
Dynamic Scan Scheduling�
Presented at RTSS’02, Austin, TX, Dec. 2002

Bruno Dutertre
System Design Laboratory, SRI International, Menlo Park, CA

bruno@sdl.sri.com

Abstract

We present an approach to computing cyclic schedules
online and in real time, while attempting to maximize a
quality-of-service metric. The motivation is the detection
of RF emitters using a schedule that controls the scanning
of disjoint frequency bands. The problem is NP-hard, but it
exhibits a so-called phase transition that can be exploited
to rapidly find a “good enough” schedule. Our approach
relies on a graph-based schedule-construction algorithm.
Selecting the input to this algorithm in the phase-transition
region ensures, with high probability, that a schedule will
be found quickly, and gives a lower bound on the quality of
service this schedule will achieve.

1. Introduction

We examine a real-time scheduling problem encountered
in the detection of radio-frequency (RF) emitters. A de-
tection system uses a receiver that must scan disjoint fre-
quency bands to intercept signals from the emitters. Ascan
scheduledetermines how much time is allocated to each
band, and is critical to achieving good detection perfor-
mance. Ideally, the receiver should focus on emitters that
are most likely to be present and most critical to a mis-
sion. Today’s systems rely on a fixed schedule, computed
offline from an a priori table of known emitter types. Since
the importance of different emitter types may vary during
a mission, performance improvements can be expected by
dynamically adjusting the scan schedule to current condi-
tions. This requires an algorithm for computing schedules
online and under real-time constraints.

The relative importance of each emitter type can be spec-
ified by a set of weights. Finding the optimal schedule for a
given weight assignment is NP-hard and there is little hope
that this can be done online. Instead, we present a method
for constructing a “good enough” schedule within a speci-
fied deadline. A key aspect is the use of a so-calledphase
transitionto select schedule parameters that give good per-
formance, while ensuring that the deadline is met.

�This work was partially funded by DARPA/AFRL contracts F30602-
99-C-0169 and F30602-99-C-0167.

Our method relies on an algorithm for constructing
schedules with guaranteed detection probabilities. Given
parametersÆ

1

; : : : ; Æ

n

and�
1

; : : : ;�

n

, wheren is the num-
ber of bands, this algorithm attempts to compute a scan
schedule so that the receiver visits bandi for a delayÆ

i

at
least once in every interval of length�

i

+Æ

i

. This schedule-
construction problem is still NP-hard, but empirical results
show that many of its instances can be solved quickly. The
key issue is then to rapidly discover parametersÆ

1

; : : : ; Æ

n

and�
1

; : : : ;�

n

that ensure a good quality of service but
for which a schedule can be efficiently constructed.

This is done by using the utilization,U =

P

N

i=1

Æ

i

Æ

i

+�

i

,
as a hardness indicator. Since quality of service increases
with U , one must search for a feasible instance with uti-
lization as high as possible. Intuitively, instances with low
utilization are underconstrained and very likely to be fea-
sible. Conversely, instances with utilization close to 1 are
likely to be overconstrained and have no solution. Experi-
mental results confirm this intuition. More important, one
observes a phase transition similar to what has been noted
in many combinatorial search problems (e.g., [9, 11, 13]).
There is a small utilization interval[U

l

; U

h

℄, in which the
fraction of feasible instances decreases sharply. Most in-
stances of utilization less thanU

l

are feasible, and for such
instances a scheduleS is found rapidly, and most instances
of utilization more thanU

h

are infeasible. We exploit this
phenomenon by searching for feasible instances whose uti-
lization is betweenU

l

andU
h

. With high probability, a fea-
sible instance of utilization at least as high asU

l

will be
rapidly found. The resulting schedule will then have a qual-
ity of service at least as good as whatU

l

gives, and often
better in practice.

2. Problem Description

Receivers used for emitter detection cannot cover the
whole spectrum of possible emitter signals but work by
scanning disjoint frequency bands. We assume these bands
indexed from1 to n, wheren > 2. A scan schedulespeci-
fies the band to cover at every point in time. This schedule
produces a sequence ofdwell intervals, in each of which the
receiver is tuned to a particular band for a specified amount



of time. A schedule is an infinite sequence ofcontrol de-
scriptor words(CDWs) that specify receiver settings for
each dwell interval. For our purpose, a CDW is simply a
pair hf; di wheref is the index of a frequency band andd
is a dwell duration. A scan schedule can then be written

hf

0

; d

0

i; hf

1

; d

1

i; : : : ; hf

t

; d

t

i; : : :

Accordingly, the receiver must be tuned to bandf
0

for a
durationd

0

, then to bandf
1

for a durationd
1

, and so forth.1

The emitters to detect produce electromagnetic pulses at
a fixed frequency. The signal strength at the receiver de-
pends on physical parameters such as range, antenna geom-
etry and orientation, and emitter power. We say that anillu-
minationoccurs when the signal strength is high enough to
enable detection if the receiver is on the correct band. The
length of an illumination — called theillumination time—
varies with the distance between emitter and receiver. For
an emitter to be detected and identified, the receiver must
be tuned to the proper frequency band when an illumina-
tion occurs and must intercept a sufficient number of pulses.
This requires the receiver to stay on the emitter’s band for a
minimum time, called theduration to detectthe emitter.

At the beginning of a mission, a table is loaded that spec-
ifies the types of emitter that may be encountered. Each
emitter typeE is characterized by its bandi

E

, its duration
to detectD

E

, and a nominal illumination time�
E

. These
parameters are such that0 < D

E

< �

E

and1 6 i

E

6 n.
We denote byE the set of emitter types, and byE

i

the set of
emitter types in bandi. We assume, without loss of gener-
ality, that none of the setsE

1

; : : : ; E

n

is empty.
To detect emitters of typeE with high probability, the

receiver must revisit bandi
E

at least once in every interval
of length �

E

� D

E

, for an interval of length at leastD
E

each time. In most cases, this cannot be satisfied for all the
emitters. Tradeoffs must be made and receiver time must be
allocated in priority to the emitters most likely to be present
and most relevant to the mission.

The emitter table is fixed but the importance of each
emitter type may vary. For example, information about pre-
viously detected emitters may indicate that some emitter
types are more likely to be present than others, or unfore-
seen events may change mission objectives. Our goal is an
online algorithm that enables a receiver to adapt its sched-
ule in response to changes in emitter priorities. The input to
such an algorithm consists of the following data:

� n: the number of bands

� E : a finite set of emitter types

� for each elementE of E
1This is a simplified model. More receiver parameters can be specified

for each dwell interval, but these parameters are not relevant here. We also
assume that the delay for switching between two bands is negligible.

δi δi δi δi δi

i∆ i∆ i∆ i∆ i∆

a a a a ab b b b b4 40 0 1 1 2 2 3 3

Figure 1. Dwells in a regular schedule

– a triplehi
E

;D

E

; �

E

i characteristic ofE

– a minimal probability of detectionp
E

2 (0; 1℄

– a weightW
E

The algorithm must compute a scheduleS that satisfies the
following coverage constraint

8E 2 E : P

S

(E) > p

E

and maximizes the following objective function

F (S) =

X

E2E

W

E

P

S

(E);

whereP
S

(E) denotes the probability of detecting an illu-
mination of length�

E

from an emitter of typeE.
The weights specify the relative importance of each

emitter type, and vary during a mission.W
E

can be inter-
preted as a “reward” received whenever an emitter of type
E is detected. A good schedule maximizes the expected
total reward. The parametersp

E

remain constant. They en-
sure that no emitter type is completely ignored and must be
small enough that the coverage constraints can be satisfied.

To work online, the algorithm must compute a schedule
within a deadlineD that is on the order of 2 seconds. This
requirement is, of course, more important than optimality of
the solution. A scheduleS must be produced on time even
if S is not absolutely optimal.

3. Regular Schedules

In the most general form, a scan schedule is an infinite
sequenceS = hf

t

; d

t

i

t

2

N

. Our approach relies on a more
restricted type of schedule that we callregular. A schedule
S is regular if it satisfies the following requirements:

� There are infinitely many dwell intervals for each band
i, all of the same lengthÆ

i

> 0.

� For eachi, there is a constant�
i

> 0 such that any
two successive dwell intervals of bandi are separated
by a delay no more than�

i

.

This is illustrated in Figure 1. Every rectangle represents
a dwell interval[a

t

; b

t

) in bandi. All these dwells are of
lengthÆ

i

. The first interval[a
0

; b

0

) is such thata
0

6 �

i

and all subsequent intervals satisfya
t+1

� b

t

6 �

i

.

2



Given an arbitrary scheduleS = hf

t

; d

t

i

t2N

, let i be a
band and letq

t

(i) be defined as follows:

q

0

(i) = 0

q

t+1

(i) =

�

0 if f
t

= i

q

t

(i) + d

t

if f
t

6= i:

After thet-th CDW, q
t

(i) measures the delay since the last
occurrence of bandi in S, or the delay since the beginning
of the schedule ifi has not occurred yet:

f

d d

f i

d

f

q (i)

0 1 t

0 1 t

t

We call the tupleq
t

= (q

t

(1); : : : ; q

t

(n)) theschedule state
aftert steps. By definition, ifS is regular then the set

Q

i

= fq

t

(i) j t 2 Ng

is bounded. Also, all the elements ofQ
i

can be written

q

t

(i) = a

1

Æ

1

+ : : :+ a

n

Æ

n

; (1)

wherea
1

; : : : ; a

n

are nonnegative integers anda
i

= 0.
Since the dwell timesÆ

i

are positive, this implies thatQ
i

is finite, and hence has a largest element. For a regular
scheduleS, we denote this largest element by�

i

(S) and
the dwell time for bandi by Æ

i

(S). We also use the notation
Æ(S) and�(S) to refer to the twon-tuples:

Æ(S) = (Æ

1

(S); : : : ; Æ

n

(S))

�(S) = (�

1

(S); : : : ;�

n

(S)):

For two tuples� = (�

1

; : : : ; �

n

) and� = (�

1

; : : : ; �

n

),
we write � 6 � if �

i

6 �

i

for i = 1; : : : ; n. A
scan-scheduling instance, or instancefor short, is given by
two n-tuples of positive realsÆ = (Æ

1

; : : : ; Æ

n

) and� =

(�

1

; : : : ;�

n

). A regular scheduleS such thatÆ(S) = Æ

and�(S) 6 � is asolutionto the instance. An instance is
feasibleif it has solutions.

The utilization of an instance(Æ; �) is denoted by
U(Æ; �) and is defined by

U(Æ; �) =

n

X

i=1

Æ

i

Æ

i

+�

i

:

Obviously, a feasible instance must have utilization no more
than 1. On the other hand, there are infeasible instances of
arbitrarily low utilization. If Æ is fixed there is always a
tuple� such thatU(Æ; �) = 1 and the instance(Æ; �) is
feasible. For a fixedÆ there is also a boundU

min

below
which all instances are feasible.

A scheduleS = hf

t

; d

t

i

t2N

is cyclic or periodic if there
is a positive integerT such thathf

t

; d

t

i = hf

t+T

; d

t+T

i for

all t 2 N. The smallest suchT is the period ofS, and the
finite sequence

w = hf

0

; d

0

i; : : : ; hf

T�1

; d

T�1

i

will be called thegenerator ofS. Periodic schedules are es-
sential in practice since they can be finitely represented and
generated efficiently using simple hardware. In general, a
regular schedule may be nonperiodic, but limiting ourselves
to cyclic regular schedules is sufficient.

Proposition 1 If (Æ; �) is a feasible instance then it has a
periodic solution.

Proof: Let S = hf

t

; d

t

i

t2N

be a solution of(Æ; �) and let
(q

t

)

t2N

be the sequence of states ofS. All the states in
this sequence belong to the setQ = Q

1

� : : : � Q

n

. As
noted earlier, everyQ

i

is finite and thenQ is also finite.
There are then two indicesu andu0 with u < u

0 such that
q

u

= q

u

0 . Let w = hf

u

; d

u

i; : : : ; hf

u

0

�1

; d

u

0

�1

i, then the
schedule generated byw is a solution of(Æ; �). 2

The following important property gives a bound on the
probabilities of detection achieved by a regular schedule.

Proposition 2 Let S be a regular schedule, solution of an
instance(Æ; �), and letE be an emitter type in bandi

E

= i

such thatD
E

6 Æ

i

. The probability of detecting an illumi-
nation fromE with S is bounded as follows:

� If �
i

6 �

E

� 2D

E

thenP
S

(E) = 1.

� If �
i

> �

E

� 2D

E

then

P

S

(E) >

Æ

i

+ �

E

� 2D

E

Æ

i

+�

i

:

This bound is obtained by considering two successive dwell
intervals[a; b) and [a0; b0) for bandi in S, and a random
illumination [x; x + �

E

℄ wherex is uniformly distributed
betweena anda0. The illumination is detected if it overlaps
[a; b) or [a0; b0) by a delay of at leastD

E

. This happens if
a 6 x 6 b � D

E

or a0 + D

E

� �

E

6 x 6 a

0. The result
follows sinceb = a+ Æ

i

anda0 6 a+�

i

.
This property is the main motivation for choosing regular

schedules. For such schedules, maximizingF (S) amounts
to finding an instance that maximizes a new objective func-
tion

H(Æ; �) =

X

E2E

W

E

min

�

1;

Æ

i

E

+ �

E

� 2D

E

Æ

i

E

+�

i

E

�

;

and constructing a schedule for that instance. The important
simplification is thatH now depends only on the2n param-
etersÆ

1

; : : : ; Æ

n

and�
1

; : : : ;�

n

. The coverage constraints
also translate to constraints on these2n parameters.

3



4. Schedule Construction

A key problem is to determine whether an instance
(Æ; �) is feasible and, if so, to construct a solution. BIN

PACKING is polynomially reducible to the scan-scheduling
feasibility problem. Thus we have the following.

Proposition 3 Determining whether a scan-schedule in-
stance(Æ; �) is feasible is NP-hard.

This gives the worst-case complexity, but many instances
can actually be solved efficiently using a graph-exploration
technique.

If S is a solution to(Æ; �) then the states ofS are of
the formq

t

= (q

t

(1); : : : ; q

t

(n)) with q
t

(i) 6 �

i

. Further-
more, every componentq

t

(i) can be writtena
1

Æ

1

+ : : : +

a

n

Æ

n

, as in (1). In general, letV
i

be the set of numbers that
can be written in the form (1) and are smaller than or equal
to�

i

. Then the setV = V

1

� : : :�V

n

is finite and contains
all the states of any solution of(Æ; �).

Given two elementsq andq0 of V and a bandj, the state
q

0 is the successor ofq by j, if for i = 1; : : : ; n we have

q

0

(i) =

�

0 if i = j

q(i) + Æ

j

if i 6= j:

This is denoted byq
j

�! q

0. Also, let! denote the succes-
sor relation onV , that is, the relation defined by

q ! q

0

, 9j : q

j

�! q

0

:

The setV and the relation! define a directed graphG =

(V;!). Its vertices are the elements ofV and there is an
edge from a vertexq to a vertexq0 if and only if q0 is a
successor ofq.

If G contains an infinite sequence of states(q

t

)

t2N

such
that q

t

! q

t+1

, then there is a unique sequence of bands

(f

t

)

t2N

such thatq
t

f

t

�! q

t+1

for all t. This sequence de-
fines a regular scheduleS = hf

t

; d

t

i

t2N

whered
t

= Æ

f

t

andS is easily seen to be a solution of the instance(Æ; �).
Conversely, ifS is a solution then the sequence of states of
S is an infinite path inG. SinceG is finite we have the
following.

Proposition 4 The instance(Æ; �) is feasible if and only if
the graphG derived from this instance contains a circuit.

AssumingG has a circuit, letq be a state on the cir-
cuit. It is straightforward to show thatq can be reached from
the stateq

0

= (0; : : : ; 0) of G. This remark, together with
Proposition 4, is the basis of our schedule-construction al-
gorithm. Starting fromq

0

, the algorithm explores the graph
G until either a circuit is found or all states reachable from
q

0

have been explored. In the former case, a regular sched-
ule S is obtained from the circuit. In the latter case, no
regular schedule exists and the instance is not feasible.

Determining whether a circuit exists would be easy if
G was small. Unfortunately, the cardinality ofV increases
exponentially withn. Even with a small number of bands, it
is typically infeasible to construct and store in memory the
whole graph. Experiments with eight bands have shown that
the number of states reachable from(0; : : : ; 0) can attain
several million.

Instead, our algorithm relies on a depth-first search that
does not require constructing the full graph. A naı̈ve depth-
first search is inefficient as a large proportion of the graph
may have to be explored before a circuit is found (the whole
graph if the instance is not feasible). Several optimizations
can significantly reduce the number of nodes to explore:

� One can fix a bandj a priori and explore only paths

that start withq
0

j

�! q

1

: : :

� It is redundant to explore paths on which the same
band occurs twice in a row.

� The search for a circuit can be replaced by the fol-

lowing weaker condition. If a pathq
0

f

0

�! q

1

f

1

�!

: : :

f

u

�! q

u

is found whereq
u

6 q

k

for some stateq
k

amongq
0

; : : : ; q

u�1

, then the instance is feasible. The
sequence of bandsf

k+1

: : : f

u

gives a schedule.

The most efficient optimization is a pruning technique
that checks whether it is possible to add a finite number of

bands to a pathq
0

f

1

�! q

1

f

2

�! : : :

f

u

�! q

u

. If the check
fails, q

u

is not the origin of an infinite path and thus is not
on a circuit. There is then no need to explore its successors.

Given a stateq, let d
1

; : : : ; d

n

be defined as follows:

d

i

= �

i

+ Æ

i

� q(i):

If q is the origin of an infinite path inG then every band
must occur infinitely often on this path. Starting fromq,
one can then construct a path of lengthn on which each

band occurs exactly once. Letq
f

1

�! q

1

: : : q

n�1

f

n

�! q

n

be
such a path. For each bandi, there isk such thatf

k

= i.
Let a

i

= Æ

f

1

+ : : : + Æ

f

k�1

and letb
i

= a

i

+ Æ

i

. Since
q(i) + a

i

= q

k�1

(i) andq
k�1

(i) 6 �

i

, we haveb
i

6 d

i

.
Therefore, ifq is on a circuit, there existn nonoverlap-

ping intervals[a
1

; b

1

); : : : ; [a

n

; b

n

) such that[a
i

; b

i

) is of
length Æ

i

and b
i

6 d

i

. The pruning test checks whether
suchn intervals exist. This can be rephrased as an elemen-
tary scheduling problem: We are givenn tasks correspond-
ing to each band; taski is of lengthÆ

i

and has deadlined
i

.
We must find whether then tasks can be executed one at a
time, in an order such that all deadlines are met. Executing
thesen tasks in increasing order of deadlines (EDF schedul-
ing) is optimal for this miniproblem. Our pruning procedure
sorts thend

1

; : : : ; d

n

in increasing order, computes the cor-
responding intervals[a

i

; b

i

), and checks that all deadlines

4



are met. This EDF-based test can be efficiently integrated
to a depth-first search, with a limited overhead ofO(n) per
visited node.

This pruning technique considerably reduces the num-
ber of nodes to explore, especially on infeasible instances.
It can also be generalized by considering more than one oc-
currence of each band along a path fromq. This generalized
EDF-based test improves performance even more. Other
details of the algorithm and the heuristic we use to order the
exploration are discussed in [3].

5. Phase Transitions

We have experimentally evaluated the schedule-
construction algorithm on large sets of randomly generated
instances, to examine the relationship between utilization
and the likelihood that an instance is feasible.

In each experiment, 20000 instances were constructed
randomly. The dwells were chosen independently and uni-
formly distributed in an interval[Æ

min

; Æ

max

℄. Similarly,
then deltas were chosen independently and uniformly dis-
tributed in an interval[�

min

;�

max

℄. The algorithm was
applied to each of the 20000 instances with a timeout of
30 s. Each experiment used different settings forn and the
distribution intervals. The utilization and status (either fea-
sible, infeasible, or not solved within the 30 s timeout) of
each instance were recorded, as were other data, including
the search time for feasible and infeasible instances.

Figure 2 shows how fractions of feasible, infeasible,
and unsolved instances vary for two experiments conducted
with 8 bands. In both cases, one observes a sharp transi-
tion in behavior similar to the phase transition observed in
combinatorial search problems [9, 11, 13, 14]. LetF

s

(U),
F

i

(U), andF
u

(U) denote the fraction of feasible, infeasi-
ble, and unsolved instances observed at utilizationU . For
both experiments in Figure 2, there is a utilizationU

l

be-
low which F

s

(U) = 1, and a utilizationU
h

above which
F

s

(U) = 0. At a critical pointU


betweenU
l

andU
h

, 50%
of the instances are feasible. The fraction of unsolved in-
stances reaches its maximum very close toU



, typically at
a utilization equal toU



� 0:02. This suggests that hard
instances are located in the interval[U

l

; U

h

℄, close toU


.
This is confirmed by Figure 3, which shows that the aver-
age search time for both feasible and infeasible instances is
maximal in the interval[U

l

; U

h

℄ with a peak aroundU


.
Qualitatively, we observed the same phenomenon for all

experiments performed withn = 8, but the size of the in-
terval [U

l

; U

h

℄ varies depending on the bounds forÆ
i

and
�

i

. In Figure 2, the left curve has a sharp threshold, with
U

l

= 0:85 andU
h

= 0:92, and the right curve shows a
coarse threshold, withU

l

= 0:61 andU
h

= 0:92. The
size of the interval[U

l

; U

h

℄ and the number of unsolved in-
stances are also correlated. There is a clear difference be-

tween the fractions of unsolved instances in the two curves
of Figure 2. For the left curveF

u

(U) is never more than
1%, whileF

u

(U) can be as high as45% for the right curve.
Similarly, the average search time is larger in experiments
with coarse thresholds (Figure 3).

The same behavior was observed on experiments with
larger numbers of bands. Two examples withn = 20

are shown in Figure 4. The main difference from previ-
ous curves is that very few instances can be determined to
be infeasible in 30 s of search time. This is not surprising
as the graph derived from an instance grows exponentially
with n. To determine that an instance is not feasible, the al-
gorithm must explore an increasingly large number of states
asn augments.

In these experiments, the instance parameters were cho-
sen randomly, according to some uniform distribution. In
practice, the instances are derived from the emitter table,
coverage constraints, and objective function. Given an
emitter typeE in bandi, we must ensure thatP

S

(E) > p

E

.
As a consequence of Proposition 2, the two following con-
straints must be satisfied:

Æ

i

> D

E

�

i

6

�

E

� 2D

E

p

E

+

Æ

i

(1� p

E

)

p

E

:

The most economical setting forÆ
i

is then

Æ

i

= max fD

E

j E 2 E

i

g : (2)

To satisfy the coverage constraints,�

i

must be smaller
than or equal to the constant

B

i

= min

�

�

E

� 2D

E

p

E

+

Æ

i

(1� p

E

)

p

E

j E 2 E

i

�

:(3)

On the other hand, there is no need to choose�

i

smaller
than the following constant

A

i

= min f�

E

� 2D

E

j E 2 E

i

g ; (4)

since any�
i

6 A

i

ensuresP
S

(E) = 1 for all the emitters
in bandi.

In dynamic scan scheduling,Æ
i

is then fixed a priori from
the emitter table, and�

i

varies in the interval[A
i

; B

i

℄. Al-
though these constraints imply a different distribution than
in the preceding experiments, phase transitions are still ob-
served. Figure 5 shows how the fraction of feasible in-
stances varies with the utilization for two emitter tables and
coverage constraints. As previously, one observes a transi-
tion zone[U

l

; U

h

℄. The curves were generated by construct-
ing a large number of random instances, with theÆ

i

s fixed
and�

i

uniformly distributed in[A
i

; B

i

℄. These curves al-
low one to experimentally estimate the values ofU

l

andU
h

.
This computation must be performed offline as it can re-
quire a few hours of CPU time, but it needs to be done only
once per emitter table.

5



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

Fraction of feasible, infeasible, and timed−out instances

Feasible instances
Infeasible instances
Timeouts

8 Bands
timeout = 30 s 

dwells: 40 to 100
delats: 300 to 1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

Fraction of feasible , infeasible, and timed−out instances

Feasible instances
Infeasible instances
Timeouts

8 bands
20000 experiments
timeout = 30 s

dwells: 1 to 100
deltas: 90 to 2000 

Figure 2. Phase transitions for random instances (8 bands)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Utilization

S
ec

on
ds

Average search time for feasible and infeasible instances

Feasible instances
Infeasible instances

8 Bands
timeout = 30 s 

dwells: 40 to 100
delats: 300 to 1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Utilization

S
ec

on
ds

Average search time for feasible and infeasible instances

Feasible instances
Infeasible instances

8 bands
20000 experiments
timeout = 30 s

dwells: 1 to 100
deltas: 90 to 2000 

Figure 3. Search time peaks for random instances (8 bands)

6. Dynamic Scan Scheduling

For an emitter tableE , the dwell timesÆ
i

s are determined
by Equation 2, and one can estimate the constantsU

l

andU
h

that delimit the phase-transition region. Our general scan-
scheduling strategy is then as follows:

1. Select a utilization boundU
0

betweenU
l

andU
h

.

2. Compute the� that maximizes quality of service
among those that satisfyU(Æ; �) 6 U

0

.

3. Search for a regular scan schedule for(Æ; �), using the
graph-exploration algorithm.

4. If a solution is found, attempt to improve performance
by repeating the process with a largerU

0

. Otherwise,
reduceU

0

and repeat the procedure from Step 2.

To ensure termination within a deadlineD, we limit the
search time in Step 3 using a timeout and stop after a fixed
number of iterations.

Step 2 of this algorithm requires solving the following
optimization problem:

Find�
1

; : : : ;�

n

that maximize

H(�) =

X

E2E

W

E

min

�

1;

Æ

i

E

+ �

E

� 2D

E

Æ

i

E

+�

i

E

�

;

and satisfy the constraints

A

i

6 �

i

6 B

i

n

X

i=1

Æ

i

Æ

i

+�

i

6 U

0

:

The boundsA
i

,B
i

, andU
0

, and the dwell timesÆ
i

are fixed.
A solution exists providedU

0

satisfies the inequality

U

0

>

n

X

i=1

Æ

i

Æ

i

+B

i

: (5)

To solve this problem, the first step is to change vari-
ables. Letx

1

; : : : ; x

n

be defined byx
i

= 1=(Æ

i

+ �

i

) for
i = 1; : : : ; n, and let�

E

denoteÆ
i

E

+�

E

�2D

E

. The prob-
lem can now be rewritten in the following simpler form:

Findx
1

; : : : ; x

n

that maximize

H

0

(x

1

; : : : ; x

n

) =

X

E2E

W

E

min(1; �

E

x

i

E

)

6



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

Fraction of feasible, infeasible, and timed−out instances

Feasible instances
Infeasible instances
Timeouts

20 bands
24500 instances
timeout = 30 s

dwells: 1 to 100
deltas: 400 to 5000 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

Fraction of feasible, infeasible, and timed−out instances

Feasible instances
Infeasible instances
Timeouts

20 bands
24500 instances
timeout = 30 s

dwells: 1 to 100
deltas: 400 to 5000 

Figure 4. Phase transition for random instances (20 bands)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

Fraction of feasible, infeasible, and timed−out instances

Feasible instances
Infeasible instances
Timeouts

emitter ping 06.txt

121 emitters
20 bands 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

Fraction of feasible, infeasible, and timed−out instances

Feasible instances
Infeasible instances
Timeouts

emitter100.txt

121 emitters
dwells=100 

Figure 5. Phase transitions for two emitter tables

=

n

X

i=1

X

E2E

i

W

E

min(1; �

E

x

i

);

and satisfy the constraints

1

Æ

i

+B

i

6 x

i

6

1

Æ

i

+A

i

n

X

i=1

Æ

i

x

i

6 U

0

:

This is very close to a linear programming problem and
an optimal tuple(x

1

; : : : ; x

n

) can be efficiently computed
using the algorithm of Figure 6. This algorithm runs in
O(N logN) time, whereN is the total number of emitter
types (i.e.,N = jEj).

The algorithm starts by settingx
1

; : : : ; x

n

to their min-
imal acceptable value so that the coverage constraints are
satisfied. The solution is then iteratively improved until the
limit U

0

is reached or until all thex
i

s have their maximal
value1=(Æ

i

+ A

i

). At each step, the algorithm picks one
emitter typeE, say of bandi, and increasesx

i

just enough
to achieve 100% probability of detection forE, unless this
increases the utilization aboveU

0

. Let " be the correspond-
ing increment. Changingx

i

to x
i

+ " has a cost ofÆ
i

" in
utilization, but increasesH 0 by

P

F2C

i

W

F

�

F

", whereC
i

is the set of emittersF in bandi such that1=�
E

6 1=�

F

.
Thus the total gain can be writtenagw

E

" where

agw

E

=

X

F2C

i

W

F

�

F

:

The intuition behind the algorithm is to chooseE for which
the gain vs. cost ratioagw

E

=Æ

i

is the highest. It is not hard
to prove that the algorithm is correct. It always finds an opti-
mal solution(x

1

; : : : ; x

n

) if condition (5) is satisfied. From
this solution, it is trivial to recover the optimal�

1

; : : : ;�

n

of the original problem.
For a fixed set of weights, this algorithm is monotonic:

if � and�0 are the optimal values obtained for two bound
U

0

andU 0

0

, respectively, then we have

U

0

6 U

0

0

) �

0

6 �:

The last issue to resolve is the selection ofU

0

at the be-
ginning of each iteration. By the monotonicity property, if
schedule construction fails at utilizationY then there is no
point in tryingU

0

> Y . Conversely, if a scheduleS was
constructed at utilizationX then choosingU

0

< X does
not make sense. So we use a simple dichotomy process

7



forall E 2 E

let i be the band of E
let C

i

= fF 2 E

i

j �

F

6 �

E

g

agw

E

=

P

F2C

i

W

F

�

F

g

E

= agw

E

=Æ

i

L = list of all emitters in decreasing order of g
E

for i = 1 to n set x
i

= 1=(Æ

i

+A

i

)

U =

P

n

i=1

Æ

i

x

i

while U < U

0

and L 6= hi

E = first element of L
remove E from L

let i be the band of E
if x

i

< 1=�

E

" = min(1=�

E

� x

i

; (U

0

� U)=Æ

i

)

x

i

= x

i

+ "

U = U + Æ

i

"

endif
end

Figure 6. Optimal x
1

; : : : ; x

n

for a bound U

0

to selectU
0

. Initially, X andY are set toU
l

andU
h

, re-
spectively. At each iteration,U

0

is taken as the midpoint
betweenX andY , that is,U

0

= (X + Y )=2. If a schedule
is found at this step,X is set toU

0

; otherwiseY is set to
U

0

. This simple strategy works well in practice, although
more sophisticated approaches — that take into account the
probability that an instance of utilizationU

0

is feasible —
could be envisaged.

7. Simulation Results

Simulation was used to compare the performance of dy-
namic and fixed scan scheduling for several emitter tables
and scenarios. For each table, a first scheduleS

0

was ob-
tained by assigning equal weight to all emitter types. The
performance of a receiver that usesS

0

as a fixed sched-
ule was then compared to a receiver that relies on dynamic
scheduling, and uses five successive schedulesS

1

; : : : ; S

5

constructed from five weight filesW
1

; : : : ;W

5

. In each
weight file, five emitter types are considered critical and
have weight12000; all the other emitter types have weight
100. The schedulesS

0

and S

1

; : : : ; S

5

were all com-
puted using our scan-scheduling algorithm, butS

0

was con-
structed “offline”, that is, with a large deadline of several
minutes. On the other hand,S

1

; : : : ; S

5

were constructed
“online”, with a deadlineD of 2 s CPU time.

For each emitter typeE, a simulator synthesized periodic
illuminations of length�

E

. The period, phase, and num-
ber of illuminations varied randomly. For each weight file
W

i

, detection results forS
0

and forS
i

were collected and
a score computed on 30 simulation runs. The score forE

takes into accountE’s weight, as given byW
i

, and the first
illumination fromE that is detected. The score depends on

Table 1. Scores

Detected Illumination Critical Noncritical
1st 2000 100
2nd 1800 80
3rd 1500 50

4th or more -10000 0

whetherE is detected on the first, second, or third illumina-
tion, or later (Table 1). If the first three illuminations arenot
detected thenE is considered missed (or detected too late).
This incurs a large penalty ifE is a critical emitter.

Figure 7 shows the score (averaged over 30 runs) of
fixed and dynamic scheduling for two emitter tables and
five weight files. Both tables contain the same number of
emitter types, with identical parameters except the duration
to detect. For one table,D

E

= 180 for all E, and in the
otherD

E

= 200 for all E. The unit is 10�s. The top charts
in Figure 7 give the total scores and the bottom charts show
the score for the critical emitters. Dynamic scheduling out-
performs fixed scheduling in these examples, and detects
all critical emitters on the first illumination. In the second
scenario, fixed scheduling happens to have high probabili-
ties of detection for the critical emitters, and does as well
as dynamic scheduling. However, the fixed schedule misses
several critical emitters in other scenarios.

Figure 8 gives the total scores (averaged over30�5 runs)
of fixed and dynamic scheduling for increasingly hard emit-
ter tables. The tables were obtained by increasingD

E

from
90 to 300. In the easiest case, both approaches achieve de-
tection probabilities close to 1 for all emitter types and have
almost maximal scores. The scores get lower asD

E

in-
creases, but dynamic scan scheduling always does better
than fixed scheduling. In particular, dynamic scheduling
has a perfect score on the critical emitters, except for the
two hardest tables. For these two tables, the resource re-
quirements for some critical emitters are in conflict, and it
is not possible to ensure 100% probability of detection for
all of them. On the same two tables, fixed scheduling misses
many critical emitters. The same results have been observed
for emitter tables with nonuniformD

E

.
Simulation shows the benefits of adjusting a scan sched-

ule to the emitter weights. Our algorithm can compute a
scan schedule online within a deadline of 2 s, and the re-
sulting schedule largely outperforms a fixed schedule.

8. Related Work

The construction of regular schedules from an instance
(Æ; �) is similar to the distance-constrained scheduling
problem described in [4]. Han and Lin solve the prob-
lem by using pinwheel scheduling [7]. An important dif-
ference is that, unlike in [4], preemption is not possible in
our case: a dwell interval for a bandi cannot be fractioned

8



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Scenario

S
co

re

Total scores per scenario for DD=180

Fixed
Dynamic

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Scenario

S
co

re

Total score per scenario for DD=200

Fixed
Dynamic

1 2 3 4 5
−4000

−2000

0

2000

4000

6000

8000

10000

Scenario

S
co

re

Scores on critical emitters for DD=180

Fixed
Dynamic

1 2 3 4 5
−6000

−4000

−2000

0

2000

4000

6000

8000

10000

Scenario

S
co

re

Scores on critical emitters for DD=200

Fixed
Dynamic

Figure 7. Total scores and scores for critical emitters

in small parts. Despite this restriction, variations of pin-
wheel scheduling may be applicable to scan scheduling. To
the best of our knowledge, existing approaches to pinwheel
scheduling (e.g., [1,2,10]) require transforming the original
instance into one that satisfies adequate algebraic relations.
In our case, such transformations would replace the original
�

i

s by smaller values, which would both complicate the
probability estimates and possibly lead to overconstrained
instances. Another difficulty is that pinwheel scheduling
typically assumes tasks of unit duration, which in our case
would require allÆ

i

s to be equal. The graph exploration
we use is applicable to general instances and does not make
particular assumptions about the parameters.

Scan scheduling is also related to other nonpreemptive
scheduling problems. In traditional contexts — where the
objective is to complete all jobs before their deadlines —
EDF scheduling is optimal [8]. This is no longer true for
scan scheduling. For example, selecting bands in decreas-
ing order of the deadlinesd

i

(using the notations of Sec-
tion 4) does not always work. EDF is not optimal because
of the dependency between the start time of one dwell and
the deadline for the next dwell. It may be better to select a
bandj beforei even thoughd

j

> d

i

if �
j

+ Æ

j

< �

i

+ Æ

i

.

The MSP.RTL tool [12] can synthesize very general
classes of schedules by solving a constraint satisfac-
tion problem expressed in the real-time logic RTL. Our
schedule-construction approach relies on an algorithm sim-
ilar to that discussed in [12]. A main original feature of our

approach is to use the algorithm online. Although the worst-
case complexity is high, real-time performance is achiev-
able by avoiding instances that are too hard, taking utiliza-
tion as a hardness indicator, and exploiting the presence of
a phase transition. Phase transitions have been observed in
many examples of constraint satisfaction problems (CSPs),
most notablyN -sat (e.g., [9, 11, 13, 14]), but also in other
combinatorial problems (see [6] for a survey). Techniques
for exploiting phase transitions in CSPs have been investi-
gated in [5] to construct good search heuristics.

9. Conclusion

We have presented an algorithm that is capable of con-
structing a scan schedule in real time, to improve detection
performance as emitter priorities change. The algorithm
uses in a novel way a technique for estimating the hardness
of specific problem instances. This enables the construc-
tion of a schedule online and in real time, even though the
problem is NP-hard in general.

Improvements were demonstrated via simulation, but the
basic techniques can be extended and generalized for even
better performance. In this respect, a possible limitationof
the approach presented here is its strict reliance on regular
schedules. Such schedules are simple and easy to analyze,
but having all the dwells for a bandi of the same length
can be expensive if the emitters in that band have widely
different parameters. Extensions of the basic techniques to

9



90 100 162 180 200 257 300
0

0.5

1

1.5

2

2.5
x 10

4

Duration to detect

S
co

re

Average score

Fixed
Dynamic

90 100 162 180 200 257 300
−4000

−2000

0

2000

4000

6000

8000

10000

Duration to detect

S
co

re

Average score on critical emitters

Fixed
Dynamic

Figure 8. Scores for increasingly hard emitter tables

other types of scan schedule should improve results in such
cases.

The techniques presented seem generalizable to many
types of nonpreemptive scheduling, as used for example in
scheduling communication across buses in distributed sys-
tems. More complex models, with or without task preemp-
tion, and with or without synchronization between tasks, are
possible areas where new algorithms and hardness estima-
tion techniques could be valuable.

The development of theoretical foundations for hardness
estimation remains an important issue. All our results are
based on empirical evidence, based on a large number of
random instances, but we have no rigorous proofs. The ex-
periements strongly suggest that scan scheduling exhibits
the same form of phase transition as other types of com-
binatorial problem. Rigorous proofs that these phenomena
exist are particularly difficult, but scan scheduling may have
a simpler structure than, say,N -SAT or graph coloring, and
be more easily amenable to theoretical study.

References

[1] S. Baruah and A. Bestavros. Pinwheel Scheduling for Fault-
Tolerant Broadcast Disks in Real-Time Systems. InIEEE
Conference on Data Engineering, pages 543–551, Birming-
ham, UK, April 1997.

[2] M. Y. Chan and F. Chin. General Schedulers for the Pin-
wheel Problem Based on Double-Integer Reduction.IEEE
Transactions on Computers, 41(6):755–768, June 1992.

[3] B. Dutertre. A Distributed Dynamic Scan-Scheduling Al-
gorithm. Technical report, System Design Laboratory, SRI
International, Menlo Park, CA, February 2002.

[4] C.-C. Han and K.-J. Lin. Scheduling Distance-Constrained
Real-Time Tasks. InProceedings of the 13th IEEE Real-
Time Systems Symposium, pages 300–308, December 1992.

[5] T. Hogg. Exploiting Problem Structure as a Search Heuris-
tic. International Journal of Modern Physics C, 9:13–29,
1998.

[6] T. Hogg, A. Huberman, and C. Williams, editors.Artificial
Intelligence, volume 81. Elsevier, March 1996. Special is-
sue onFrontiers in Problem Solving: Phase Transitions and
Complexity.

[7] R. Holte, A. Mok, L. Rosier, I. Tukchinsky, and D. Varvel.
The Pinwheel: A Real-Time Scheduling Problem. InPro-
ceedings of the 22nd Hawaii International Conference on
System Science, pages 693–702, January 1989.

[8] K. Jeffay, D. Stanat, and C. Martel. On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks. InProceedings
of the 12th IEEE Real-Time Systems Symposium, pages 129–
139, December 1991.

[9] S. Kirkpatrick and B. Selman. Critical Behavior in the
Satisfiability of Random Boolean Expressions.Science,
264:1297–1301, 1994.

[10] S. S. Lin and K. J. Lin. A Pinwheel Scheduler for Three
Distinct Numbers with a Tight Schedulability Bound.Algo-
rithmica, 19(4):411–426, December 1997.

[11] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy
Distributions of SAT Problems. InProceedings of AAAI 92,
pages 459–465, Menlo Park, CA, 1992. AAAI Press.

[12] A. Mok, D.-C. Tsou, and R. de Rooij. The MSP.RTL
Real-Time Scheduler Synthesis Tool. InProceedings of the
17th IEEE Real-Time Systems Symposium, pages 118–128,
Washington, D.C., December 1996.

[13] P. Prosser. An Empirical Study of Phase Transitions in
Binary Constraint Satisfaction Problems.Artificial Intelli-
gence, 81:81–109, 1996.

[14] B. Selman. Stochastic Search and Threshold Phenomena:
AI meets Physics. InProceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’95), Montreal,
Canada, August 1995.

10


