
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997 1

Formal Requirements Analysis of an Avionics

Control System

To Appear in IEEE Transactions on Software Engineering, Vol. 23, No. 5, 1997

Bruno Dutertre, Victoria Stavridou

Abstract|We report on a formal requirements analysis ex-

periment involving an avionics control system. We describe

a method for specifying and verifying real-time systems with

PVS. The experiment involves the formalization of the func-

tional and safety requirements of the avionics system as well

as its multilevel veri�cation. First level veri�cation demon-

strates the consistency of the speci�cations whilst the sec-

ond level shows that certain system safety properties are

satis�ed by the speci�cation. We critically analyze method-

ological issues of large scale veri�cation and propose some

practical ways of structuring veri�cation activities for opti-

mising the bene�ts.

Keywords|Formal speci�cation, formal veri�cation, safety

critical systems, requirements analysis, avionics systems.

I. Introduction

T

HIS paper reports on an experiment in the use of for-

mal methods for producing and analyzing software

requirements for a safety-related system. This work was

conducted as part of the SafeFM project [3], [4], a collabo-

ration with GEC Marconi Avionics (Mission Avionics Di-

vision) and AEA Technology (Consultancy Services). The

SafeFM project was intended to support the practical use

of formal methods for high integrity systems not by pro-

ducing new theories but by integrating formalmethods into

existing development and assessment practice. The project

focused on a particular class of application { real-time con-

trol systems { and most of the work is based on an avionics

case study; a digital system controlling the variable geom-

etry surfaces of an aircraft.

This paper describes the application of a formal approach

to the speci�cation and analysis of the SafeFM case study

requirements. The case study is a realistic system inspired

by an existing air data computer (ADC). It is a real-time

control system which consists of two independent control

channels: A primary channel performs all ADC functions

during normal operation and a backup channel takes over

when the primary fails. The two channels perform complex

control and failure detection functions and have to satisfy

safety-critical properties.

The work on the case study was supported by the PVS

speci�cation and veri�cation system [5], [6]. We speci�ed

the functional requirements of the case study in PVS us-

ing a data ow approach. The purely de�nitional style

This work was partially funded under the UK Department of Trade

and Industry SafeIT programme by EPSRC Grant No GR/H11471

under DTI Project No IED/1/9013

The authors are with the Department of Computer Science,

Queen Mary and West�eld College, University of London, Mile

End Rd, London E1 4NS, UK. E-mail: bruno@dcs.qmw.ac.uk,

victoria@dcs.qmw.ac.uk

adopted and the strong typing mechanisms of PVS give us

strong assurance concerning the internal consistency of the

functional speci�cations. In addition we performed var-

ious veri�cations by proving so-called putative theorems.

Type-checking and putative theorems correspond to a �rst

level of validation. On a second level, we veri�ed that the

safety-critical requirements were satis�ed. This requires a

system-wide perspective; relevant aspects and properties

of the system under control and of the physical environ-

ment have to be included. For this purpose, we used an

approach based on explicit time which is easy to imple-

ment in PVS. All the assumptions and safety properties

were written in PVS and the veri�cations were performed

interactively with the PVS theorem prover.

The potential of formal methods to improve system de-

pendability has been recognized by several certi�cation au-

thorities; their use is recommended or mandated by emerg-

ing standard in the safety critical sector [1], [2]. The main

objective of this work was to get an indication about the

feasibility, bene�ts, and limitations of a formal approach

when applied to a realistic example of substantial size and

complexity.

The remainder of this paper is structured as follows: Sec-

tion II gives an overview of the SafeFM case study. The

main functional and non-functional requirements are sum-

marized together with the architecture and fault-tolerance

features of the system. Section III presents PVS and the

main formalization principles adopted for this experiment.

Section IV describes the successive stages of the case study,

that is formalization of the functional requirements, formu-

lation of safety properties and assumptions, and veri�ca-

tion. In section V we draw lessons from the experiment.

We discuss the perceived bene�ts and limitations of our for-

mal approach and the adequacy of tools for the experiment.

We identify several sources of di�culty and ine�ciency and

we propose possible improvements.

II. The case study

The SafeFM case study is an avionics controller inspired

by an existing air data computer (ADC) embedded in a

�ghter aircraft. The system computes air data parame-

ters such as altitude, airspeed, or Mach number and is also

in charge of several aerodynamical control surfaces of the

plane. The case study concentrates on one of the most

critical functions of the ADC, the control of the variable

geometry wings. The wings can be swept aft or forward in

order to optimize ight performance. The ADC computes

an optimal wing sweep angle according to values of aero-

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997

Control
Surfaces

Auxiliary

Backup channel

Primary channel

Wing Sweep

Servos

Servos

Servos

Fig. 1. ADC architecture

dynamical parameters, commands from the pilot as well as

mechanical constraints.

In order to tolerate mechanical failures, the wing sweep

actuators can be controlled by two independent servos. The

ADC must detect and signal a possible failure of the ser-

vos and is required to tolerate such a failure. Accordingly,

the ADC is composed of two control channels, each con-

nected to a di�erent servo. The architecture which is shown

in Fig. 1 is asymmetric; a primary channel performs all

the ADC functions during normal operation and a backup

channel takes over when the primary fails. When both

channels fail, the pilot can still control the wing sweep us-

ing an emergency mechanical device. The two channels

are independent; they have separate power supplies and

receive input from di�erent sources. There is no synchro-

nization between the two channels which have two indepen-

dent clocks of di�erent frequencies. The only cross channel

communication is a discrete signal indicating failures of the

primary channel to the backup channel. Wing sweep com-

mands are continuously computed by the two channels but

the servos can be individually enabled or disabled to ensure

that only one channel is in control at a time. The ADC

must ensure that, in normal mode, only the primary servo

is enabled and that the backup servo is only enabled when

the primary channel fails.

The two channels detect failures by continuously mon-

itoring feedback signals from the servos and actuators.

When the di�erence between the wing sweep commands

and the responses from the servos and actuators exceeds

a threshold for a long enough period, the mechanical ele-

ments are deemed to have failed. The ADC then reports

the failure to the pilot and the faulty channel is deacti-

vated. A faulty channel continues normal computations

but the associated servo stays disabled. The only way to

reactivate a channel is for the pilot to reset the whole sys-

tem. This clears the failure monitoring mechanisms and

restores the initial con�guration of the ADC (the primary

channel active, the backup servo disabled).

The main safety requirement of the system is to prevent

contact between di�erent sets of aps located on the trail-

ing edge of the wings and the fuselage which can severely

damage the aps and lead to loss of mission. In order to

prevent this, the ADC maintains the wing sweep angle be-

low certain limits when the aps are extended. For this

purpose, the ADC receives signals from mechanical sensors

which indicate whether the aps are extended or not.

The case study is a realistic example of the class of appli-

cations the SafeFM project aimed to address. It is inspired

by an existing system already developed by GEC-Marconi

which has been in service for several years. The case study

is typical of avionics control systems. It is a real-time sys-

tem with a redundant, fault tolerant architecture; it com-

municates and interacts with a complex environment; and

it has to meet safety and mission critical requirements. All

of these facts, as well as the dual channel architecture, ren-

der the ADC substantially complex.

The software requirements of the case study describe the

various control and failure detection functions implemented

by the two channels. The wing sweep commands are com-

puted according to complex control laws combining numeri-

cal calculations and logical constraints. Speci�c commands

depend on many parameters such as the altitude and speed

of the plane, the position of the aps and other mechan-

ical elements, and the control mode selected by the pilot.

On the other hand, the timing requirements are relatively

simple. They correspond to delays in the failure detection

mechanism.

Originally, the software requirements were expressed as

a mixture of English descriptions, mathematical formulas

and various graphs [7]. Our objective was to produce more

precise and rigorous speci�cations of these requirements

and to adopt a multilevel veri�cation approach for increas-

ing our con�dence in their correctness. First, we wanted to

check the internal consistency of the speci�cations to en-

sure that the various requirements did not contradict each

other. The second and most important level of veri�cation

involved checking that the safety critical properties were

satis�ed, that is, the ADC e�ectively prevents contact be-

tween the aps and the fuselage.

III. Methods and tools

A. Needs

Analyzing a control application such as the ADC requires

considering both the controller and its environment. The

safety requirements are properties of the wings and aps

and cannot be veri�ed without knowledge of the system

under control. We have to make assumptions about the

wing sweep sensors, servos, and actuators, as well as about

the behavior of the di�erent aps. Formalizing these as-

sumptions requires a notation capable of representing con-

tinuous evolution of physical and mechanical variables. To

model the controller itself, we have to specify the software

requirements, that is, the various control and failure detec-

tion functions to be implemented. We also need to con-

sider other elements such as communication between the

two channels or the presence of two di�erent clocks in the

system.

DUTERTRE AND STAVRIDOU: FORMAL REQUIREMENTS ANALYSIS OF AN AVIONICS CONTROL SYSTEM 3

In general, speci�cations for applications such as the

ADC can be structured into the controller speci�cations, a

model of the system under control, and the critical prop-

erties we want to verify. We need an expressive speci�ca-

tion language able to cover all three aspects. The applica-

tions we are interested in are real-time, interactive systems.

They are also hybrid systems since they involve both phys-

ical variables and digital components. The formalismmust

allow us to manipulate both continuous and discrete vari-

ables, to express quantitative timing requirements, and to

deal with multiple clocks.

Veri�cation of applications of the size and complexity of

the ADC are only practical with tool support. An e�cient

mechanical proof tool is needed in order to make veri�ca-

tion possible. We chose to use PVS because of its powerful

theorem prover and of its rich speci�cation language.

B. An introduction to PVS

PVS is a speci�cation and veri�cation environment. It

integrates tools for the creation and analysis of formal spec-

i�cations and an interactive theorem prover [6], [8]. PVS

has been used successfully to produce substantial and com-

plex proofs of hardware and fault tolerant clock synchro-

nization algorithms [9], [10], [5]. It has also been used in

other domains such as compiler veri�cation [11] or the con-

struction and validation of real-time systems [12], [13].

PVS speci�cations are written in an extension of classi-

cal higher-order logic. They are organized in a hierarchy

of theories which can be parameterized. A theory usually

contains type, constant, or function de�nitions, and a col-

lection of lemmas and theorems. It is also possible to state

assumptions about theory parameters and to introduce ax-

ioms. Once PVS has analyzed the speci�cations for syntax

and type correctness, the user can attempt to prove theo-

rems. The system provides a L

A

T

E

X generator and various

other tools for the analysis of speci�cations and proofs.

PVS has a rich type system which includes constructors

such as tuples or records and supports dependent types,

abstract data types, and a powerful subtyping mechanism.

These features make the language very expressive and fa-

cilitate speci�cation but type checking becomes undecid-

able. Proof obligations known as Type Checking Condi-

tions (TCCs) may be generated by the type checker and

have to be discharged in order to establish type consis-

tency. In most cases, the proofs of TCCs can be performed

automatically by the PVS theorem prover, but in more

complex situations, manual assistance may be required.

The PVS theorem prover is based on the sequent calcu-

lus. Starting from an initial sequent, the user progressively

develops a proof tree by applying commands and deductive

rules. At every stage in the proof, a particular sequent {

the goal { is displayed and all proof commands apply to

this sequent. Commands can either complete the proof of

the current goal or expand the tree by generating subgoals

which in turn have to be proved. Proof rules are avail-

able for propositional and quanti�er reasoning and PVS

provides a set of high level commands for more complex

reasoning. For example, there are commands for induc-

tion, for manipulating automatic rewrite rules and for the

heuristic instantiation of quanti�ers. The system also in-

cludes powerful simpli�cation and decision procedures for

linear arithmetic and equality. All the commands can be

combined to form proof strategies, allowing several proof

rules to be applied in one step.

PVS speci�cations are built from a collection of standard

types, functions, and constants de�ned in the prelude, a set

of primitive theories. The prelude also introduces funda-

mental axioms and provides a set of pre-proved theorems.

The standard numerical types, that is, reals, rationals, inte-

gers and natural numbers, are all primitive and are de�ned

in the prelude. They are organized in a hierarchy; the nat-

ural numbers form a subtype of the integers, which are a

subtype of the rationals, which are a subtype of the reals.

Unlike other systems such as HOL [14], PVS does not con-

struct the numerical types from below, starting with the

natural numbers but de�nes their properties axiomatically.

Numbers and other important types such as sets, lists, and

sequences are pre-de�ned in the prelude.

C. Real-time speci�cations in PVS

Several authors have proposed di�erent ways of applying

PVS to real-time systems. A method based on an extension

of Hoare triples is presented in [12]. The approach allows

the construction of correct real-time systems by successive

re�nements. PVS is used to de�ne the semantics of the

formalism and to implement proof and re�nement rules.

Another application of PVS to the speci�cation and veri�-

cation of real-time programs is described in [13]. Program

behaviors are represented by in�nite sequences of states

which include quantitative timing information; each state

is labeled by a time of occurrence. Temporal operators

de�ned in PVS are used to assert properties of these se-

quences.

PVS also provides tool support for the duration calcu-

lus (DC), a real-time interval temporal logic [15], [16]. DC

has been partly embedded in PVS. Several theories de�ne

the semantics of the calculus and DC proof rules are intro-

duced as PVS theorems. A dedicated interface makes the

encoding largely transparent to the user. Speci�cations are

written in a syntax close to standard DC and veri�cation

is performed using the DC proof rules directly [17].

The �rst two methods are mostly designed for program

veri�cation and construction. They assume that systems

evolve in a step by step fashion and can be characterized

by a succession of states. This discrete model does not suit

our purpose very well. The duration calculus and its ex-

tensions (see [18], [19]) are intended for the development of

embedded systems and use continuous time. However the

DC tends to focus on control-intensive applications with

complex timing requirements. The logic includes modali-

ties which can express temporal properties without explicit

usage of time variables. The case study does not require

such a sophisticated timing formalism. Instead our speci�-

cations are based on a straightforward and easy to imple-

ment approach; time-dependent quantities are manipulated

explicitly as functions of time and temporal properties are

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997

written using explicit time indices.

The model and terminology we use are inspired partly

from the semantics of the duration calculus, partly from

the real-time data ow languages Lustre and Signal [20],

[21]. We distinguish between two classes of time-dependent

variables. Some are similar to the state variables of DC,

others are closer to the notion of data ow of Lustre and

Signal.

The state variables are total functions from the time do-

main to a value domain. They represent the continuous

variables of the application, that is, the physical parame-

ters such as altitude, the mechanical variables such as wing

sweep angle and the input signals received from the pilot.

The data ows are used to formalize the software require-

ments and model the discrete behavior of the digital com-

ponents. We assume that these components have a �xed

interface composed of a �nite number of input and output

ports and that they are activated at regular intervals by a

clock of known frequency. During each activation phase, a

component performs internal computations and delivers a

new value on all its output ports. The behavior of a digital

component is then characterized by the sequences of values

produced on its output ports and by its clock which deter-

mines when the values are produced. We represent clocks

by in�nite sets of instants; every element of a clock can be

interpreted as an instant of activation of the component.

Output signals as well as internal variables used in the

speci�cations are modeled by data ows, that is, functions

from the clock to some domain of values. For example, the

wing sweep commands computed by the primary channel

form a data ow WSCMD1 de�ned at successive instants

t

1

< t

2

< : : : < t

n

< : : :

of the primary clock, and WSCMD1(t

n

) is the command pro-

duced at the n-th activation of the primary channel.

The last elements needed in the speci�cation are conver-

sion functions which transform discrete data ows to state

variables. Such conversions are used to model communica-

tion between the discrete components and the physical en-

vironment. For example, the wing sweep angle is a physical

variable represented by a total function of time WSPOS and

we have to describe how WSPOS relates to the discrete com-

mands from the two channels. For this purpose, we convert

the data ow WSCMD1 above and a similar WSCMD2 from the

backup channel to piecewise constant state variables CMD1

and CMD2. Depending on the status of the two channels,

the actual command CMD(t) transmitted to the wings is

either equal to CMD1(t) or to CMD2(t) and we model the

actuator by assumptions relating CMD and WSPOS. In e�ect,

the conversion functions give us a convenient way to mix

data ows of di�erent clocks such as WSCMD1 and WSCMD2

into a single state variable CMD. Conversions can also have a

similar use for modelling communication between software

modules with di�erent clocks.

The case study speci�cations are based on a set of PVS

theories which introduce the notions of time and clocks.

The de�nitions rely on PVS subtyping facilities; the time

domain is a subtype of the reals and a clock is a param-

eterized subtype of the time domain. The basic theories

also introduce operators to facilitate the de�nition of data

ows and several predicates to simplify the expression and

veri�cation of properties. In addition, we also needed a few

general purpose theories which provide background knowl-

edge. For example, these theories contain properties of the

real numbers or theorems about bounded or �nite sets and

de�ne functions such as the absolute value or the maximum

or minimum of two reals.

C.1 Time domain

As in the duration calculus, we use the non-negative re-

als as time domain with 0 as the initial instant. The cor-

responding type, time, is de�ned as follows:

non_neg : TYPE = { x : real | x >= 0 } CONTAINING 0

time : TYPE = non_neg.

The �rst line introduces the non-negative reals as a sub-

type of the pre-de�ned type real and time is declared syn-

onymous to non neg. The containing clause speci�es that

non neg is a non-empty type. This simpli�es type checking

and reduces the number of TCCs generated by PVS.

C.2 State variables

The state variables are declared and manipulated as PVS

functions. For example, a state variable representing the

position of the wings is declared as follows:

WSPOS : [time -> ws_range],

that is, as a function from time to ws range. The latter

type represents the domain of values for the wing sweep

angle and is de�ned as a subtype of the reals.

Assumptions about the system under control are intro-

duced as axioms in the speci�cations. They correspond to

constraints or relations between the values of state vari-

ables. For example, there is an upper bound on the rate of

rotation that the wing sweep actuator can produce. This

assumption is formalized by the axiom variation ws be-

low.

max_rate : posreal

t : VAR time

delta : VAR posreal

variation_ws : AXIOM

abs(WSPOS(t + delta) - WSPOS(t)) <= max_rate * delta.

The axiom speci�es that the constant max rate is the maxi-

mal rate of variation of the wing sweep angle. In the axiom,

as in any PVS formula, the free variables t and delta are

considered universally quanti�ed.

DUTERTRE AND STAVRIDOU: FORMAL REQUIREMENTS ANALYSIS OF AN AVIONICS CONTROL SYSTEM 5

C.3 Clocks

The speci�cations rely on a simple model of clocks. All

clocks are assumed to have a �xed period which can be

any positive number. A clock of period K is represented

by the set of successive multiples of that period, starting

from 0. In PVS, a clock is a sub-type of time de�ned in a

parameterized theory clocks:

clocks [K : posreal] : THEORY

BEGIN

IMPORTING time

clock : TYPE =

{ t: time | EXISTS (n : nat) : t = n * K }

The parameter K is a strictly positive real and represents

the clock period. The de�nition speci�es that an instant t

is of type clock if and only if it is a multiple of K.

Several basic operations on clock elements are useful for

constructing and reasoning about data ows. Like the type

clock, these functions are parameterized by a clock period

and are de�ned in the theory clocks. Among these oper-

ations, the following three are fundamental:

� init indicates whether a clock element is the initial in-

stant of the clock,

� pre gives the immediate predecessor of an element and

� next gives the immediate successor of an element.

In PVS, all functions have to be total, so that pre is a

function de�ned on the sub-type of clock that excludes

the initial element. The three functions are de�ned below:

x : VAR clock

init(x) : bool = (x = 0)

noninit_elem : TYPE = { x | not init(x) }

y : VAR noninit_elem

pre(y) : clock = y - K

next(x) : noninit_elem = x + K.

When type checking these de�nitions, PVS generates two

proof obligations. The �rst requires showing that y - K

is of type clock to ensure that the de�nition of pre is

consistent. This TCC states that for any y, the expression

y - K is non-negative and is a multiple of K. The second

TCC is similar and ensures the type correctness of next.

The elements of a clock form an ascending sequence of

instants and another useful function assigns to any clock

element x its rank in this sequence, that is, the unique

natural number n such that x = nK:

rank(x) : nat = x/K.

Here again, PVS requires showing that the division yields

a natural number.

A number of other functions similar to pre and next are

de�ned in clocks. The theory also contains several lemmas

and theorems which correspond to elementary properties of

clocks. For example, a lemma asserts that a clock is not

bounded and another states that any time t is between two

successive clock elements. The most important theorems

proved in clocks are general induction rules such as the

following:

clock_induction : PROPOSITION

FORALL (P : pred[clock]) :

(FORALL (t : clock) : init(t) IMPLIES P(t)) AND

(FORALL (t : noninit_elem) : P(pre(t)) IMPLIES P(t))

IMPLIES (FORALL (t : clock) : P(t)).

This simply means that the invariance of a predicate P { a

function from clock to the booleans

1

{ can be shown by

proving that P holds initially and that it is maintained after

every clock step. The proposition is easily derived from

the pre-de�ned induction theorem for the natural numbers

using the function rank.

To summarise, the theory clocks includes a set of ele-

mentary functions and a list of useful properties of clocks.

This is the basis for formalizing the software functional re-

quirements. In particular, the main mechanisms we used

for expressing and verifying the functional speci�cations {

recursion and induction { are supported by functions and

properties developed in clocks.

C.4 Data ows

The software requirements of the case study are struc-

tured in modules, each of which is a PVS theory specifying

a function of the ADC. For example, a module describes

the primary wing sweep control and another describes the

backup failure monitoring. Each module has a clock and a

list of input signals, and de�nes a collection of data ows

representing output or intermediate variables. Every mod-

ule is assigned to one of the two channels which determines

the clock of the module. The input signals are either state

variables the channel receives from the external environ-

ment or data ows de�ned in other modules of the same

channel. We use the PVS importing mechanism to specify

the clock of a module and the input signals are given as

parameters to the theory.

All the data ows de�ned in a module are functions from

the module's clock to a data type. Since each module is

expected to be software implementable certain restrictions

are imposed on the form of data ow de�nitions. Roughly,

a module with data ows X

1

; : : : ; X

n

is intended to specify

an abstract state machine whose state at clock time t is the

vector X

1

(t); : : : ; X

n

(t). The behavior of such a machine is

speci�ed by initial conditions and by a transition relation

which de�nes the stateX

1

(t); : : : ; X

n

(t) as a function of the

previous state and the current value of input variables. The

de�nition of X

i

(t) is only allowed to refer to the previous

or current clock times. In general, if t is not the initial

instant of the clock, the value of X

i

at time t can depend

on

� the current value of input signals,

1

The type pred[clock] is equivalent to [clock->bool].

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997

� the current or previous values of ows X

j

where j 6= i,

or

� the previous value of X

i

.

In many cases, data ows are speci�ed by simple PVS def-

initions such as

FWD_LIMIT(t) : wsch_range = min(AFT_LIM(t), FWD_LIM(t))

In this example, wsch range is a subtype of the reals and

PVS generates a TCC to check that the right-hand side

expression is of the allowed type.

In more complex cases where X

i

(t) depends on

X

i

(pre(t)), the data ows are de�ned recursively. In PVS,

the de�nition of a recursive function takes a special form.

One has to provide a measure used to decide whether the

function is well de�ned, thereby ensuring that the recursion

always terminates. The measure assigns to the arguments

of the function a value of a well ordered type { usually the

natural numbers { and the recursion is sound if it can be

shown that the measure is strictly decreasing with every

recursive call. The type checker generates corresponding

proof obligations called termination TCCs.

Recursive data ows are all based on the functions init

and pre associated with the clock and they all use the

function rank as their measure. The following de�nition is

a typical example of the recursive constructions in the case

study:

AUTO_MODE(t) : RECURSIVE bool =

if DESELECT_AUTO(t) then FALSE

elsif SELECT_AUTO(t) or init(t) then TRUE

else AUTO_MODE(pre(t))

endif

MEASURE rank

The boolean ow AUTO MODE represents a state vari-

able controlled by two other ows SELECT AUTO and

DESELECT AUTO. By default, AUTO MODE is initially true but

this can be overridden by DESELECT AUTO. Subsequently

AUTO MODE is set according with the two control ows and

it remains unchanged when both are false. The termination

TCC associated with this de�nition is the following:

AUTO_MODE_TCC2: OBLIGATION

(FORALL (t : clock):

NOT DESELECT_AUTO(t) AND

NOT (SELECT_AUTO(t) OR init(t))

IMPLIES rank(pre(t)) < rank(t));

This can be easily discharged and the de�nition of

AUTO MODE is sound. Since all the recursive data ows

have the same measure and their de�nitions are similar,

the terminations TCCs can always be discharged using the

lemma:

clock_recur : PROPOSITION

not init(x) implies rank(pre(x)) < rank(x)

This property is proved once and for all in the theory

clocks.

Using this form of data ow speci�cations, the software

functional requirements are all expressed in a purely de�-

nitional style. This is strong evidence concerning the con-

sistency of the requirements. Provided all the TCCs are

discharged, we know that all the data ows are well de-

�ned functions and hence there is no risk that parts of the

functional requirements are contradictory. Since all the

functions are total, there is no risk of incompleteness ei-

ther; for any combination of values on the input signal, all

the internal and output variables have a speci�ed value.

On the other hand, this form of speci�cation can reduce

the user's exibility in writing requirements. Some of the

restrictions are due to the rules of the PVS speci�cation

language; for example, PVS does not allow the de�nition

of mutually recursive data ows. The other restrictions are

due to the underlying state machine model: a data ow

de�nition can only refer to the current or previous instant.

These restrictions are important for getting con�dence in

the feasibility of the software requirements. The state ma-

chine model is in fact adopted by many approaches to soft-

ware development, including recent work with PVS on the

speci�cation of the space shuttle software [22]. The state

machine model is also widely used by formalisms such as B

or VDM [23], [24] which incorporate software development

methods.

As a whole, the data ow speci�cation of software re-

quirements provides a solid basis for subsequent develop-

ment. Type checking ensures completeness and consistency

and we feel that the restrictions on the form of speci�ca-

tions are a price worth paying considering the potential

bene�ts.

IV. The experiment

The work on formalisation and veri�cation of the case

study was spread over a period of two years. The experi-

ment went through several successive phases, from the �rst

speci�cations of the functional requirements to the formal

veri�cation of the last safety property.

A. Functional requirements

The �rst stage of the work was the formal speci�cation

of the functional software requirements. Our starting point

was a report describing informally the ADC architecture

and the main functions of the system [7]. This original doc-

ument describes the two channels and their interfaces and

speci�es the redundancy management mechanism. The re-

port also speci�es in fairly precise terms the di�erent con-

trol and failure detection functions to be implemented. The

notation used is a mix of English descriptions, mathemati-

cal formulas and equations, and various tables and graphs.

This document was produced by software engineers with

previous experience with systems similar to the case study.

The requirements therein were inspired from a large subset

of an existing avionics system developed by GEC-Marconi.

The main e�ort during the early phases of the work fo-

cused on de�ning the speci�cation approach and on devel-

oping PVS support theories. The choice of the data ow

style was largely motivated by the form of the informal re-

quirements and was made rapidly. However, the theories

de�ning time domain and clocks underwent several mod-

i�cations before reaching their �nal form. In particular,

we started with a general model of clocks which required a

DUTERTRE AND STAVRIDOU: FORMAL REQUIREMENTS ANALYSIS OF AN AVIONICS CONTROL SYSTEM 7

more complex PVS de�nition than given in section III-C.3;

a clock was any unbounded, countable set of instants [25].

This general model did not prove convenient or useful and

was later on largely simpli�ed. The basic support theo-

ries have been evolving throughout the whole project but

a fairly stable version was obtained at the end of the for-

malization of the software requirements. At that time, the

de�nitions of time domain and clocks, and the clock oper-

ators were in the form described in the preceding section.

The only modi�cations introduced in later phases were the

adjunction of lemmas needed to perform the safety veri�-

cation.

Once the building blocks of the formalization had been

identi�ed, speci�cation of the functional requirements was

straightforward. The informal requirements translated to

a list of data ow de�nitions without any di�culty. This

was certainly due to the quality and precision of the original

document [7]; we were also aided by a VDM speci�cation of

the case study which had been developed separately within

the SafeFM project [26]. The VDM speci�cation and direct

contact with GEC-Marconi resolved the few ambiguities we

found in the informal requirements document.

The structure of the PVS speci�cations follows closely

the informal document organization. Six software modules

are described, four for the primary channel and two for the

backup channel. Each of these modules corresponds to one

main function of the ADC and is speci�ed in a separate

PVS theory.

Fig. 2 illustrates the general structure of these func-

tional modules. The main data ow speci�ed in the theory

is WSCMD1, the wing sweep command produced by the pri-

mary channel. This data ow depends on various input

signals to the modules, such as ALTITUDE or MACH, and on

intermediate data ows such as AUTO MODE. All the func-

tions de�ned in wing sweep primary are discrete ows of

clock clock[PRIMARY PERIOD], the clock of the primary

channel.

Type checking the functional speci�cations was straight-

forward. Most of the TCCs generated were simple proper-

ties which could be discharged automatically by the theo-

rem prover. The others were termination TCCs associated

with recursive de�nitions of data ows.

The simple fact of proving type correctness of the speci-

�cations gives us a �rst level of con�dence in their consis-

tency and completeness. It also ensures that simple errors

such as out of range values or division by zero are elimi-

nated. However, in order to get greater con�dence in the

functional speci�cations, we also need to check high level

safety properties.

B. Assumptions and safety properties

The second major step in the SafeFM experiment was

to formalize the safety properties and to model the system

under control. The two main safety requirements selected

for the case study are upper limits on the wing sweep an-

gles when two di�erent sets of aps are extended. These

two properties were given in the original requirement doc-

ument [7] and were extracted from a Failure Mode and

wing_sweep_primary[

(IMPORTING time, types)

ALTITUDE : [time-> altitude_range],

MACH : [time-> mach_range],

...] : THEORY

BEGIN

...

t : VAR clock[PRIMARY_PERIOD]

...

AUTO_MODE(t) : RECURSIVE bool =

if DESELECT_AUTO(t) then FALSE

elsif SELECT_AUTO(t) or init(t) then TRUE

else AUTO_MODE(pre(t))

endif

MEASURE rank

...

WSCMD1(t) : RECURSIVE ws_range = ...

END wing_sweep_primary.

Fig. 2. The general organisation of functional modules

E�ect Analysis performed on the system which inspired

the case study. The safety requirements are properties of

the system under control and cannot be veri�ed without

making assumptions about the controlled system. They

are expressed in terms of physical variables, namely, the

wing sweep angle and the degree of extension of the di�er-

ent aps. We need to describe how these external variables

relate to the input and output signals of the ADC.

Our �rst attempts to prove that the safety properties

were satis�ed were largely unsuccessful. The origin of the

problem was lack of information about the components of

the system under control, in particular the aps; anarchic

behavior of the aps makes it impossible for the ADC to

ensure the safety requirements. The wing sweep control is

implicitly based on the assumption that the aps do not

extend at the wrong time. Unfortunately, there is very

little information about the aps in the requirements doc-

ument. The original requirements were destined primarily

for software engineers and they focus on functionality and

on software aspects. They contain only limited informa-

tion about the system under control because this informa-

tion is not needed in order to develop the software. We

believe that this problem is pervasive in the veri�cation of

such systems and a methodology is needed for overcoming

it. We cannot prove the safety properties of the software

without changing the way overall requirements are traced

to system components.

The solution was to consult with the systems engineers

who have a much wider view of the system, including hard-

ware and software components as well as safety mecha-

nisms. We also got more information about the expected

behavior of the wing sweep and ap control systems from

various documents, including the pilot's manual. The in-

teraction with systems engineers and the new sources of

information helped us clarify the safety requirements and

formulate the correct assumptions.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997

New elements, in particular mechanical interlocks, were

included in our model of the controlled system. These locks

were not mentioned in the initial requirements, although

some of them play an essential role since they prevent the

extension of the aps when the wings are swept over certain

limits. This was a crucial assumption that enabled the

veri�cation of the main safety properties.

All the assumptions are formalized as axioms in the PVS

speci�cations. For example, the following assumption re-

lates the wing sweep angle WSPOS at time t + eps and the

wing sweep command CMD at time t, in case none of the

interlocks is active.

cmd_wings : AXIOM

constant_in_interval(CMD, t, t + eps)

and

not wings_locked_in_interval(t, t + eps)

implies

CMD(t) = WSPOS(t + eps)

or

CMD(t) < WSPOS(t + eps) and

WSPOS(t + eps) <= WSPOS(t) - eps * ws_min_rate

or

CMD(t) > WSPOS(t + eps) and

WSPOS(t + eps) >= WSPOS(t) + eps * ws_min_rate

Other axioms describe the evolution of the wings when the

locks are active, the constraints on the ap extensions, and

the initial position of the wings and aps.

The new assumptions about the system under control

posed a di�erent problem. The role of the mechanical in-

terlocks is to prevent the violation of the main safety prop-

erties in case the ADC fails. Consequently, the original

safety properties derived from the FMEA are trivially sat-

is�ed. We faced the following dilemma:

� The interlock assumptions are su�cient to guarantee the

safety properties, whatever the behavior of the ADC, but

� without these assumptions, the safety properties are not

satis�ed.

In order to check the ADC's functional speci�cations, we

had to formulate other safety properties. The solution was

to reformulate the safety properties not directly in terms

of wings and ap positions but as constraints on the wing

sweep commands issued by both channels. The reworked

safety requirements state that the ADC must not issue

commands that would force the wings against the mechan-

ical locks.

A �nal di�culty was taking into account the absence of

synchronization between the two channels. In certain cir-

cumstances, this can cause a substantial di�erence between

the wing sweep commands computed by the backup and

the primary channel. If the backup channel takes control

while the di�erence is large, it may momentarily produce

commands that will force the locks.

In the end, the safety requirements were re�ned in three

properties:

� While the primary channel is in control, it maintains the

system in a safe state.

� After the backup channel assumes control, it converges

to a safe state within a speci�ed period of time.

� If the backup channel is in control and in a safe state, it

will stay in a safe state.

Safe states are those where the wing sweep commands pro-

duced cannot exceed the limits permitted by the mechani-

cal locks. The �rst property ensures safety from the initial-

ization of the system until a possible failure of the primary

channel. The second property corresponds to a transition

phase from the instant the primary channel fails to the in-

stant the backup channel reaches a safe state. During this

phase, the channel may temporarily issue commands which

force the interlocks but the latter ensures that the wing

sweep angle does not exceed the limits. The third prop-

erty ensures that once a safe state is reached, the backup

channel will maintain safety.

All these properties are formalized easily in PVS. For

example, the �rst safety property above is written:

safety_condition1 : COROLLARY

CORRECT_PRIMARY(t1) implies

FORALL (u : primary_time) :

u <= t1 implies SAFE_PRIMARY(u).

C. Veri�cation

The �nal phase of the case study experiment involved

the formal veri�cation of properties of both the software

functional speci�cations and of the whole control system.

Two categories of lemmas and theorems were proved. Some

were putative theorems which allowed us to check the for-

malization whilst others were directly used in the proof of

the three main safety properties.

The putative theorems were either related to the software

speci�cations or to the model of the system under control.

Typically, they express simple properties that we expected

to be true of the system; thus providing a simple means

of ensuring that the formalization was reasonable. They

also constituted a collection of lemmas which simpli�ed the

veri�cation of the most complex properties. None of these

theorems posed any particular di�culty.

The following lemma is typical of these putative theo-

rems. It states that successive commands computed by the

primary channel are within a speci�ed rate limit.

rate_lemma1 : LEMMA

FORALL t :

init(t) or RESET(t)

or abs(WSCMD1(pre(t)) - WSCMD1(t)) <= RATE_LIMIT(t).

The remainder of the veri�cation focused on establish-

ing the three main safety properties. The proofs of these

properties were signi�cantly more complex than those of

the putative theorems. The three safety theorems required

the formulation and proof of several dozens of lemmas and

sublemmas. The veri�cation of the three top level safety

properties required the proof of a total of 124 propositions.

The least straightforward of the three safety properties

was the convergence of the backup channel to a safe state.

The proof is based on case analysis; several modes of evo-

lution of the whole system were identi�ed and analyzed

separately and then the possible transitions between dif-

ferent modes were examined. Each mode is characterized

DUTERTRE AND STAVRIDOU: FORMAL REQUIREMENTS ANALYSIS OF AN AVIONICS CONTROL SYSTEM 9

by parameters, such as the status of the aps (extended

or retracted), the position of the wings, and the internal

state of the backup channel (the past values of relevant

data ows). Lemmas showed that within each mode, the

global system always evolves smoothly towards a safe state.

Analysing the transitions showed that this property is pre-

served as a whole. Although simpler, the proofs of the

other two safety properties are based on a similar form of

reasoning and are essentially elaborate case analyses.

D. Results

During the proofs, one error was found in our formal-

ization of the functional requirements. The wing sweep

command de�nition for both channels relies on a lower and

an upper limit. For certain combinations of the input pa-

rameters, the lower limit is greater than the upper limit

and this leads to an incorrect wing sweep command. This

unexpected situation was discovered by failing to prove a

putative theorem. The error can be traced back to the orig-

inal informal requirements where the possible inversion of

the two limits is completely overlooked. The same mistake

was present in the VDM speci�cations given in [26] which

were derived from the same informal requirements. This

was the only error discovered during the proofs. After a

simple correction, the putative theorems and the three im-

portant safety properties were all formally proved.

The whole speci�cation consists of approximately 4500

lines of PVS (with comments and blank lines). This in-

cludes the library of basic theories for time and clocks, the

formal speci�cation of the functional requirements, and a

top-level theory which contains the assumptions and all

the lemmas and theorems needed to verify the three main

safety properties. A total of 385 proofs were performed.

These include 106 proof obligations (TCCs) most of which

were discharged automatically; the rest was proved by

hand.

The amount of e�ort involved is estimated to around

18 person months. Approximately 6 person months were

necessary to write the formal functional speci�cations and

the support libraries. The remaining 12 person months

were spent on formalizing the assumptions and carrying

out the veri�cation. The bulk of the veri�cation work was

spent on the three main safety properties which consumed

9 person months of e�ort

V. Lessons

A. Bene�ts of formal requirements analysis

The case study analysis involved two separate activities;

the formal speci�cation of the ADC functional require-

ments and the validation of these speci�cations through

proof. The experiment clearly demonstrated the bene�ts

of the PVS speci�cations over the original informal doc-

ument; the formal requirements are more concise, precise,

and unambiguous. We are also con�dent through the use of

type checking and because of the de�nitional style adopted

that the PVS speci�cations are consistent. In this respect,

the SafeFM case study has con�rmed other authors' conclu-

sions about the value of formal speci�cations (for example,

see [22], [27]). The existence of the VDM speci�cation and

the substantial experience of the GEC-Marconi engineers

with the system, meant that the PVS formalization was

not likely to uncover previously unknown problems.

The main bene�ts of the formal approach were realised

during the later stages of validating the speci�cations.

As the case study illustrated, formal speci�cations can

be clear, unambiguous, and consistent; they can also be

wrong. Proofs provide an essential means of detecting er-

rors in the requirements. More generally, the proof process

requires a thorough analysis of the requirements and gives

a profound understanding of the system behavior. Among

the positive results of the proofs attempted on the case

study we can cite:

� A clari�cation of external conditions for the ADC to

work correctly. The controller requirements are based on

implicit assumptions about the system under control and

about elements such as interlocks and aps. Early attempts

to check safety properties failed because of lack of informa-

tion about these external elements. The explicit formu-

lation of the assumptions was an essential step in under-

standing the control system.

� A deep analysis of rare and unexpected behaviors of the

system. Among these we can cite the behavior of the ADC

after the primary channel has failed. From the initial re-

quirements, it was certainly not clear how the global system

would behave in this case. The formal analysis showed that

the backup channel may be momentarily in an unsafe state

but will eventually reach a safe state. The analysis also

gave us a bound on the time this would take.

� The detection of an error in the formal requirement spec-

i�cations. The wing sweep command de�ned in the PVS

speci�cations was wrong in some circumstances. Proofs are

an e�ective means of detecting such errors at an early stage

in the software development. The error was also found in

the VDM speci�cation via animation [28] independently of

its discovery by veri�cation. However, animation is not

always possible and in most cases it can only provide a

partial validation.

� The veri�cation of major safety properties of the system.

Showing that safety critical requirements are satis�ed is es-

sential for increasing our con�dence in the speci�cations.

There is no alternative to formal proof for performing such

veri�cation. Other validation techniques such as review,

testing, or animation cannot o�er the same degree of con-

�dence.

In general, the proof process was essential for analyz-

ing the complex interactions between the two channels and

the external components, and for comprehending the global

system. Failed proofs were always useful by revealing sub-

tle properties of the ADC thereby helping to understand

the behavior of the whole system. Identifying the causes

of failure often revealed unexpected behavior under excep-

tional circumstances. Most of the failed proofs were due to

special cases we did not anticipate, which were caused by

complex combinations of events in the environment and in

the controller.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997

Obviously, identifying the cause of a proof failure is a

hard problem which cannot be solved mechanically. In

theory, failing to prove a conjecture does not necessarily

mean that it is false. In practice, however, all our proofs

failed by ending in a visibly unprovable goal from which we

could exhibit a counter-example. This either convinced us

that our belief in the conjecture was wrong or pointed to

a possible error in the speci�cations. The �nal diagnosis

often required the help of GEC-Marconi's engineers.

B. Tool support

An important conclusion of the case study is that for-

mal methods can be applied in practice to the requirement

analysis of real industrial systems. By the size of its spec-

i�cations and the number of proofs performed, our experi-

ment represents a major e�ort in formal veri�cation. The

experiment has shown that such large scale veri�cation is

feasible and has corroborated other reports on industrial

uses of PVS, such as [9]. Our veri�cation e�ort would not

have succeeded without e�ective tool support. Tools are

necessary simply to cope with the size of the speci�cations.

They are also essential for supporting the proof process.

The requirements of the case study include numerical

computations and logical and temporal constraints. The

state space of the system is in�nite and the numerical re-

lations are not linear. For reasoning about such systems,

fully automatic proof support does not exist and the user

has to rely on interactive proof assistants. During the val-

idation phase, the PVS theorem prover was used to refute

many incorrect proofs. Much of the veri�cation performed

does not rely on any sophisticated argument but usually

requires a lengthy and detailed case analysis. In our expe-

rience, it was fairly easy to get an \almost correct" proof

which failed due to a few obscure cases. There is no doubt

that without a tool which forces the examination all the de-

tails, some of these bad cases would have gone unnoticed.

Therefore tools are necessary for gaining a high level of

con�dence in the proofs. For systems such as the ADC, the

only available tools are interactive theorem provers. For

such tools to be of real help in practice, the low level steps

of the proofs must be automated as far as possible. For

this purpose, two features of PVS were essential: the deci-

sion procedures and the possibility of installing automatic

rewrite rules.

On a more general level, the case study showed that ex-

ibility and ease of modi�cation are important practical is-

sues. As already mentioned, a lot of e�ort was spent fail-

ing to prove properties and subsequently trying to identify

and correct the causes of failure. This often meant that the

speci�cations had to be changed; assumptions were added,

new lemmas introduced, or propositions rewritten. The

user must be free to make such modi�cations without too

much e�ort, in particular, without having to manually re-

examine all the proofs. The PVS system keeps scripts of

the existing proof attempts which can be edited and re-run.

This was extremely useful; usually simple adjustments to

these scripts were su�cient after changes in the speci�ca-

tions.

C. Di�culties encountered

The SafeFM case study has con�rmed the bene�ts of for-

mal analysis of high level requirements. It has also shown

that formal methods can be applied to realistic, complex

systems and that large-scale veri�cation is feasible. How-

ever, another lesson of the experiment is that the proof

process can be expensive and di�cult to estimate. It took

us eighteen months to complete the work instead of the six

months we had originally planned.

Some of these delays can be attributed to our lack of

familiarity with PVS. More experienced users would have

undoubtedly completed the formal analysis in less time.

Other factors can also explain this time overrun:

� There was little guidance on how to apply the PVS ef-

fectively to real-time control applications. A non-negligible

part of the work was to write basic PVS theories for sup-

porting the speci�cation approach. These theories were

modi�ed and updated several times.

� The absence of general libraries was another problem

since we had to spend time in proving simple properties

of sets or real numbers which were not present in the pre-

lude.

� The initial requirements document was written from a

software engineering point of view. It focused on function-

ality and contained very little informationabout the system

under control. Early proof attempts showed that this in-

formation was crucial but several iterations were required

before formulating the correct assumptions and getting pre-

cise safety requirements.

� The proofs of the safety properties were a lot harder than

we expected. This was largely due to the di�erence in

levels of abstraction between the safety and the software

requirements. The safety requirements are global system

properties. They are related to the physical system and

are expressed in terms of the position of wings and aps.

From the safety perspective, only the externally observ-

able behavior of the controller is relevant. On the other

hand, the functional requirements are an explicit descrip-

tion of software components inside the controller and they

already depend on implementation decisions (such as the

dual channel architecture). There was then a large gap

between the two levels of description. The di�culty was

relating the output variables of the two channels to the ac-

tual position of the wings. The complexity arose from the

di�erent elements and layers of interactions involved.

D. Doing better

Some of the di�culties of the case study work were due to

the lack of maturity of the PVS prover. In order to reduce

the e�ort involved in formal veri�cation it is necessary to

provide general purpose PVS libraries. This necessity has

already been identi�ed. The new version of PVS comes

with a largely expanded prelude and most of the general

properties we had to prove are now present in this prelude.

PVS2 also includes new features for creating and handling

libraries. However, very few are available at present and

developing more libraries is still essential for making ver-

i�cation less labor intensive. For example, we found that

DUTERTRE AND STAVRIDOU: FORMAL REQUIREMENTS ANALYSIS OF AN AVIONICS CONTROL SYSTEM 11

a library stating basic properties of continuous functions

could have helped in some aspects of the case study veri�-

cation.

Similarly, developing theories designed to tailor PVS to-

wards speci�c classes of applications would be an important

improvement. In the case of real-time systems similar to

our case study, the theories de�ning clocks and other ele-

mentary notions could provide basic support. However, in

their existing form these theories are still fragmentary and

need to be expanded and completed to o�er su�cient help.

The case study requirement analysis was largely an ex-

ercise of a posteriori veri�cation. The validation consisted

of proving properties of software requirements which were

already available. There was a large gap between the high

level of the safety properties and the comparatively low

level of the functional speci�cations. This was the main

source of complexity in the safety proofs. In order to sim-

plify the veri�cation, a solution may be to adopt a con-

structive approach of gradually developing software spec-

i�cations from the high level requirements of the whole

system. This should allow a more localised form of rea-

soning, proving the safety properties at the highest level

of description and then focusing on the correctness of each

re�nement.

Whatever the techniques used, formal or not, a general

improvement in the validation of software speci�cations for

complex systems would be to address the issue of require-

ments traceability. In order to analyse and validate soft-

ware speci�cations, it is essential to know what assump-

tions the system designers have made and what part of the

safety requirements are the responsibility of the software.

Discovering this information was one of the most time con-

suming activities of the experiment. The whole veri�cation

e�ort would have been much less resource-intensive had we

started with precise assumptions about the system under

control and with clear safety properties.

VI. Conclusions

The case study experiment has con�rmed the poten-

tial bene�ts of formal methods for requirements analy-

sis of safety critical systems. A formal speci�cation pro-

vides clear advantages, such as clarity and precision; but

the main bene�t in our experiment was the feasibility

of thorough analysis via proof. Formal veri�cation can

help uncover errors, misunderstandings, or subtle, unex-

pected properties which could easily escape other means of

scrutiny such as review or animation. In the right circum-

stances, increased con�dence in the requirements speci�ca-

tion can be obtained by proving safety-related properties.

For this purpose, it is crucial to adopt from the start a wide

point of view and consider the system as a whole. Precise

knowledge of the system under control and of the environ-

ment, and a clear speci�cation of the safety requirements

are essential. The narrow perspective of the software de-

veloper is not su�cient.

Existing formal methods and proof tools are mature

enough to be applied to large systems of substantial com-

plexity. The main value of tools is to help identify and

correct wrong arguments during the proof process. Speci�-

cation debugging via proof was the principal activity during

requirements validation and a lot was learnt about the case

study through failed proofs and corrections.

In spite of the potential bene�ts, the amount of e�ort

and time spent on the case study may still be seen as an

obstacle. However, we believe that most of the di�culties

encountered were due to the particular context of the study.

As experience is gained in the application of PVS to real-

time controllers, the amount of e�ort required for their

veri�cation should decrease. The main issue is for the PVS

community to develop and make available libraries. These

could provide a background of general notions and results,

as well as guidance and support theories for facilitating the

description of real-time systems.

Acknowledgements

The work described here would not have been possible

without the support of our project partners. Particular

thanks are due to our GEC-Marconi colleagues who have

had to educate us in avionics systems.

References

[1] \The Procurement of Safety Critical Software in Defence Equip-

ment," 1991, Interim Defence Standard 00-55, Issue1.

[2] \Draft IEC Standard 1508 - Functional Safety: Safety-related

systems," April 1995, International Electrotechnical Commis-

sion, Technical Committee no. 65, Working Group 9/10 (WG

9/10), IEC 65A.

[3] P. Bradley, L. Shackleton, and V. Stavridou, \The SafeFM

project," in Proc. of Safety Critical Systems Symposium 93,

F. Redmill, Ed. February 1993, pp. 168{176, Springer-Verlag.

[4] V. Stavridou, A. Boothroyd, T. Boyce, P. Bradley, J. Draper,

B. Dutertre, and R. Smith, \Developing and Assessing Safety

Critical Systemswith FormalMethods: the SafeFMWay," Jour-

nal of High Integrity Systems, vol. 1, no. 6, pp. 541{545, 1996.

[5] S. Owre, J. Rushby, N. Shankar, and F. von Henke, \Formal

veri�cation for fault-tolerant architectures: Prolegomena to the

design of PVS," IEEE Transactions on Software Engineering,

vol. 21, no. 2, pp. 107{125, February 1995.

[6] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas,

\A tutorial introduction to PVS," in WIFT'95 Workshop on

Industrial-Strength Formal Speci�cation Techniques, April 1995.

[7] T. Boyce, \SafeFM case study report," Tech. Rep. SafeFM-018-

GEC-1, SafeFM project, January 1994.

[8] S. Owre, N. Shankar, and J. M. Rushby, User Guide for the

PVS Speci�cation and Veri�cation System, Computer Science

Lab., SRI International, March 1993.

[9] S. P. Miller and M. Srivas, \Formal Veri�cation of the AAMP5

Microprocessor: A Case Study in the Industrial Use of Formal

Methods," in WIFT'95 Workshop on Industrial-Strength For-

mal Speci�cation Techniques, April 1995.

[10] M. K. Srivas and S. P. Miller, \FormalVeri�cation of an Avionics

Microprocessor," Tech. Rep. SRI-CSL-95-04, SRI International,

June 1995.

[11] K.-H. Buth, \Automated Code Generator Veri�cation based on

Algebraic Laws," Tech. Rep. ProCoS II Report, Kiel KHB 5/1,

University of Kiel, September 1995.

[12] J. Hooman, \Correctness of Real Time Systems by Construc-

tion," in Formal Techniques in Real-Time and Fault-Tolerant

Systems. September 1994, pp. 19{40, Springer-Verlag, LNCS

863.

[13] N. Shankar, \Veri�cation of Real-Time Systems Using PVS,"

in Computer Aided Veri�cation, CAV'93. June-July 1993,

Springer-Verlag, LNCS 697.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1997

[14] M.J.C. Gordon and T.F. Melham, Introduction to HOL. A the-

orem proving environment for higher order logic, Cambridge

University Press, 1993.

[15] A. P. Ravn, H. Rischel, and K. M. Hansen, \Specifying and

verifying requirements of real-time systems," IEEE Trans. on

Software Engineering, vol. 19, no. 1, pp. 41{55, January 1993.

[16] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, \A calculus of

durations," Information Processing Letters, vol. 40, no. 5, pp.

269{276, December 1991.

[17] J. U. Skakkeb�k and N. Shankar, \Towards a duration calculus

proof assistant in PVS," in Formal Techniques in Real-time

and Fault-Tolerant Systems. September 1994, Springer-Verlag,

LNCS 863.

[18] Z. Chaochen, A. P. Ravn, and M. R. Hansen, \An extended du-

ration calculus for hybrid real-time systems," in Hybrid Systems,

1993, number 736 in LNCS, pp. 36{59.

[19] A. P. Ravn, Design of Embedded Real-Time Computing Sys-

tems, Ph.D. thesis, Technical University of Denmark, Lyngby,

Denmark, October 1995.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, \The Syn-

chronous Data Flow Programming Language LUSTRE," Pro-

ceedings of the IEEE, vol. 79, no. 9, pp. 1305{1321, September

1991.

[21] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, \Pro-

gramming Real-Time Applications with SIGNAL," Proceedings

of the IEEE, vol. 79, no. 9, pp. 1321{1336, September 1991.

[22] J. Crow and B. Di Vito, \Formalizing Space Shuttle Software

Requirements," in ACM SIGSOFT Workshop on Formal Meth-

ods in Software Practice, January 1996.

[23] Cli� B. Jones, Systematic Software Development using VDM,

Prentice-Hall International, 1986, 2nd Edition.

[24] J. R. Abrial, M. Lee, D. Neilson, N. Scharbach, and I. Sorensen,

\The B method for Large Software. Speci�cation, Design and

Coding," in VDM'91: Volume 2: Tutorials. 1991, pp. 398{405,

Springer-Verlag, LNCS 552.

[25] B. Dutertre, \Case study coherent speci�cations," Tech. Rep.

SafeFM-050-RH-1, SafeFM project, July 1994.

[26] T. Boyce, \Formal techniques in analysis and design," Tech.

Rep. SafeFM-027-GEC-2, SafeFM project, July 1994.

[27] B. Di Vito, \Formalizing New Navigation Requirements for

NASA's Space Shuttle," in FME'96, March 1996.

[28] T. Boyce, \ML animation and test case generation," Tech. Rep.

SafeFM-036-GEC-1, SafeFM project, January 1995.

Bruno Dutertre received a DEA (French

MSc) and a doctorate in computer science

from the university of Rennes 1/IFSIC and

an engineering degree from INSA/Rennes. He

is currently a temporary lecturer at Queen

Mary andWest�eld College, University of Lon-

don. Previously he was research assistant on

the SafeFM project. His main research in-

terests are formal methods and high-integrity

systems, and the application of logic and the-

orem proving to software engineering and to

security protocols. He also worked on model checking techniques

for validating Signal programs. Bruno can be contacted by e-mail:

bruno@dcs.qmw.ac.uk.

Victoria Stavridou holds a BSc on Elec-

tronic Computer Systems and an MSc in the

Assessment of Computer Aided Logic Design,

both from the University of Salford, UK, as

well as a PhD on Equational Speci�cation and

Veri�cation of Digital Systems from the Uni-

versity of Manchester. She is a Reader in

Computer Science at Queen Mary and West-

�eld College, University of London. Her re-

search interests include safety critical systems,

formal methods and dependability. She has

written extensively in these areas. She can be contacted on victo-

ria@dcs.qmw.ac.uk.

