputed during eah round is small in omparison with the

length of eah round and this ensures that the virtual loks are within a linear

envelope of real-time.

3 Formal Analysis

3.1 Overview

We represent both real time and lok time by the reals. By onvention, lowerase

letters are used to denote real time quantities and upperase letters to denote lok

times. Cloks are de�ned as follows:

De�nition 1 A lok C is a mapping from the reals to the reals suh that, for all

t

1

and t

2

, if t

1

6 t

2

then

(1� �)(t

2

� t

1

) 6 C(t

2

)� C(t

1

) 6 (1 + �)(t

2

� t

1

):

We assume that every proess p has a lok PC

p

whih satis�es the above onstraint;

the rate of drift of PC

p

is no more than � over the interval [t

1

; t

2

℄, whatever t

1

and

t

2

. This means that the physial loks are assumed to be reliable; only proesses

an fail. These is no loss of generality beause the behaviour of faulty proesses is

arbitrary and beause a proess annot aess another proess's lok diretly.

The ruial part of the analysis is to examine the e�et of a single resynhro-

nization round on the virtual loks. Assume a non-faulty proess p starts a round

at real-time t

p

suh that V C

p

(t

p

) = T , performs the orretion at real-time u

p

suh that V C

p

(u

p

) = T + �, and starts the subsequent round at t

0

p

suh that

V C

p

(t

0

p

) = T + P . Let orr

p

and orr

0

p

denote the value of the variable CORR

p

at time t

p

and t

0

p

, respetively. We have assumed that the lok adjustment takes

e�et immediately after u

p

, so

V C

p

(t) =

(

PC

p

(t) + orr

p

if t

p

6 t 6 u

p

PC

p

(t) + orr

0

p

if u

p

< t 6 t

0

p

:

The round an then be split in two parts. From t

p

to u

p

, p's loal time is given by

the lok C

p

suh that:

C

p

(t) = PC

p

(t) + orr

p

;
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and, from u

p

to t

0

p

, p's loal time is given by C

0

p

de�ned by:

C

0

p

(t) = PC

p

(t) + orr

0

p

:

The two suessive loks are related by the equation

C

0

p

(t) = C

p

(t) + T + Æ � fn(ARR

p

);

where the value of the array ARR

p

is taken at time u

p

.

Two non-faulty proesses p and q swith then from old loks C

p

and C

q

to new

loks C

0

p

and C

0

q

during the round. Sine C

p

(t

p

) = C

q

(t

q

) = T , the distane jt

p

�t

q

j

gives a measure of the degree of synhronization between C

p

and C

q

. Similarly, we

an evaluate the degree of synhronization of C

0

p

and C

0

q

by measuring the distane

jv

p

� v

q

j for two points v

p

and v

q

suh that C

0

p

(v

p

) = C

0

q

(v

q

). Sine the lok

orretions are based on estimates for lok times whih are lose to T + Æ, it is

natural to hoose v

p

and v

q

suh that

C

p

(v

p

) = C

q

(v

q

) = T + Æ:

In the �rst part of the proof, we establish the following fundamental result. If for a

given � and for all non-faulty proesses p and q, we have

jt

p

� t

q

j 6 �

then we also have

jv

p

� v

q

j 6 (1 + �)

�

2

+ 2";

for all non-faulty p and q. This essential property shows that the new loks are

more losely synhronized with eah other than the old ones.

The following setion lists various lemmas about loks whih are used in the se-

quel. The essential synhronization property is proved in setion 3.3. In setion 3.4,

we derive onstraints on the parameters � and P for the algorithm to exeute prop-

erly and ahieve a given synhronization bound �. If the onditions are satis�ed

then the algorithm guarantees that all the non-faulty proesses start eah round

within a real-time delay � of one another. The onstraints on � and P have a

solution provided � is larger than an optimal �

min

whih is equal to approximately

4". The worst-ase skew is determined in Set. 3.5, using the assumptions on �

and P . Setion 3.6 shows that the virtual loks of non-faulty proesses are within

two linear funtions of real-time.

3.2 Clok Properties

It is easy to see that a lok is stritly inreasing, ontinuous, and not bounded.

For any real T , there is a unique t suh that C(t) = T . The lemma below is another

easy onsequene of the de�nition:

Lemma 1 For a lok C and two reals t

1

, t

2

suh that t

1

6 t

2

,

C(t

2

)� C(t

1

)

1 + �

6 t

2

� t

1

6

C(t

2

)� C(t

1

)

1� �

:

The following lemma is important for proving the resynhronization property.

It shows that, if C(v) is the mean of C(t) and C(u) then v is very lose to (t+u)=2.
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Lemma 2 If t 6 u and C(v) =

1

2

(C(t) + C(u)) then

t+ u

2

� �

u� t

2

6 v 6

t+ u

2

+ �

u� t

2

:

Proof: Let X = (C(u)�C(t))=2 so that C(v)�C(t) = C(u)�C(v) = X: Sine C

is inreasing, we have t 6 v 6 u and Lemma 1 applied twie gives

t+X=(1 + �) 6 v 6 t+X=(1� �);

u�X=(1� �) 6 v 6 u�X=(1 + �):

Two ases an be distinguished:

� If X 6 (1� �

2

)(u� t)=2, we use

u�X=(1� �) 6 v 6 t+X=(1� �):

Sine X=(1� �) 6 (1 + �)(u� t)=2, we get

u� (1 + �)(u� t)=2 6 v 6 t+ (1 + �)(u� t)=2

whih simpli�es to

(u+ t)=2� �(u� t)=2 6 v 6 (u+ t)=2 + �(u� t)=2:

� If X > (1� �

2

)(u� t)=2, we use

t+X=(1 + �) 6 v 6 u�X=(1 + �)

and X=(1 + �) > (1� �)(u� t)=2 to obtain

t+ (1� �)(u� t)=2 6 v 6 u� (1� �)(u� t)=2:

By an elementary alulation, this gives the same relation as previously. The

expeted bound holds for v in both ases. 2

The bound is tight. X is omprised between (1��)(u�t)=2 and (1+�)(u�t)=2 and

it is possible to have X = (1� �

2

)(u� t)=2. In suh a ase, the distane between v

and (t+ u)=2 an be equal to �(u� t)=2.

In the following lemma, two loks C and C

0

are onsidered together with two

reals t and t

0

suh that C(t) = C

0

(t

0

) = X . The lemma gives a bound on the delay

ju� u

0

j for u and u

0

suh that C(u) = C(u

0

) = X + Y .

Lemma 3 If C(t) = C

0

(t

0

) = X and C(u) = C

0

(u

0

) = X + Y where Y > 0 then

ju� u

0

j 6 jt� t

0

j+

2�

1� �

2

Y:

The following lemma will be used to evaluate the skew between two loks C

and C

0

.

Lemma 4 Let X and Y be arbitrary reals. Given t and t

0

suh that C(t) = C

0

(t

0

) =

X then, for any x suh that X 6 C(x) 6 X +Y and X 6 C

0

(x) 6 X + Y , we have

jC(x)� C

0

(x)j 6

2�

1 + �

Y + (1� �) jt� t

0

j:

This bound an be reahed provided Y > (1+�)jt�t

0

j. The situation is illustrated in

Fig. 2. The two points of oordinates (x;C(x)) and (x;C

0

(x)) are ontained within

the area delimited by the two oblique lines of slope (1+ �) and (1� �). The bound

an be attained at the point u suh that u� t = Y=(1 + �). If Y < (1� �) jt� t

0

j,

no x an satisfy the assumptions of the lemma and if Y is between (1 � �) jt � t

0

j

and (1 + �) jt� t

0

j, the skew is no more than Y .
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Figure 2: Worst-ase Skew (Lemma 4)

3.3 Resynhronization Property

3.3.1 Assumptions

We assume that an arbitrary real T and a set G of m proesses are �xed, where

m > n� f . With every p of G are assoiated a lok C

p

and a real t

p

whih satisfy

C

p

(t

p

) = T: (1)

We also assume that two arrays arr

p

and ARR

p

are given for every p of G. ARR

p

and arr

p

are two arrays of n reals and satisfy the two onstraints below:

8q 2 G : t

q

+ Æ � " 6 arr

p

[q℄ 6 t

q

+ Æ + "; (2)

8q 2 G : ARR

p

[q℄ = C

p

(arr

p

[q℄): (3)

We denote by C

0

p

the lok de�ned by

C

0

p

(t) = C

p

(t) +ADJ

p

; (4)

where

ADJ

p

= T + Æ � fn(ARR

p

): (5)

Finally, we assume that a onstant � gives a bound on the delay between t

p

and t

q

for p and q in G:

8p; q 2 G : jt

p

� t

q

j 6 �: (6)

The intention is, of ourse, that these assumptions are satis�ed if T is a lok

time orresponding to the start of a round, G the set of proesses whih do not

fail during that round, and C

p

and C

0

p

are the virtual loks of a proess p at the

beginning and at the end of the round, respetively. The array arr

p

stores the

arrival time of SYNC messages reeived by p. If q is not faulty, the message sent

by q to p at time t

q

is reeived at time arr

p

[q℄ and the orresponding lok time is

given by ARR

p

[q℄. For a faulty proess r, arr

p

[r℄ and ARR

p

[r℄ are arbitrary.

For every p of G, we denote by v

p

the time when C

0

p

reahes T + Æ. The main

objetive of this setion is to estimate the distane jv

p

� v

q

j where p and q are

arbitrary proesses of G. We also bound the lok adjustment ADJ

p

.
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3.3.2 Bounding v

p

Let p be an arbitrary element of G. We have C

0

p

(v

p

) = T +Æ so, using equations (4)

and (5),

C

p

(v

p

) = fn(ARR

p

):

Let A = (A

1

; : : : ; A

n

) be the n-tuple formed by sorting the elements of ARR

p

in

inreasing order. By de�nition of fn, we have

C

p

(v

p

) =

A

f+1

+A

n�f

2

: (7)

Similarly, let a = (a

1

; : : : ; a

m

) be the tuple obtained by sorting in inreasing

order the m elements of arr

p

whose index belongs to G. We then have a

1

6 a

2

6

: : : 6 a

m

, and eah a

i

is equal to arr

p

[q℄ for some element q of G.

Proposition 5

C

p

(a

1

) 6 A

f+1

6 C

p

(a

f+1

)

C

p

(a

m�f

) 6 A

n�f

6 C

p

(a

m

):

Proof: Sine C

p

is inreasing, we have C

p

(a

1

) 6 C

(

a

2

) 6 : : : 6 C

p

(a

m

). By

onstrution, C

p

(a

1

); : : : ; C

p

(a

m

) is then a subsequene of A

1

; : : : ; A

n

; obtained by

removing fewer than f elements.

C

p

(a

1

) is equal to A

i

for some index i. There are at least m elements among

A

1

; : : : ; A

n

whih are larger than or equal to A

i

so i must be smaller than or equal

to n+1�m. By the assumptions on n and m, this implies that i 6 f +1 and then

C

p

(a

1

) = A

i

6 A

f+1

:

Similarly, there are at least f + 1 elements among A

1

; : : : ; A

n

whih are smaller

than or equal to C

p

(a

f+1

) so

A

f+1

6 C

p

(a

f+1

):

A symmetri reasoning proves the other part of the proposition. 2

Now, let k be any index between f + 1 and m� f ; sine m > 2f + 1, suh a k

does exist. As a onsequene of the previous proposition, we get

C

p

(a

1

) 6 A

f+1

6 C

p

(a

k

) 6 A

n�f

6 C

p

(a

m

)

beause a

f+1

6 a

k

6 a

m�f

. Using (7), we an then bound C

p

(v

p

) as follows:

C

p

(a

1

) + C

p

(a

k

)

2

6 C

p

(v

p

) 6

C

p

(a

k

) + C

p

(a

m

)

2

: (8)

From these two bounds and Lemma 2, we obtain:

Proposition 6

a

1

+ a

k

2

� �

a

k

� a

1

2

6 v

p

6

a

k

+ a

m

2

+ �

a

m

� a

k

2

:

This proposition and relation (8) explain why the algorithm is fault-tolerant. The

midpoint fn(ARR

p

) is equal to C

p

(v

p

) and is fairly insensitive to possibly wide

variation in f of the array elements. At worst, fn(ARR

p

) an be shifted towards

8



the lower or the upper ends of the interval given by relation (8). The two extremities

of the interval only depend on the values of ARR

p

for non-faulty proesses.

If follows immediately from the fat that C

p

is inreasing and from relation (8)

that a

1

6 v

p

6 a

m

. The two reals a

1

and a

m

are the smallest and largest of the

elements arr

p

[r℄ for r 2 G. Let t

min

and t

max

be the smallest and largest of the

times t

r

for r 2 G. By (2),

a

1

> t

min

+ Æ � "

a

m

6 t

max

+ Æ + ";

and then

t

min

+ Æ � " 6 v

p

6 t

max

+ Æ + ": (9)

By (6), we also obtain for any non-faulty proess q,

t

q

� � + Æ � " 6 v

p

6 t

q

+ � + Æ + ": (10)

This relation holds for arbitrary q, in partiular, in the ase q = p. It will be used

to bound the lok adjustment and determine a lower bound on �.

3.3.3 Bounding jv

p

� v

q

j

Assume p, k, and a = (a

1

; : : : ; a

m

) are de�ned as in the previous setion. Let q be

another element of G and let b = (b

1

; : : : ; b

m

) be formed by sorting in inreasing

order the elements arr

q

[r℄ for r 2 G. The tuple b is then obtained from arr

q

in the

same way as a is obtained from arr

p

. Proposition 6 gives the following bounds for

v

p

and v

q

:

a

1

+ a

k

2

� �

a

k

� a

1

2

6 v

p

6

a

k

+ a

m

2

+ �

a

m

� a

k

2

;

b

1

+ b

k

2

� �

b

k

� b

1

2

6 v

q

6

b

k

+ b

m

2

+ �

b

m

� b

k

2

:

These bounds imply that

v

p

� v

q

6 (1 + �)

a

m

� b

1

2

+ (1� �)

a

k

� b

k

2

(11)

and, symmetrially,

v

q

� v

p

6 (1 + �)

b

m

� a

1

2

+ (1� �)

b

k

� a

k

2

: (12)

In order to evaluate the di�erene v

p

� v

q

we have to ompare a

k

and b

k

. We need

the following lemma.

Lemma 7 Let d

1

; : : : ; d

l

and e

1

; : : : ; e

l

be two �nite sequenes of reals, suh that,

d

1

6 d

2

6 : : : 6 d

l

and e

1

6 e

2

6 : : : 6 e

l

. If there is a number x and a bijetion h

from f1; : : : ; lg to f1; : : : ; lg suh that

jd

i

� e

h(i)

j 6 x for i = 1; : : : ; l;

then we also have

jd

i

� e

i

j 6 x for i = 1; : : : ; l:

9



Proof: We reason by indution on l. For the base ase, l = 0, the property is

vauously true. For the indutive ase, assume d

1

; : : : ; d

l+1

and e

1

; : : : ; e

l+1

are two

ordered sequenes and h and x satisfy the assumption. Let r = h(l + 1) and s be

suh that h(s) = l + 1; we have

jd

l+1

� e

r

j 6 x; jd

s

� e

l+1

j 6 x; d

s

6 d

l+1

; and e

r

6 e

l+1

:

From these four inequalities, it is easy to see that

jd

s

� e

r

j 6 x and jd

l+1

� e

l+1

j 6 x:

Consider the mapping h

0

de�ned for i = 1; : : : ; l by

h

0

(i) =

(

r if i = s

h(i) otherwise:

It is lear that h

0

is a bijetion from f1; : : : ; lg to f1; : : : ; lg; in partiular, if r = l+1,

h

0

is the restrition of h to f1; : : : ; lg. We also have

jd

i

� e

h

0

(i)

j 6 x for i = 1; : : : ; l;

so we an apply the indution hypothesis. This gives jd

i

� e

i

j 6 x for i = 1; : : : ; l

and the inequality also holds for i = l + 1 as shown above. 2

As a onsequene, we obtain the following property.

Proposition 8 For all i suh that 1 6 i 6 m, ja

i

� b

i

j 6 2":

Proof: Sine (a

1

; : : : ; a

m

) is a permutation of the elements arr

p

[r℄ for r 2 G, there

is a bijetion g from f1; : : : ;mg to G, suh that

a

i

= arr

p

[g(i)℄ for i = 1; : : : ;m:

Similarly, there is a bijetion h from f1; : : : ;mg to G suh that

b

i

= arr

q

[h(i)℄ for i = 1; : : : ;m:

The omposite g

0

= h

�1

Æ g is a bijetion from f1; : : : ;mg to f1; : : : ;mg and

ja

i

� b

g

0

(i)

j = j arr

p

[g(i)℄� arr

q

[g(i)℄ j for i = 1; : : : ;m.

By assumption (2), j arr

p

[r℄ � arr

q

[r℄ j 6 2" for any r 2 G. It follows that

ja

i

� b

g

0

(i)

j 6 2" for i = 1; : : : ;m

and Lemma 7 gives

ja

i

� b

i

j 6 2" for i = 1; : : : ;m. 2

We an now bound the di�erene jv

p

� v

q

j as follows.

Theorem 9

jv

p

� v

q

j 6 (1 + �)

�

2

+ 2":

10



Proof: Proposition 8 implies that (a

k

� b

k

) 6 2". By relation (11), we then have

v

p

� v

q

6 (1 + �)

a

m

� b

1

2

+ (1� �)":

Now for any two elements r and s of G, the two assumptions (2) and (6) mean that

arr

p

[r℄� arr

q

[s℄ 6 t

r

� t

s

+ 2" 6 � + 2":

This holds for arbitrary r and s so a

m

� b

1

6 � + 2" and then

v

p

� v

q

6 (1 + �)

� + 2"

2

+ (1� �)"

6 (1 + �)

�

2

+ 2":

By symmetry, we an derive from relation (12) that

v

q

� v

p

6 (1 + �)

�

2

+ 2": 2

3.3.4 Bounding the Clok Adjustment

For a proess p, the lok adjustment ADJ

p

is the di�erene C

0

p

(t) � C

p

(t), whih

is onstant for any t. For t = v

p

, we have C

0

p

(v

p

) = T + Æ. As noted previously,

t

p

� � + Æ � " 6 v

p

6 t

p

+ � + Æ + ";

then

C

p

(t

p

� � + Æ � ") 6 C

p

(v

p

) 6 C

p

(t

p

+ � + Æ + "):

The adjustment is then between the two limits below:

T + Æ � C

p

(t

p

+ � + Æ + ") 6 ADJ

p

6 T + Æ � C

p

(t

p

� � + Æ � "):

For the lower bound, we get

C

p

(t

p

+ � + Æ + ") 6 C

p

(t

p

) + (1 + �)(� + Æ + ");

then, sine C

p

(t

p

) = T ,

�(1 + �)(� + ")� �Æ 6 ADJ

p

:

The upper bound depends on whether � is smaller or larger than Æ�". If � 6 Æ�",

we obtain

C

p

(t

p

� � + Æ � ")� C

p

(t

p

) > (1� �)(�� + Æ � ");

then

ADJ

p

6 (1� �)(� + ") + �Æ:

In the other ase,

C

p

(t

p

)� C

p

(t

p

� � + Æ � ") 6 (1 + �)(� � Æ + ");

and

ADJ

p

6 (1 + �)(� + ")� �Æ:

In both ases, we have

ADJ

p

6 (� + ") + � j� � Æ + "j;

and the lok adjustment is between the two bounds given by the following property.

Proposition 10

�(� + ")� � (� + Æ + ") 6 ADJ

p

6 (� + ") + � j� � Æ + "j:

11



Assumptions:

� jGj = m and m > n� f .

� C

p

(t

p

) = T .

� 8p; q 2 G : jt

p

� t

q

j 6 �.

� 8p; q 2 G : t

q

+ Æ � " 6 arr

p

[q℄ 6 t

q

+ Æ + ".

� 8p; q 2 G : ARR

p

[q℄ = C

p

(arr

p

[q℄).

� ADJ

p

= T + Æ � fn(ARR

p

).

� 8t : C

0

p

(t) = C

p

(t) +ADJ

p

.

� C

0

p

(v

p

) = T + Æ.

Results:

� For any p 2 G and q 2 G,

jv

p

� v

q

j 6 (1 + �)

�

2

+ 2":

t

q

� � + Æ � " 6 v

p

6 t

q

+ � + Æ + ":

� For any p 2 G,

�(� + ")� �(� + Æ + ") 6 ADJ

p

6 (� + ") + �j� � Æ + "j:

Figure 3: Results of Setion 3.3

3.3.5 Summary

The main results obtained in this setion are summarized in Fig. 3.

3.4 Algorithm Parameters

3.4.1 Constraints on � and P

From now on, a onstant � is �xed whih spei�es the degree of synhronization

to maintain. We assume that non-faulty proesses start a round within a real-time

delay � of one another and we want to ensure that the non-faulty proesses also

start the next round within � of one another. At the start of the �rst round, the

loal time of eah proess is equal to T and the next round starts at loal time

T + P .

Using the same notations as previously, a proess p an ompute fn(ARR

p

)

as soon as it knows A

f+1

and A

n�f

. In the worst ase, p has to wait for the last

message oming from a proess in G, that is, until time a

m

. Proess p exeutes

the lok adjustment proedure a delay � after the start of a round, at real-time

u

p

suh that C

p

(u

p

) = T + �. For the adjustment to be orretly omputed, we

must make sure that a

m

6 u

p

. As shown previously, a

m

6 t

p

+ � + Æ + ", and

12



C

p

(t

p

+ � + Æ + ") 6 T + (1 + �)(� + Æ + "). It is suÆient to take � suh that

� > (1 + �)(� + Æ + "): (13)

This ensures that u

p

> t

p

+�+ Æ+ " whih also implies u

p

> v

p

and u

p

> t

q

+ Æ+ "

for any non-faulty proess q.

At time u

p

, p's loal lok is equal to T +� and the adjustment ADJ

p

an be

at most (� + ") + � j� � Æ + "j. For p not to miss the next round, T + P must be

larger than the new lok at the time of the orretion. A lower bound for P is then

P > �+ (� + ") + � j� � Æ + "j: (14)

Assuming this ondition is satis�ed, p starts the next round at time t

0

p

suh that

C

0

p

(t

0

p

) = T +P . Let q be another non-faulty proess and u

q

be suh that C

q

(u

q

) =

T + �. The lok orretion omputed by q at time u

q

assumes that ARR

q

[p℄ is

the arrival time of the message broadast by p at time t

p

. The message sent by p at

time t

0

p

must not arrive at q before time u

q

. P must then be large enough to ensure

t

0

p

+ Æ � " > u

q

:

Sine C

q

(u

q

)� C

q

(t

q

) = �, Lemma 1 yields:

u

q

6 t

q

+

�

1� �

:

We also have C

0

p

(t

0

p

) � C

0

q

(v

p

) = P � Æ whih is positive by (14). Using Lemma 1

again, we obtain

t

0

p

> v

p

+

P � Æ

1 + �

:

By (10), v

p

> t

q

� � + Æ � ", therefore

t

0

p

+ Æ � " > t

q

� � + 2Æ � 2"+

P � Æ

1 + �

:

A suÆient ondition to ensure t

0

p

+ Æ � " > u

q

is then

P � Æ

1 + �

� � + 2Æ � 2" >

�

1� �

;

or, equivalently,

P > (1 + �)(� + 2")� (1 + 2�)Æ +

1 + �

1� �

�: (15)

Depending on the value of �, � and the network parameters, this bound may be

larger or smaller than the bound given by (14).

If two non-faulty proesses p and q start a round at loal time T as measured

by their respetive loks C

p

and C

q

then the next round will start at real-time t

0

p

and t

0

q

suh that

C

0

p

(t

0

p

) = T + P and C

0

q

(t

0

q

) = T + P:

By relations (13) and (14), P is larger than Æ. We also have that C

0

p

(v

p

) = C

0

q

(v

q

) =

T + Æ then using Lemma 3 and Theorem 9, we obtain

jt

0

p

� t

0

q

j 6 (1 + �)

�

2

+ 2"+ (P � Æ)

2�

1� �

2

:

13



� > (1 + �)(� + Æ + "):

P > �+ (� + ") + � j� � Æ + "j:

P > (1 + �)(� + 2")� (1 + 2�)Æ +

1+ �

1� �

�:

P � Æ 6

1� �

2

�

�

(1� �)

�

4

� "

�

:

Figure 4: Constraints on the Parameters.

For the invariant to be maintained, the delay jt

0

p

� t

0

q

j must be smaller than �. This

requires the following ondition to be satis�ed

(P � Æ)

2�

1� �

2

6 (1� �)

�

2

� 2": (16)

The upper bound for P is then given by

P � Æ 6

1� �

2

�

�

(1� �)

�

4

� "

�

: (17)

In summary, the lower bounds for � and P ensure that for all p of G, the value

of ARR

p

at time u

p

satis�es assumptions (2) and (3). The message broadast by

q at time t

q

is reeived by p before u

p

and no other message from q is reeived by

p until after u

p

. The upper bound on P ensures that the lok resynhronizations

are performed suÆiently often.

The lower bounds for � and P also guarantee that u

0

p

> u

q

for all non-faulty p

and q beause u

0

p

> t

0

p

+ Æ + � + " and u

q

< t

0

p

+ Æ � ". By Proposition 10 and the

onstraint on �, we have C

0

p

(u

p

) > T + Æ. The lok orretion an set p's virtual

lok to a value smaller than T +� but more than T + Æ.

3.4.2 Optimal Synhronization

Figure 4 shows the neessary onditions on � and P to ensure that a synhronization

bound � is maintained. The onstraints an be satis�ed if the two lower bounds

for P obtained from relations (14) and (15) by setting � = (1 + �)(� + Æ + ") are

smaller than the upper bound given by (17). This requirement is equivalent to the

three following onstraints

(1� 11�+ 3�

2

� �

3

)

�

4

> (1 + �)"� �(1� 3�)Æ (18)

(1� 9�� �

2

+ �

3

)

�

4

> (1 + 2�� �

2

)"+ 2�

2

Æ if � 6 Æ � " (19)

(1� 10�+ �

2

)

�

4

> (1 + �)" if � > Æ � ": (20)

For small values of � these onstraints are satis�ed in the following three ases:

(5� 6�+ �

2

)" 6 (1� 10�+ �

2

)Æ

� >

4(1 + 2�� �

2

)"+ 8�

2

Æ

1� 9�� �

2

+ �

3

;

14



� If (5� 6�+ �

2

) " 6 (1� 10�+ �

2

) Æ then

�

min

=

4(1 + 2�� �

2

)"+ 8�

2

Æ

1� 9�� �

2

+ �

3

:

� If (1 + �)(1� �)

2

" > (1� 3�)(1� 10�+ �

2

)Æ then

�

min

=

4(1 + �)"� 4�(1� 3�)Æ

1� 11�+ 3�

2

� �

3

:

� Otherwise

�

min

=

4(1 + �)"

1� 10�+ �

2

:

Figure 5: Optimal Synhronization Bound.

(5� 6�+ �

2

)" > (1� 10�+ �

2

)Æ

(1 + �)(1� �)

2

" < (1� 3�)(1� 10�+ �

2

)Æ

� >

4(1 + �)"

1� 10�+ �

2

;

(1 + �)(1� �)

2

" > (1� 3�)(1� 10�+ �

2

)Æ

� >

4(1 + �)"� 4�(1� 3�)Æ

1� 11�+ 3�

2

� �

3

:

These results are obtained by a routine but lengthy alulation and hold provided

� is small enough

2

. For a �xed �, the ratio Æ=" determines whih of the three above

ases apply. Negleting fators of degree 2 or more, the �rst ase orresponds to

Æ=" > 5+44�, the seond to 1+12� < Æ=" < 5+44� and the last to 1 6 Æ=" 6 1+12�.

The parameter � an be smaller than Æ � " only in the �rst ase.

The smallest synhronization bound �

min

whih an be maintained by the algo-

rithm is de�ned in Fig. 5. In pratie, the drift rate of hardware loks is very small;

� is typially less than 10

�5

and fators suh as �", �

2

, �

2

Æ, et. are negligible. The

optimal synhronization bound �

min

is approximately 4" in all three ases and the

orresponding resynhronization period P is approximately 10"+ Æ.

Conversely, for a �xed resynhronization period P larger than 10"+ Æ, the syn-

hronization bound � given by (15) is very lose to 4"+4�(P � Æ+ "). If P is large

and �(Æ�") is negligible in omparison to �P , the bound is approximately 4"+4�P .

2

Requiring � 6 10

�2

is suÆient.
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T

T +�

T + Æ

t

p

t

q
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Figure 6: Evolution of V C

p

and V C

q

3.5 Agreement

In this setion, we assume that the parameters satisfy the onstraints given in

Fig. 4 and we examine the di�erene jV C

p

(t) � V C

q

(t)j where p and q are non-

faulty. Figure 6 illustrates how V C

p

and V C

q

an evolve from the start of a round

until the lok orretion of the subsequent round. Proess p and q start the round

at real times t

p

and t

q

and adjust their respetive lok at u

p

and u

q

. The next

lok adjustments are performed at times u

0

p

and u

0

q

.

In the interval [t

p

; u

p

℄ the lok V C

p

is equal to C

p

and in (u

p

; u

0

p

℄ it is equal to

C

0

p

. Similarly, the lok V C

q

is equal to C

q

in [t

q

; u

q

℄ and to C

0

q

in (u

q

; u

0

q

℄. Lemma 4

yields the following result.

Proposition 11 1. For t 2 [t

p

; u

p

℄ \ [t

q

; u

q

℄,

jC

p

(t)� C

q

(t)j 6

2�

1 + �

�+ (1� �) �:

2. For t 2 (u

p

; u

0

p

℄ \ (u

q

; u

0

q

℄,

jC

0

p

(t)� C

0

q

(t)j 6

2�

1 + �

�+ (1� �) �:

Proof. For t 2 [t

p

; u

p

℄\ [t

q

; u

q

℄, both C

p

(t) and C

q

(t) are in the interval [T; T +�℄.

Lemma 4 together with the fat that jt

p

� t

q

j 6 � gives the �rst part.

For the seond part, we know that u

p

> v

p

and u

q

> v

q

, therefore t is larger

than both v

p

and v

q

. This means that T + Æ 6 C

0

p

(t) 6 T + � + P and T + Æ 6

C

0

q

(t) 6 T +�+ P . Lemma 4 an then be applied and we get

jC

0

p

(t)� C

0

q

(t)j 6

2�

1 + �

(P +�� Æ) + (1� �)

�

(1 + �)

�

2

+ 2"

�

:
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By assumption, P satis�es inequality (16) so

2�

1 + �

(P � Æ) 6 (1� �)

�

(1� �)

�

2

� 2"

�

:

The result follows from the last two relations. 2

The �rst part of this lemma is only used to estimate the worst ase skew at the

start of the algorithm, that is, for T = T

0

. For all other values of T , the interval

[t

p

; u

p

℄ is inluded in [u

p�1

; u

p

℄. Using (14) and (13), it is readily veri�ed that

(P +�� Æ) > (1 + �)

�

(1 + �)

�

2

+ 2"

�

:

This means that the skew between C

0

p

and C

0

q

an be as large as the bound given

in ase 2) above.

We now onsider the transient phase whih ours during a round when some

proesses have updated their loks and others have not. For this intermediate

phase, the worst ase skew is given by the following proposition.

Proposition 12 If u

p

6 t 6 u

q

then

jC

0

p

(t)� C

q

(t)j 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

Proof: The lower bound on � ensures that u

p

> v

p

and u

p

> t

q

+ Æ + ". We then

have

(1� �)(t� v

p

) 6 C

0

p

(t)� C

0

p

(v

p

) 6 (1 + �)(t� v

p

);

(1� �)(t� t

q

) 6 C

q

(t)� C

q

(t

q

) 6 (1 + �)(t� t

q

):

Sine C

0

p

(v

p

) = T + Æ and C

q

(t

q

) = T , it follows that

C

0

p

(t)� C

q

(t) > Æ + (1� �)(t� v

p

)� (1 + �)(t� t

q

)

> Æ � 2�(t� t

q

) + (1� �)(t

q

� v

p

)

> Æ � 2�(u

q

� t

q

) + (1� �)(t

q

� v

p

);

and

C

0

p

(t)� C

q

(t) 6 Æ + (1 + �)(t� v

p

)� (1� �)(t� t

q

)

6 Æ + 2�(t� t

q

) + (1 + �)(t

q

� v

p

)

6 Æ + 2�(u

q

� t

q

) + (1 + �)(t

q

� v

p

):

Sine C

p

(u

p

) = T +�, we have

u

q

� t

q

6

�

1� �

;

and by (10), we also get

�(� + Æ + ") 6 t

q

� v

p

6 � � Æ + ":

As a onsequene, the di�erene C

0

p

(t)� C

q

(t) satis�es the two inequalities below

C

0

p

(t)� C

q

(t) > �

2�

1� �

�� (1� �)(� + ") + � Æ;

C

0

p

(t)� C

q

(t) 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:
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� If u

p

< t 6 u

0

p

and u

q

< t 6 u

0

q

then

jC

0

p

(t)� C

0

q

(t)j 6

2�

1 + �

�+ (1� �) �:

� If u

p

6 t 6 u

q

then

jC

0

p

(t)� C

q

(t)j 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

Figure 7: Worst Case Skew.

The result follows by taking the absolute values of these bounds. 2

Proposition 11 and 12 over the two possible ases. The parameter onstraints

imply that u

p

< u

0

q

and u

q

< u

0

p

. When V C

p

= C

0

p

, i.e. between u

p

and u

0

p

, the

virtual lok of q is equal to either C

q

or C

0

q

. In the worst ase, the skew between

the loks V C

p

and V C

q

is then bounded as shown in Proposition 12:

jV C

p

(t)� V C

q

(t)j 6

2�

1� �

�+ (1 + �)(� + ")� � Æ:

The maximal skew an be attained if t

q

= t

p

+ � and the physial lok of p and q

run at rate (1 + �) and (1� �), respetively. In suh a ase, the skew at time u

p

is

V C

p

(u

p

)� V C

q

(u

p

) = C

p

(u

p

)� C

q

(u

p

)

=

2�

1 + �

�+ (1� �) �:

This is the maximal skew given by Proposition 11. Even though the virtual loks

of non-faulty proesses annot be ahead of V C

p

, it is possible for p to further

advane its loal lok at time u

p

. This may happen, for example, in the following

irumstanes:

� f proesses are faulty and send messages whih arrive at p before t

p

+ Æ � ".

� A majority of the non-faulty proesses start the round at exatly the same

time as p (i.e. at time t

p

) and the messages from these non-faulty proesses

all arrive at p at time t

p

+ Æ � ".

As a result, fn(ARR

p

) = T + (1 + �)(Æ � ") and ADJ

p

= (1 + �)" � �Æ. For

realisti values of � and Æ, the orretion is positive. Proess p advanes its loal

lok and the di�erene between V C

p

and V C

q

inreases. The value of v

p

in this

ase is t

p

+ Æ� ". For the remainder of the interval (u

p

; u

q

℄ the two loks ontinue

to drift apart and it an be shown that at time u

q

,

V C

p

(u

q

)� V C

q

(u

q

) = C

0

p

(u

q

)� C

q

(u

q

)

=

2�

1� �

�+ (1 + �)(� + ")� � Æ:
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Figure 8: Envelope of the Virtual Cloks

3.6 Validity

Assume p is not faulty and X is a lok time suh that X > T

0

and let t be suh

that V C

p

(t) = X . The previous setions have shown that the loal loks of other

proesses at time t are lose to X . In this setion, we examine how lose the virtual

loks are from real-time.

The non-faulty proesses are assumed to be initially synhronized within a delay

� of one another. There are then two reals x

0

and y

0

suh that y

0

6 x

0

+ � and all

the non-faulty proesses start the �rst round within the real-time interval [x

0

; y

0

℄.

From x

0

and y

0

, we onstrut four sequenes (x

i

)

i2N

, (y

i

)

i2N

, (z

i

)

i2N

and (w

i

)

i2N

as follows.

z

i

= x

i

+ Æ � "

w

i

= y

i

+ Æ + "

x

i+1

= z

i

+

1

1 + �

(P � Æ)

y

i+1

= w

i

+

1

1� �

(P � Æ):

The �rst round starts at lok time T

0

and for i > 1, we denote by T

i

= T

0

+ iP ,

the lok time orresponding to the start of round i. In order to simplify the

analysis, we assume

� 6

"

Æ + "

:

This ondition holds in pratie and it implies � 6 "=(Æ � "). As a result, the two
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following inequalities are satis�ed:

1�

"

Æ

6

1

1 + �

and

1

1� �

6 1 +

"

Æ

:

Under these assumptions, the virtual loks of all the non-faulty proesses are within

the area delimited by the two urves C

1

and C

2

shown in Fig. 8. The �rst urve, C

1

,

is the union of segments joining the points of oordinates (x

i

; T

i

) and (z

i

; T

i

+ Æ)

and the seond urve, C

2

, joins the points of oordinates (y

i

; T

i

) and (w

i

; T

i

+ Æ).

More preisely, C

1

is the set of points of oordinates (

1

(X); X) where X > T

0

and 

1

is the mapping from lok time to real time de�ned as follows:



1

(X) = x

i

+ (1�

"

Æ

) [X � T

i

℄ if T

i

6 X < T

i

+ Æ



1

(X) = z

i

+

1

1 + �

[X � (T

i

+ Æ)℄ if T

i

+ Æ 6 X < T

i+1

:

Similarly, C

2

is the set of points (

2

(X); X) where X > T

0

and



2

(X) = y

i

+ (1 +

"

Æ

) [X � T

i

℄ if T

i

6 X < T

i

+ Æ



2

(X) = w

i

+

1

1� �

[X � (T

i

+ Æ)℄ if T

i

+ Æ 6 X < T

i+1

:

If p is a non-faulty proess and V C

p

(t) = X where X > T

0

then we show that t is

within the interval [

1

(X); 

2

(X)℄.

Let T = T

i

= T

0

+ iP for an arbitrary round i. For all non-faulty proess q

the loks C

q

and C

0

q

and the reals t

q

, u

q

and v

q

are de�ned as previously. The

following lemma shows that the property holds for X suh that T 6 X 6 T + P

provided the non-faulty proesses start round i between x

i

and y

i

.

Lemma 13 Assuming x

i

6 t

q

6 y

i

for all non-faulty proess q, then

� if T 6 X 6 T +� and C

p

(t) = X then 

1

(X) 6 t 6 

2

(X),

� if T + Æ 6 X 6 T + P and C

0

p

(t) = X then 

1

(X) 6 t 6 

2

(X).

Proof: For the �rst part, Lemma 1 yields:

t

p

+

1

1 + �

(X � T ) 6 t 6 t

p

+

1

1� �

(X � T ):

By assumption, t

p

is in the interval [x

i

; y

i

℄. It is easy to hek that the left hand

side is smaller than 

1

(X) and the right hand side larger than 

2

(X).

For any non-faulty proess q, the algorithm ensures that jt

p

� t

q

j 6 �. The

minimal and maximal elements among the instants t

q

are between x

i

and y

i

. Using

relation (9), it follows that

x

i

+ Æ � " 6 v

p

6 y

i

+ Æ + ";

that is, z

i

6 v

p

6 w

i

. As previously, Lemma 1 gives

v

p

+

1

1 + �

[X � (T + Æ)℄ 6 t 6 v

p

+

1

1� �

[X � (T + Æ)℄;

for X > T + Æ and this implies 

1

(X) 6 t 6 

2

(X). 2

Within the round starting at time T , the lok V C

p

is either equal to C

p

or to

C

0

p

. Let t be between t

p

and t

0

p

and let X = V C

p

(t). We have either t

p

6 t 6 u

p
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and V C

p

(t) = C

p

(t) or u

p

< t 6 t

0

p

and V C

p

(t) = C

0

p

(t). In the �rst ase, X must

be between T and T +�. In the other ase, C

0

p

(u

p

) < X 6 T + P . We noted in

setion 3.4 that C

0

p

(u

p

) > T +Æ, therefore T +Æ < X 6 T +P . The previous lemma

implies then that



1

(X) 6 t 6 

2

(X)

for all t suh that t

p

6 t 6 t

0

p

and X = V C

p

(t). Taking t = t

0

p

we have V C

p

(t

0

p

) =

T

i+1

and

x

i+1

6 t

0

p

6 y

i+1

by de�nition of 

1

and 

2

. As a onsequene, the assumption of Lemma 13 is satis�ed

for round i+ 1: the non-faulty proesses start round i+ 1 between x

i+1

and y

i+1

.

Sine the assumption also holds for the �rst round, we obtain by indution the

following property.

Proposition 14 For all X > T

0

and all t suh that V C

p

(t) = X,



1

(X) 6 t 6 

2

(X):

The urve C

1

an be approximated by the straight line passing through the

points of oordinates (z

i

; T

i

+ Æ). These points are irled in Fig. 8. The slope of

this line is given by

�

1

=

P

z

i+1

� z

i

= (1 + �)

P

P � "+ �(Æ + ")

:

Similarly the urve C

2

an be approximated by the line whih passes through the

points of oordinates (y

i

; T

i

+ Æ) and the slope of this line is

�

2

=

P

w

i+1

� w

i

= (1� �)

P

P + "� �(Æ + ")

:

It follows that the lok V C

p

of a non-faulty proess p is within a linear envelope

of real time.

Proposition 15 For all t > y

0

,

T

0

+ �

2

(t� y

0

) 6 V C

p

(t) 6 T

0

+ �

1

(t� x

0

):

From the assumption � 6 "=(Æ+ "), it is easy to see that the oeÆients �

1

and �

2

satisfy the two following inequalities

�

2

6 1� � and 1 + � 6 �

1

:

In the worst ase, the virtual loks of non-faulty proesses an then drift more

from real-time than their physial loks. The extra drift is aused by the im-

preision " on ommuniation. During eah resynhronization, the virtual loks

an be shifted from real-time by �" depending on the atual transmission delays

experiened during the round.

Unlike the worst ase skew, the rate of virtual drift inreases as P diminishes.

Smaller values of P ensures that the virtual loks are better synhronized with one

another but may result in a faster drift from real-time.
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4 Conlusion

The main properties of the Welh-Lynh lok synhronization algorithms are given

by Propositions 11 and 12, and by Propositions 14 and 15. For parameters �, �,

and P whih satisfy the onditions of Fig 4, the algorithm maintains the loks of

two non-faulty proesses p and q in approximate agreement and the virtual loks

are limited by two linear funtions of real-time as shown in Proposition 15.

In order to minimize the skew, � must be as small as possible. The minimal

value of � is (1 + �)(� + Æ + ") and for this value, Proposition 11 and 12 give

jV C

p

(t)� V C

q

(t)j 6

(1 + �)

2

1� �

(� + ") +

�(1 + 3�)

1� �

Æ;

for all t > x

0

. As shown at the end of Set. 3.5, this bound an be e�etively

attained. Negleting fators of degree at least two in �, the above relation gives the

worst skew:

 = (1 + 3�)(� + ") + �Æ:

This improves slightly over the bound below obtained in the original analysis of the

algorithm [2℄:

 = (1 + 7�)(� + ") + 3�Æ:

This result is based on a slightly di�erent model of loks than ours but the two

are equivalent if fators of degree two or more in � are negligible.

To maintain a hosen synhronization level �, it is reasonable to take P as large

as possible. Aording to relation (17), the maximal value of P is approximately:

P =

�

4�

�

"

�

�

�

4

+ Æ:

As previously, this improves a little over the original bound given in [2℄:

P =

�

4�

�

"

�

� 2� � Æ � 2":

Despite these slight improvements, the results obtained in the preeding setions

are essentially the same as given in [2℄. The di�erene between the two estimates for

 is not signi�ant in pratie unless �Æ is large. Similarly, the di�erene between

the two upper bounds for P is fairly small, exept for large values of Æ.

The new elements of the proof of orretness are developed in Set. 3.3. In

partiular Theorem 9 gives an aurate estimate of the e�et of the lok resyn-

hronization proedure. As a result, the bounds on lok skew given in Set. 3.5

are tight.
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