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Abstract

This note describes the Welch-Lynch fault-tolerant algorithm for clock synchro-
nization. The original proof given by Welch and Lynch shows that the clocks of
non-faulty nodes are maintained in approximate agreement. The worst-case skew is
bounded by a constant which depends on network and algorithm parameters. We
give a simplified proof of correctness and obtain tight synchronization bounds.
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1 Introduction

In [2], Welch and Lynch present a fault-tolerant algorithm for clock synchronization
in distributed systems. The algorithm is intended for a fully connected network of
n processes, less than a third of which are faulty. Byzantine failures are tolerated,
that is, the behaviour of faulty processes is arbitrary.

The communication network is assumed to be reliable and the communication
delays are bounded. The minimal and maximal transmission delay are specified
using two constants 0 and e such that 0 < € < §: the delay for any message is
between § — e and § + €.

Each process has a physical clock which can drift slowly from real time at a rate
bounded by a small constant p such that 0 < p < 1. If a clock C' does not fail
during a real time interval [¢1,t2] then

(1= p)(ts —t1) < C(t2) = C(tr) < (1 +p)(t2 — 1),

where C(t;) and C(t2) denote the value of clock C at time ¢; and t3, respectively.
The elapsed clock time C(tz) — C(t1) is within p(t; — t1) of the real time delay
ty — t1. During the same interval, the physical clocks of two processes can drift
apart by as much as 2p(t2 — t1). Even for small values of p, the error may become
significant for large values of t2. In order to ensure that all the processes have a
consistent view of time, it is necessary to regularly resynchronize their clocks.

We assume that a process p has no control over its physical clock PC),. Instead,
the local time for p is given by a virtual clock V' (), obtained by adding a correction
to PCp. The correction is periodically computed by p and is stored in a local
variable CORR,,. The virtual clock of process p is then defined by

VC,(t) = PC,(t) + CORR,(t),

where CORR,,(t) denotes the content of the correction variable at real time t.
The algorithm runs in successive rounds during which processes exchange infor-
mation about their clocks and perform a correction to their local clock. Initially,



the virtual clocks of non-faulty processes are approximately synchronized: all the
non-faulty processes start the first round within a delay g of each other. Under this
assumption, the algorithm ensures the following properties:

e Agreement: The skew, that is, the difference between the virtual clocks of any
two non-faulty processes at any real time is bounded. There is a constant ~y
such that, for all real time ¢ and all non-faulty processes p and g,

[VCy(t) = V()] < -

e Validity: The clocks of non-faulty processes are within a linear envelope of
real-time.

The purpose of this note is to give a simplified proof of correctness of the Welch-
Lynch algorithm and to provide tight synchronization bounds. The algorithm is
described in section 2 and the proof of correctness is given in section 3.

2 Algorithm

The algorithm of Welch and Lynch is similar to the interactive convergence algo-
rithm of Lamport and Melliar-Smith [1]. Every non-faulty process p reads the clocks
of all the other processes at regular intervals. From these readings, p obtains an
estimate of the drift between its virtual clock and the clocks of the other processes.
A correction to p’s local clock is then computed by applying a fault-tolerant aver-
aging function to the estimates. The two algorithms differ only in the methods of
reading clocks and in the averaging functions used. Both assume that the clocks
are synchronized initially.

The processes are numbered from 1 to n. We denote by f the maximal number
of faults the algorithm can tolerate; by assumption, we have n > 3f + 1. The
averaging function used in the algorithm of Welch and Lynch is the fault-tolerant
midpoint! defined as follows. Given an array A of n real numbers, the fault-tolerant
midpoint of A, denoted by c¢fn(A), is obtained by discarding the f largest and the
f smallest elements of A and by taking the arithmetic mean of the maximum and
minimum of the remaining elements. If A[1] < A[2] < ... < A[n], we then have

Alf +1]1+ Aln — f]
5 .

cfn(4) =

For an arbitrary array, c¢fn(A) can be obtained by first sorting the elements in
increasing order and then applying the formula above.

Figure 1 gives an informal description of the algorithm. A process p executes
a main program which consists of repeatedly broadcasting a message SYNC and
waiting for a delay A before computing a correction to the local clock. In parallel,
every process stores the arrival time of any SYNC message it receives in an array
ARR,. The arrival times and the delays are of course measured with respect to the
local clock VCp,. Two local variables are used in addition to ARR, and CORR,:
ADJ, is the clock adjustment and T indicates the time of the next broadcast.

The two parameters Ty and P determine when the broadcasts take place: the
first broadcast is executed at local time Ty and the subsequent ones at Ty + P,
Ty + 2P, etc. The parameter A determines how long a process has to wait after a
broadcast before performing the clock correction.

For simplicity, we assume that broadcasting a message, computing the adjust-
ment, and storing arrival times are instantaneous operations. If two SYNC messages

1'We use the terminology of [3].



T .= TO

repeat forever
wait until VC) =T
broadcast SYNC;
wait for A time units;
ADJ, =T + 6 — cfn(ARR,);
CORR, := CORRy, + ADJy;
T =T+P

end of loop.

on reception of SYNC from ¢ do ARR,[q] := VC,.

Figure 1: Pseudo Code for Process p.

are received from two processes simultaneously, the corresponding elements of ARR,,
are then equal. Also, the clock adjustment operations are executed instantaneously
when the delay A has elapsed. The correction takes effect immediately after this
delay, that is, at the end of the loop. We also assume that broadcast messages are
received by every processes, including the sender.

For a correct execution of the algorithm, P and A have to satisfy several condi-
tions which depend on the network and clock parameters (i.e. ¢, €, and p) and on
the degree of synchronization required. These constraints are obtained by a formal
analysis of the algorithm and will be specified precisely in the sequel.

Let T = Tp + i P denote the starting time of an arbitrary round i. All the non-
faulty processes broadcast SYNC when their local clocks reads 7' and wait until
T + A to compute the adjustment to their clock.

Assume p and ¢ are two non-faulty processes. Let u, be the real-time when
p adjust its clock, that is, VCp(up) = T + A. Let & be the arrival time at p of
the message sent by ¢ at he start of the round. The constraints on A ensure that
VCyp(z) < T + A, or equivalently that < up. Other assumptions on P imply
that the next message from ¢ is received by p after u,. This means that at time
up, the element ARR,[q] is equal to VCp(z). The value ARR,[q] is used by p to
estimate the drift between its local clock and the clock of ¢: The message was sent
when VC, was equal to T' and took a delay between § — ¢ and J + ¢ to reach p.
During the interval, V' C; has progressed to a value which is around 7' + 4, that is,
VCy(x) = T+ 6. Therefore p can estimate that the difference between VC,(z) and
VCp(x) is approximately (T'+6) — ARR)[q]. Since p is very small, the drift between
VCp and VO, remains fairly constant until p’s clock is adjusted:

VCy(up) —VCy(up) = (I'+6)— ARR,[q].

The accuracy of this estimate depends on the imprecision € on transmission delays
and on the rate p of clock drift.

When p has received a SYNC message from all the non-faulty processes, it can
compute the correction to its clock. The adjustment ADJ, is the fault-tolerant
average of the estimated drifts:

ADJ, = T+ 46— cfn(ARR,).

If ¢fn(ARR,) is larger than T+ 6 then p’s clock is currently ahead of the average.
Conversely, if ¢fn(ARR,) is smaller than T + § then V) is behind the average.



The variable CORR,, is then updated to cancel the average drift:
CORR, := CORR,+ ADJ,.

The virtual clock VCp, is set back or forth by the amount |ADJ,|.

The function cfn is essential to the correctness of the algorithm. It ensures that
the clock adjustment AD.J, is fairly insensitive to the presence of faulty elements in
the array ARR,,. Furthermore, ¢fn has an averaging effect which implies that after
the adjustments, the clocks VC)p and VCy of two non-faulty processes are better
synchronized than they were at the start of the round.

Between two successive resynchronization, the virtual clocks can drift apart
form one another but adjusting the clocks sufficiently often ensure that the skew
is bounded. The algorithm assumes that all the non-faulty processes start the
first round within a real-time delay 8 of one another. The values of A and P are
determined from S in order to ensure that the non-faulty processes also start the
other rounds within § of one another.

From the latter invariant, a bound on the worst case skew can be derived. The
clock adjustment computed during each round is small in comparison with the
length of each round and this ensures that the virtual clocks are within a linear
envelope of real-time.

3 Formal Analysis

3.1 Overview

We represent both real time and clock time by the reals. By convention, lowercase
letters are used to denote real time quantities and uppercase letters to denote clock
times. Clocks are defined as follows:

Definition 1 A clock C is a mapping from the reals to the reals such that, for all
tl and tg, Zf tl < tz then

(L=p)ta—t1) < Ct2) —C(t1) < (1+p)(t2 —t1).

We assume that every process p has a clock PC), which satisfies the above constraint;
the rate of drift of PC), is no more than p over the interval [t1, 2], whatever ¢; and
to. This means that the physical clocks are assumed to be reliable; only processes
can fail. These is no loss of generality because the behaviour of faulty processes is
arbitrary and because a process cannot access another process’s clock directly.

The crucial part of the analysis is to examine the effect of a single resynchro-
nization round on the virtual clocks. Assume a non-faulty process p starts a round
at real-time t, such that VCp(tp,) = T, performs the correction at real-time wu,
such that VCy(u,) = T + A, and starts the subsequent round at ¢, such that
VCy(t,) =T + P. Let corr, and corr,, denote the value of the variable CORR,,
at time ¢, and t;,, respectively. We have assumed that the clock adjustment takes
effect immediately after u,, so

PCp(t) +corrp, ifty <t <y
<t<t

PCy(t) + corr),

VG = { if u !
P P

The round can then be split in two parts. From ¢, to u,, p’s local time is given by
the clock C), such that:

Cp(t) = PCu(t) + corry,



and, from w,, to t,, p’s local time is given by C}, defined by:
C,(t) = PCy(t) + corr,,.
The two successive clocks are related by the equation
C,(t) = Cp(t) + T+ — cfn(ARR)),

where the value of the array ARR,, is taken at time u,,.

Two non-faulty processes p and g switch then from old clocks C), and Cj to new
clocks €}, and O}, during the round. Since Cy(t,) = Cy(t,) = T, the distance |t, —t]
gives a measure of the degree of synchronization between C}, and Cy. Similarly, we
can evaluate the degree of synchronization of C}, and C; by measuring the distance
|vp, — v,| for two points v, and v, such that C)(v,) = C;(v,). Since the clock
corrections are based on estimates for clock times which are close to T + ¢, it is
natural to choose v, and v, such that

Cp(vp) = Cylvg) = T+0.

In the first part of the proof, we establish the following fundamental result. If for a
given f and for all non-faulty processes p and ¢, we have

tp—tl < B

then we also have
B
lop —vg| < (1+ P)g + 2¢,

for all non-faulty p and ¢. This essential property shows that the new clocks are
more closely synchronized with each other than the old ones.

The following section lists various lemmas about clocks which are used in the se-
quel. The essential synchronization property is proved in section 3.3. In section 3.4,
we derive constraints on the parameters A and P for the algorithm to execute prop-
erly and achieve a given synchronization bound 3. If the conditions are satisfied
then the algorithm guarantees that all the non-faulty processes start each round
within a real-time delay 8 of one another. The constraints on A and P have a
solution provided f§ is larger than an optimal (i, which is equal to approximately
4e. The worst-case skew is determined in Sect. 3.5, using the assumptions on A
and P. Section 3.6 shows that the virtual clocks of non-faulty processes are within
two linear functions of real-time.

3.2 Clock Properties

It is easy to see that a clock is strictly increasing, continuous, and not bounded.
For any real T', there is a unique ¢ such that C'(t) = T. The lemma below is another
easy consequence of the definition:

Lemma 1 For a clock C and two reals t1, ty such that t; < to,

Clta) = C(tr) _ bt < C(t2) — C(t)
1+p h h 1-p

The following lemma is important for proving the resynchronization property.
It shows that, if C'(v) is the mean of C(t) and C(u) then v is very close to (¢t +u)/2.



Lemma 2 Ift <u and C(v) = 1(C(t) + C(u)) then

2
t+u u—t t+u u—t

— < < .
y Py SUS Tty
Proof: Let X = (C(u) — C(t))/2 so that C(v) — C(t) = C(u) — C(v) = X. Since C
is increasing, we have t < v < v and Lemma 1 applied twice gives

t+X/(1+p) < v < t+X/(1-p),
w—X/(1=p) < v< u—X/(1+p).
Two cases can be distinguished:
o If X < (1—p?)(u—1t)/2, we use
u—X/(1=p) < v <t+X/(1—p).
Since X/(1 —p) < (1 + p)(u —t)/2, we get
u—1+p)(u—1)/2 < v <t+1+p)(u—1t)/2

which simplifies to
(u+t)/2—plu—1t)/2 < v <(u+1t)/2+ plu—1)/2.
o If X > (1—p?)(u—t)/2, we use
FEX/A4p) < v < um X/(L4p)
and X/(1+ p) = (1 — p)(v — t)/2 to obtain
P12 < v < u—(1—p)u—1)/2

By an elementary calculation, this gives the same relation as previously. The
expected bound holds for v in both cases. O

The bound is tight. X is comprised between (1—p)(u—t)/2 and (1+p)(u—t)/2 and
it is possible to have X = (1 — p?)(u —t)/2. In such a case, the distance between v
and (t + u)/2 can be equal to p(u — t)/2.

In the following lemma, two clocks C' and C' are considered together with two
reals ¢ and ¢’ such that C(t) = C'(t') = X. The lemma gives a bound on the delay
|u — | for w and u’ such that C'(u) = C(u') = X + Y.

Lemma 3 IfC(t) =C'(t') = X and C(u) =C'(u') = X +Y where Y > 0 then

2p

=2 Y.

lu—u| < |t—t]+

The following lemma will be used to evaluate the skew between two clocks C
and C'.

Lemma 4 Let X andY be arbitrary reals. Given t and t' such that C(t) = C'(t') =
X then, for any x such that X < C(x) < X +Y and X < C'(z) < X +Y, we have

/ 2p '
Cla) = C'@)] < =y +(1=p)lt=t]
This bound can be reached provided Y > (1+p)|t—t'|. The situation is illustrated in
Fig. 2. The two points of coordinates (z, C'(x)) and (z,C’'(z)) are contained within
the area delimited by the two oblique lines of slope (1 + p) and (1 — p). The bound
can be attained at the point u such that u —t =Y/(1+p). Y < (1 —p) |t — '],
no z can satisfy the assumptions of the lemma and if Y is between (1 — p) |t — t'|
and (14 p) |t — t'|, the skew is no more than Y.



X+Y

Figure 2: Worst-case Skew (Lemma 4)

3.3 Resynchronization Property
3.3.1 Assumptions

We assume that an arbitrary real T' and a set G of m processes are fixed, where
m > n — f. With every p of G are associated a clock C, and a real t, which satisfy

Cplty) = T. (1)

We also assume that two arrays arrp, and ARR, are given for every p of G. ARR,
and arr, are two arrays of n reals and satisfy the two constraints below:

VgeG: tg+0—e<arrpfg] <ty +0+e, (2)

Vg€ G: ARRy[q] = Cplarrplq]). (3)
We denote by Cj, the clock defined by
Cll)(t) = Cp(t) + ADJp, (4)
where
ADJ, = T+6—- cfn(ARR,). (5)

Finally, we assume that a constant 3 gives a bound on the delay between ¢, and ¢,
for p and ¢ in G:

Vp,q € G: |tp_tq|<ﬁ- (6)

The intention is, of course, that these assumptions are satisfied if 7" is a clock
time corresponding to the start of a round, G the set of processes which do not
fail during that round, and C), and Cj, are the virtual clocks of a process p at the
beginning and at the end of the round, respectively. The array arr, stores the
arrival time of SYNC messages received by p. If ¢ is not faulty, the message sent
by ¢ to p at time t, is received at time arrp[g] and the corresponding clock time is
given by ARR)[q]. For a faulty process r, arrp[r] and ARR,[r] are arbitrary.

For every p of G, we denote by v, the time when C), reaches T'+ ¢. The main
objective of this section is to estimate the distance |v, — v,| where p and ¢ are
arbitrary processes of G. We also bound the clock adjustment AD.J,.



3.3.2 Bounding v,

Let p be an arbitrary element of G. We have C} (v,) = T'+ ¢ so, using equations (4)
and (5),

Cp(vp) = cfn(ARRy).

Let A = (A44,...,A4,) be the n-tuple formed by sorting the elements of ARR, in
increasing order. By definition of ¢fn, we have

A A
Cpley) = it ™)
Similarly, let @ = (aq,...,a,) be the tuple obtained by sorting in increasing

order the m elements of arr, whose index belongs to G. We then have a; < az <
... < am, and each a; is equal to arrp[g] for some element g of G.

Proposition 5

Proof: Since €, is increasing, we have Cp(a1) < Caz) < ... < Cplan). By
construction, Cp(a1), ..., Cp(an) is then a subsequence of Ay, ..., A,, obtained by
removing fewer than f elements.

Cp(ay) is equal to A; for some index ¢. There are at least m elements among
Ay, ..., A, which are larger than or equal to A; so ¢ must be smaller than or equal
to n+1—m. By the assumptions on n and m, this implies that i < f 4+ 1 and then

Cplar) = Ay < Apqa.

Similarly, there are at least f + 1 elements among Aj,..., A, which are smaller
than or equal to Cp(asy1) so

Apr1 < Cplags).
A symmetric reasoning proves the other part of the proposition. O

Now, let k be any index between f + 1 and m — f; since m > 2f + 1, such a k
does exist. As a consequence of the previous proposition, we get

Cpla) < Appr < Cplar) <Ay < Cplam)
because a1 < ag < am—y. Using (7), we can then bound Cp(vp) as follows:

Cplar) + Cyp(ar)

< Cp(’l}p) < Cp(ak)+cp(am)'

2 2
From these two bounds and Lemma 2, we obtain:
Proposition 6
ai + ag ap — a1 ap +a A — Qf
7 P S S T AT

This proposition and relation (8) explain why the algorithm is fault-tolerant. The
midpoint ¢fn(ARR)) is equal to Cp(v,) and is fairly insensitive to possibly wide
variation in f of the array elements. At worst, cfn(ARR,) can be shifted towards



the lower or the upper ends of the interval given by relation (8). The two extremities
of the interval only depend on the values of ARR,, for non-faulty processes.

If follows immediately from the fact that C) is increasing and from relation (8)
that a; < vp < ay,. The two reals a; and a,, are the smallest and largest of the
elements arrp[r] for r € G. Let tmin and tmax be the smallest and largest of the
times ¢, for r € G. By (2),

a1 2 tmin + 6 — &
am < tmax + 6 + E\7
and then
tmin+0—¢ < Up < tmax+0+e. (9)

By (6), we also obtain for any non-faulty process g,
ty—f+d—¢ < vp < tg+B+0+e. (10)

This relation holds for arbitrary ¢, in particular, in the case ¢ = p. It will be used
to bound the clock adjustment and determine a lower bound on A.

3.3.3 Bounding |v, — v,|

Assume p, k, and a = (ay,...,a,,) are defined as in the previous section. Let ¢ be
another element of G and let b = (by,...,b,,) be formed by sorting in increasing
order the elements arry[r] for r € G. The tuple b is then obtained from arr, in the
same way as a is obtained from arr,. Proposition 6 gives the following bounds for
vp and vg:

a1 + ag ap — a1 ar + a Ay — G
s TP g St S Tt T

2 PT S Ut s T P
These bounds imply that

b]_"‘bk bk—b]_ < < bk+bm+ bm_bk

Gy — 01
vp—v, < (1+p) +(1-p) (11)
and, symmetrically,
b — a1 bk—ak
v=vp < (I4p) =5 —+0—p) =5 (12)

In order to evaluate the difference v, — vy we have to compare ay and b;. We need
the following lemma.

Lemma 7 Let dy,...,d; and e1,...,e; be two finite sequences of reals, such that,
di <do <...<d; and e; < ez < ...<e. If there is a number x and a bijection h
from {1,...,1} to {1,...,1} such that

|di —epyl <z fori=1,...,1,

then we also have
|di —e;| <z fori=1,...,1



Proof: We reason by induction on /. For the base case, [ = 0, the property is
vacuously true. For the inductive case, assume dy, ...,d;41 and eq, ..., €41 are two
ordered sequences and h and z satisfy the assumption. Let = h(l 4+ 1) and s be
such that h(s) =1+ 1; we have

|dis1 —er| <z, |ds —erp1]| <o, ds <dig1, and e, < 1.
From these four inequalities, it is easy to see that
|ds —e,| <z and |dj41 —e41] < 2.
Consider the mapping h' defined for i = 1,...,1 by
(i) = {r ifi=s
h(i) otherwise.

It is clear that A’ is a bijection from {1,...,1} to {1,...,l}; in particular, if r = [+1,
h' is the restriction of h to {1,...,1l}. We also have

|di_eh’(i)| <£E fOI‘?::].,...,l,

so we can apply the induction hypothesis. This gives |d; —e;| < z fori =1,...,1
and the inequality also holds for ¢ =1+ 1 as shown above. O

As a consequence, we obtain the following property.
Proposition 8 For all i such that 1 <i < m, |a; — b;| < 2e.

Proof: Since (a1,...,ay) is a permutation of the elements arrp[r] for r € G, there
is a bijection g from {1,...,m} to G, such that

a; = arrp[g(@)] fori=1,...,m.

Similarly, there is a bijection h from {1,...,m} to G such that
bi = arryh(i)] fori=1,...,m.

The composite g’ = h~! o g is a bijection from {1,...,m} to {1,...,m} and

la;i — by | = [arrylg(i)] —arryg(i)]| fori=1,...,m.

By assumption (2), | arrp[r] — arry[r] | < 2¢ for any r € G. It follows that
la; — by (| < 2 fori=1,...,m

and Lemma 7 gives

la; —b;] < 2 fori=1,...,m. O

We can now bound the difference |v, — vq| as follows.

Theorem 9

vy — vy < (1+p)§+25.

10



Proof: Proposition 8 implies that (ar — br) < 2¢. By relation (11), we then have

am_bl

vp—v < (14p) + (1= p)e.
Now for any two elements r and s of G, the two assumptions (2) and (6) mean that
arrp[r] — arrgls] < tr —ts+2e < B+ 2e.
This holds for arbitrary r and s so a,,, — b1 < f + 2¢ and then
B+ 2
2

vp—vg < (L+p) + (1 —=p)e

< (1+p) g + 2e.
By symmetry, we can derive from relation (12) that

vg—vp < (1+p)§+2a.D

3.3.4 Bounding the Clock Adjustment

For a process p, the clock adjustment ADJ, is the difference C}(t) — C}(t), which

is constant for any t. For ¢t = v,, we have C},(v,) =T + 6. As noted previously,
tp—B+0—¢ < vp < tp+F+d+e,

then
Colty,—B+d—¢) < Cp(vy) < Cplty+B+0+e).

The adjustment is then between the two limits below:
T+06-Cu(ty,++d+e) < ADJ, < T+6—-Cp(t,—B+d—¢).
For the lower bound, we get
Coltp+B+0+e) < Cplty)+ 1 +p)(B+0+¢),
then, since Cy(t,) =T,
—1+p)(B+e)—pd < ADJ,.

The upper bound depends on whether § is smaller or larger than § —e. If § < 0 —¢,
we obtain

Coplty=B+0—2) = Cplty) 2 (L=p)(=B+0-¢),
then
ADJ, < (L—p)(B+e)+pd.
In the other case,
Cplty) =Cplty =B +d—2) < (1+p)(f-d+e),
and
ADJ, < (L+p)(B+¢e)—pd.
In both cases, we have
ADJ, < (B+e)+pl|f-950+¢,

and the clock adjustment is between the two bounds given by the following property.
Proposition 10

—(B+e)—pB+dte) < ADJ, < (Bte)+plf—-0+el

11



Assumptions:
e |Gl=mandm>n-—f.
o Cp(ty) =T.
° Vp,g €G: |t, —ty| < B
Vp,q € G: tg+0—e<arrplg] <ty +d+e.
Vp.q € G : ARR,[q) = Cylarr, ).
ADJ, =T + 6 — cfn(ARR,).
o Vt: C,(t) = Cp(t) + ADJ,.
Cp(vy) =T +6.

Results:
e For any p € G and ¢ € G,
op — vl < (L4 9) 5 + 2.
ty—B+0—ec < v, < ty+pf+0+e.
e For any p € G,

—(B+e)—pB+do+e) < ADJ, < (B+e)+plf-d+el

Figure 3: Results of Section 3.3

3.3.5 Summary

The main results obtained in this section are summarized in Fig. 3.

3.4 Algorithm Parameters
3.4.1 Constraints on A and P

From now on, a constant (3 is fixed which specifies the degree of synchronization
to maintain. We assume that non-faulty processes start a round within a real-time
delay 3 of one another and we want to ensure that the non-faulty processes also
start the next round within 8 of one another. At the start of the first round, the
local time of each process is equal to T and the next round starts at local time
T+ P.

Using the same notations as previously, a process p can compute cfn(ARR))
as soon as it knows Ay, and A,,_y. In the worst case, p has to wait for the last
message coming from a process in G, that is, until time a,,. Process p executes
the clock adjustment procedure a delay A after the start of a round, at real-time
up such that Cp(up) = T + A. For the adjustment to be correctly computed, we
must make sure that a, < up. As shown previously, a,, < t, +6+ 9 +¢, and
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Cplty+B+0+¢e) <T+ (1+p)(B+0+c¢). It is sufficient to take A such that
A > (1+p(B+d+e). (13)

This ensures that up, > t, + 3 + 0 + ¢ which also implies u, > v, and u, > t;+d+¢
for any non-faulty process gq.

At time wu,, p’s local clock is equal to 7"+ A and the adjustment AD.J, can be
at most (6 +¢€) +p|B —d +¢|. For p not to miss the next round, T+ P must be
larger than the new clock at the time of the correction. A lower bound for P is then

P > A+B+e)+pl|lf-30+¢| (14)

Assuming this condition is satisfied, p starts the next round at time t;, such that
C,(t,) =T+ P. Let g be another non-faulty process and u, be such that Cy(u,) =
T + A. The clock correction computed by ¢ at time u, assumes that ARR,[p] is
the arrival time of the message broadcast by p at time ¢,. The message sent by p at
time #;, must not arrive at g before time u,. P must then be large enough to ensure

t,+d—e > ug

Since Cy(uq) — Cy(ty) = A, Lemma 1 yields:
A

Uq < tq + ?p
We also have C,(t,) — Cy(vp) = P — 0 which is positive by (14). Using Lemma 1
again, we obtain

0> w0

p = p 1 +p .

By (10), vp >ty — B + 6 — ¢, therefore

P-4
t;)-F(S—E = tq—ﬂ+26—22€+m.
A sufficient condition to ensure t), +J — € > u, is then
P-4 A
T B4+20-2 > —
1+4+p p 1—-p
or, equivalently,
1+
P > (1+p)(ﬂ+28)—(1+2p)5+1TZ . (15)

Depending on the value of A, § and the network parameters, this bound may be
larger or smaller than the bound given by (14).

If two non-faulty processes p and ¢ start a round at local time T as measured
by their respective clocks Cj and C; then the next round will start at real-time #;,
and t; such that

Cp(ty,) = T+ P and Ci(t,) = T+ P.

By relations (13) and (14), P is larger than 6. We also have that C,(v,) = C;(v,) =
T + § then using Lemma 3 and Theorem 9, we obtain
B

It, —t,] < (1—|—p)§—|—28—|—(P—6)

2p
L—p

5
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A= (1+p)(B+0+e).
P> A+(B+e)+plB—0+¢|

f)>(1+mw+2@—uﬁam5+%§£A.

p_s < 122 {(1—,))%—5].

Figure 4: Constraints on the Parameters.

For the invariant to be maintained, the delay [t} — ¢ | must be smaller than 3. This
requires the following condition to be satisfied

2p B
- < (1—p) = —2e.
(P-o)ys < U-pf-2 (16)
The upper bound for P is then given by
1-p? B
-5 < —-pE—¢.
P—-§ < P [(1 ) ) €:| (17)

In summary, the lower bounds for A and P ensure that for all p of G, the value
of ARR, at time u, satisfies assumptions (2) and (3). The message broadcast by
q at time t; is received by p before u, and no other message from ¢ is received by
p until after u,. The upper bound on P ensures that the clock resynchronizations
are performed sufficiently often.

The lower bounds for A and P also guarantee that u;, > u, for all non-faulty p
and ¢ because uy, > t, + 0 + 8 + ¢ and uy < t;, + 0 —e. By Proposition 10 and the
constraint on A, we have C)(u,) > T + 4. The clock correction can set p’s virtual
clock to a value smaller than 7'+ A but more than T' + 4.

3.4.2 Optimal Synchronization

Figure 4 shows the necessary conditions on A and P to ensure that a synchronization
bound £ is maintained. The constraints can be satisfied if the two lower bounds
for P obtained from relations (14) and (15) by setting A = (1 + p)(8 + 6 +¢€) are
smaller than the upper bound given by (17). This requirement is equivalent to the
three following constraints

(1 -11p430 — )5 > (14 p)e—p(1 - 300 (18)
(1—9p—p2+p3)§ > (1+2p—pHe+2p%6 if3<d—c (19)
(1—10p+p2)§ > (1+pe ifg>d-e (20)

For small values of p these constraints are satisfied in the following three cases:
(5—6p+p°)e < (1—10p+p*)6

4(1+2p—p*)e +8p?0
1-9p—p*+p?

B

14



o If(5—-6p+p*)e < (1—10p+ p?)d then

B = 4(142p — p?)e + 8p?§

o If (1+p)(1—p)%e > (1—3p)(1 —10p + p?)é then

4(1+ p)e —4p(1 — 3p)d

Bmin = 1— ].].p T 3/)2 _ p3

e Otherwise

4(1+ p)e

Bmin = 71_10[){-/)2'

Figure 5: Optimal Synchronization Bound.

(5-6p+p*)e > (1—10p+p*)é
1+p)(1-pe < (1-3p)(1-10p+p*)é

4(1 + p)e

b 1—10p+ %’

(1+p)1=-pe > (1-3p)(1-10p+p*)é

4(1 4 p)e —4p(1 — 3p)d

b 1-11p+3p? —p?

These results are obtained by a routine but lengthy calculation and hold provided
p is small enough?. For a fixed p, the ratio §/e determines which of the three above
cases apply. Neglecting factors of degree 2 or more, the first case corresponds to
d/e > 5+44p, the second to 1+12p < 6 /e < 5+44p and the last to 1 < 6/ < 14+12p.
The parameter 5 can be smaller than § — € only in the first case.

The smallest synchronization bound Sy,;, which can be maintained by the algo-
rithm is defined in Fig. 5. In practice, the drift rate of hardware clocks is very small;
p is typically less than 107> and factors such as pe, p?, p?d, etc. are negligible. The
optimal synchronization bound S, is approximately 4¢ in all three cases and the
corresponding resynchronization period P is approximately 10e + 4.

Conversely, for a fixed resynchronization period P larger than 10e + 4, the syn-
chronization bound f given by (15) is very close to 4e + 4p(P — ¢ +¢). If P is large
and p(d —e¢) is negligible in comparison to pP, the bound is approximately 4e +4pP.

2Requiring p < 102 is sufficient.

15



T+R+A

T+A

/A 4 S

Figure 6: Evolution of VC, and V|,

3.5 Agreement

In this section, we assume that the parameters satisfy the constraints given in
Fig. 4 and we examine the difference |VCp,(t) — VCy(t)| where p and ¢ are non-
faulty. Figure 6 illustrates how V (), and V' C; can evolve from the start of a round
until the clock correction of the subsequent round. Process p and ¢ start the round
at real times ¢, and t, and adjust their respective clock at u, and ug;. The next
clock adjustments are performed at times u;, and wuj.

In the interval [t,, u,] the clock VO is equal to Cp and in (uy, uy] it is equal to
C,. Similarly, the clock V'Cy is equal to Cy in [ty, ug] and to Cj in (u,,ug]. Lemma 4
yields the following result.

Proposition 11 1. Fort € [tp, up] N [tq, ug],

2
GO =GOl < [ 5A+1-0)8

2. Fort € (up,up,] N (ug,uyl,

2
GO =GOl < T 5A+1-0)8
Proof. Fort € [tp, up]|N[ty, uq], both Cp(t) and Cy(t) are in the interval [T, T + Al.
Lemma 4 together with the fact that |t, — t;| < § gives the first part.
For the second part, we know that w, > v, and u, > v,, therefore ¢ is larger
than both v, and v,. This means that T+ < C,(t) < T+A+Pand T +6 <
Cy(t) <T+ A+ P. Lemma 4 can then be applied and we get

|C,(t) — C(t)] < %(P-FA—(S)-}-(l—p) [(1+p)§+2€}.
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By assumption, P satisfies inequality (16) so
2p B
—(P-90) < (1- 1—p)= —2¢|.
2p-0) < (- |a-nf -]
The result follows from the last two relations. O
The first part of this lemma is only used to estimate the worst case skew at the

start of the algorithm, that is, for ' = Tj. For all other values of T, the interval
[tp, up] is included in [up—1,up]. Using (14) and (13), it is readily verified that

(P+A-6) > (1+p) [(1+p)§+2€].

This means that the skew between C) and C| can be as large as the bound given
in case 2) above.

We now consider the transient phase which occurs during a round when some
processes have updated their clocks and others have not. For this intermediate
phase, the worst case skew is given by the following proposition.

Proposition 12 If u, <t < u, then
: 2p
|C,(t) = Cy(t)] < prﬂL(l‘FP)(ﬁﬂLE)—P&

Proof: The lower bound on A ensures that u, > v, and u, > t; + d + . We then
have

(L=p)t—vp) < Cplt) = Cplvp) < (L+p)(t—vp),
(L=p)t—ty) < Cylt) = Cylty) < (L+p)(t—1ty).
Since C}(vp) =T + 6 and Cy(t,) = T, it follows that

Ot = Cylt) > S+ (L p)(t—up) — (L4 Pt~ ty)
Z 0—2p(t—ty) + (1 —p)(ty —vp)
Z 0= 2p(ug —tg) + (1 —p)(ty — vp),
and
Cp(t) =Cyt) < 6+ 1 +p)(t—vy) — (L= p)(t —ty)
< 0+ 2p(t—tg) + (1 + p)(tg — vp)
< 0+ 2p(ug —tg) + (1 + p)(tg — vp)-

Since Cp(up) =T + A, we have

and by (10), we also get
—B+d+e) < ty—v, < B—0+e.

As a consequence, the difference C),(t) — C(t) satisfies the two inequalities below

GO =Cl) > —7= A= (1=p)B+2) + 05,
G0 =Cl) < T A+ 1+ (B+) = pd
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o If u, <t<u,and u, <t < uy then

' ' 2p

o If u, <t < uy then

GO =CDl < T A+ 1L+p)(E+e) = pé

Figure 7: Worst Case Skew.

The result follows by taking the absolute values of these bounds. O

Proposition 11 and 12 cover the two possible cases. The parameter constraints
imply that u, < u; and u; < u,. When VO, = C}, i.e. between u, and u, the
virtual clock of g is equal to either Cy or C;. In the worst case, the skew between
the clocks VC), and VC; is then bounded as shown in Proposition 12:

VO, (1) - VC,0)] < %%A+u+mW+a—p&

The maximal skew can be attained if ¢, = ¢, + § and the physical clock of p and ¢
run at rate (1 + p) and (1 — p), respectively. In such a case, the skew at time w,, is

VCy(up) =V Cy(up) = Cplup) — Cylup)

2p
L A+(1=p)B.
T+, +(1-p)B

This is the maximal skew given by Proposition 11. Even though the virtual clocks
of non-faulty processes cannot be ahead of V (), it is possible for p to further
advance its local clock at time w,. This may happen, for example, in the following
circumstances:

e f processes are faulty and send messages which arrive at p before t, + 0 —¢.

e A majority of the non-faulty processes start the round at exactly the same
time as p (i.e. at time ¢,) and the messages from these non-faulty processes
all arrive at p at time ¢, + 6 — €.

As a result, ¢fn(ARR,) = T + (14 p)(6 —¢) and ADJ, = (1 + p)e — pd. For
realistic values of p and §, the correction is positive. Process p advances its local
clock and the difference between VC), and VC, increases. The value of v, in this
case is t, + 6 —e. For the remainder of the interval (u,,u,] the two clocks continue
to drift apart and it can be shown that at time u,,

VCp(ug) —VCy(uyg) Cll)(uq) = Cy(uy)

2
?ppA+(1+p)(ﬂ+8)—p5.
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Figure 8: Envelope of the Virtual Clocks

3.6 Validity

Assume p is not faulty and X is a clock time such that X > Tj and let ¢ be such
that VCp(t) = X. The previous sections have shown that the local clocks of other
processes at time ¢ are close to X . In this section, we examine how close the virtual
clocks are from real-time.

The non-faulty processes are assumed to be initially synchronized within a delay
B of one another. There are then two reals xg and yo such that yo < xzo + £ and all
the non-faulty processes start the first round within the real-time interval [z, yo].
From xy and yo, we construct four sequences (z;)ien, (¥:)ien, (2i)ien and (w;)ien
as follows.

zi = wi+d—¢
w; = yi+o+e
1
i = zi+—(P-90
Ti+1 Zz+1+p( )
1
Yit1 = wi+?p(P—5).

The first round starts at clock time 7 and for ¢ > 1, we denote by T; = 1o+ P,
the clock time corresponding to the start of round i. In order to simplify the

analysis, we assume
€

< —.
PSG+e
This condition holds in practice and it implies p < €/(6 —€). As a result, the two
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following inequalities are satisfied:

€ 1 1 €
1-% < d <1+ 2.
5 S 1+ M1, *3

Under these assumptions, the virtual clocks of all the non-faulty processes are within
the area delimited by the two curves C; and Cy shown in Fig. 8. The first curve, Cy,
is the union of segments joining the points of coordinates (x;,7;) and (z;, T; + §)
and the second curve, Cs, joins the points of coordinates (y;,7;) and (w;, T; + 0).

More precisely, C; is the set of points of coordinates (¢;(X), X) where X > T}
and ¢; is the mapping from clock time to real time defined as follows:

g

)

a(X) = Zi-f-%[X—(Ti-f-(S)] ifT+0 <X <Tig.
p

C1(X) = :L‘i+(]. )[X—Tl] fh < X<Ty+9

Similarly, Cs is the set of points (c2(X), X) where X > Ty and

o(X) = yi+(1+§)[X—Ti] T, <X <T,+06

CQ(X) ’wi+%p[X—(Ti+5)] ifTi+5<X<Ti+1.
If p is a non-faulty process and VCp(t) = X where X > Tj then we show that ¢ is
within the interval [¢; (X)), c2(X)].

Let T = T; = Tp + iP for an arbitrary round . For all non-faulty process g
the clocks Cy and Cj and the reals t;, u, and v, are defined as previously. The
following lemma shows that the property holds for X such that T < X < T+ P
provided the non-faulty processes start round ¢ between x; and y;.

Lemma 13 Assuming x; <ty < y; for all non-faulty process q, then
o if T<XKTH+A and Cp(t) = X then c1(X) <t < e2(X),
o ifT+0< X KT+ P and Cy(t) = X then c1(X) <t < caX).
Proof: For the first part, Lemma 1 yields:

1 1
tp_'_l—-i-p(X_T) <t < tp-f-lTp(X—T).
By assumption, t, is in the interval [z;,y;]. It is easy to check that the left hand
side is smaller than ¢; (X) and the right hand side larger than ¢, (X).
For any non-faulty process ¢, the algorithm ensures that |t, — ¢,] < 8. The
minimal and maximal elements among the instants ¢, are between x; and y;. Using
relation (9), it follows that

zi+d—e < vp < yi+d+e,

that is, z; < v, < w;. As previously, Lemma 1 gives

v [X—(T+6)] <t < v+

p+1+p 1-—

for X > T + 6 and this implies ¢; (X) <t < e2(X). O

Within the round starting at time 7', the clock V' C,, is either equal to C), or to
C,. Let t be between ¢, and ¢, and let X = VCp(t). We have either t, <t < up
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and VOy(t) = Cp(t) or up <t < ty, and VCp(t) = C(t). In the first case, X must
be between 7" and 7'+ A. In the other case, Cp(up) < X < T + P. We noted in
section 3.4 that C)(up) > T +9, therefore T+ < X < T+ P. The previous lemma
implies then that

Cl(X) < t < Cz(X)

for all ¢ such that t, <t < t, and X = VCy(t). Taking t = t;, we have VCy(t;) =
Ti+1 and

ziy1 < t, < Yin

by definition of ¢; and ¢,. As a consequence, the assumption of Lemma 13 is satisfied
for round i + 1: the non-faulty processes start round i + 1 between x;41 and y;41.
Since the assumption also holds for the first round, we obtain by induction the
following property.

Proposition 14 For all X > Ty and all t such that VCp(t) = X,

Cl(X) < t <CZ(X)

The curve C; can be approximated by the straight line passing through the
points of coordinates (z;,T; + d). These points are circled in Fig. 8. The slope of
this line is given by

P P
@ o= ——— = (1493

Zit1 — Zi —e+tpd+e)
Similarly the curve C2 can be approximated by the line which passes through the
points of coordinates (y;,T; + ) and the slope of this line is

P (1-p) P
[0 = _ = — .
2 Wip1 — W; p P+e—p(d+e)
It follows that the clock V'C, of a non-faulty process p is within a linear envelope
of real time.

Proposition 15 For all t > yo,
TO + Oég(t - yo) < ch(t) < TO + al(t - ZL”()).

From the assumption p < e/(0 +¢€), it is easy to see that the coefficients a; and as
satisfy the two following inequalities

as<1l—p and 1+ p<a.

In the worst case, the virtual clocks of non-faulty processes can then drift more
from real-time than their physical clocks. The extra drift is caused by the im-
precision € on communication. During each resynchronization, the virtual clocks
can be shifted from real-time by +e depending on the actual transmission delays
experienced during the round.

Unlike the worst case skew, the rate of virtual drift increases as P diminishes.
Smaller values of P ensures that the virtual clocks are better synchronized with one
another but may result in a faster drift from real-time.
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4 Conclusion

The main properties of the Welch-Lynch clock synchronization algorithms are given
by Propositions 11 and 12, and by Propositions 14 and 15. For parameters 3, A,
and P which satisfy the conditions of Fig 4, the algorithm maintains the clocks of
two non-faulty processes p and ¢ in approximate agreement and the virtual clocks
are limited by two linear functions of real-time as shown in Proposition 15.

In order to minimize the skew, A must be as small as possible. The minimal
value of A'is (1 + p)(8 + 0 + ¢) and for this value, Proposition 11 and 12 give

1+ p)? 1+3

ve,m-ve,m <« LI (g L),

1—0p 1—p

for all ¢ > xg. As shown at the end of Sect. 3.5, this bound can be effectively

attained. Neglecting factors of degree at least two in p, the above relation gives the

worst skew:

?

7 = (1+3p)(B+e)+pd.

This improves slightly over the bound below obtained in the original analysis of the
algorithm [2]:

v = [A+7p)(B+¢)+ 3pd.

This result is based on a slightly different model of clocks than ours but the two
are equivalent if factors of degree two or more in p are negligible.

To maintain a chosen synchronization level 3, it is reasonable to take P as large
as possible. According to relation (17), the maximal value of P is approximately:

P = ——-——+4

As previously, this improves a little over the original bound given in [2]:

p = B _F 95 5 9
p

4p

Despite these slight improvements, the results obtained in the preceding sections
are essentially the same as given in [2]. The difference between the two estimates for
v is not significant in practice unless pé is large. Similarly, the difference between
the two upper bounds for P is fairly small, except for large values of §.

The new elements of the proof of correctness are developed in Sect. 3.3. In
particular Theorem 9 gives an accurate estimate of the effect of the clock resyn-
chronization procedure. As a result, the bounds on clock skew given in Sect. 3.5
are tight.
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