
An Empirical Evaluation of SAT Solvers on Bit-vector

Problems

Bruno Dutertre

SRI International
Menlo Park, CA, U.S.A.
bruno.dutertre@sri.com

Abstract

Bit blasting is the main method for solving SMT problems in the theory of fixed size bit
vectors. It converts bit-vector problems to equisatisfiable Boolean satisfiability problems
that are then solved by SAT solvers. We present an empirical evaluation of state-of-the-art
SAT solvers on problems produced by bit blasting with the Yices SMT solver. The results
are quite different from common SAT solver evaluations such as the SAT races and SAT
competitions, which argues for extending these evaluations to include benchmarks derived
from SMT problems.

1 Introduction

Most SMT solvers for the theory of quantifier-free bit-vectors rely on the brute-force approach
colloquially known as bit blasting . Bit blasting compiles an SMT problem on bit vectors into
a Boolean circuit that is then converted to conjunctive normal form (CNF) and solved by a
Boolean satisfiability (SAT) solver. Clearly, the efficiency of modern SAT solver is the key
reason why this method works at all.

The SAT solving community organizes regular competitions that evaluates SAT solvers on
a set of benchmarks. In these competitions, the top SAT solvers are typically very close.1

There is anecdotal evidence (for example, from results of the SMT solver competitions) that
the situation is different on bit-blasting problems. We have experienced this in the 2019 SMT
solver competition where we used CaDiCaL and CryptoMiniSAT as backends to the Yices 2
solver. CaDiCaL solved 80 more problems than CryptoMiniSAT.

We explore this issue more thoroughly. We report on an empirical evaluation of sixteen
state-of-the-art SAT solvers on CNF problems produced by Yices 2. The solvers we evaluate
includes all the solvers that finished in the top three rankings in the 2019 SatRace,2 winners of
earlier SAT Solver Competitions, and other representative solvers. In this evaluation, CaDiCaL
is clearly superior to all other solvers. We then empirically investigate the features of CaDiCaL
that matter most on our benchmarks.

2 Benchmarks

Our evaluation is based on 15447 CNF problems that we generated from non-incremental bench-
marks in the logic QF BV (quantifier-free, fixed size bit vectors). These benchmarks are avail-
able on the SMT-LIB repository.3 We started from the 41696 benchmarks available in this
repository as of July 2019.

1See http://www.satcompetition.org
2http://sat-race-2019.ciirc.cvut.cz
3https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV

http://www.satcompetition.org
http://sat-race-2019.ciirc.cvut.cz
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

Solver Reason for inclusion

MapleCOMSPS Winner SAT Competition 2016
MapleCOMSPS LRB Accident
MapleLCMDiscChronoBT-DL-v3 1st in UNSAT Track, 1st in SAT+UNSAT at SatRace 2019
MapleLCMDistChronoBT Winner SAT Competition 2018
MapleLCMDistChronoBT-DL-v1 2nd in SAT Track at SatRace 2019
MapleLCMDistChronoBT-DL-v2.1 2nd in SAT Track at SatRace 2019
MapleLCMdistCBTcoreFirst 3rd SAT+UNSAT Track at SatRace 2019
Maple LCM Dist Winner SAT Competition 2017
PSIDS MapleCMDistChronoBT 3rd in UNSAT Track at SatRace 2019
cadical-1.2.1 latest CaDiCaL release
cadical-satrace19 1st in SAT Track, 2nd in SAT+UNSAT at SatRace 2019
cryptominisat5 historic
expMaple CM GCBumpOnlyLRB 2nd in UNSAT Track at SatRace 2019
glucose-4.2.1 historic
minisat-2.2.0-simp historic
smallsat 3rd in SAT Track at SatRace 2019

Table 1: SAT Solvers Used in the Evaluation

We processed all these benchmarks with the Yices 2 SMT solver [5] to convert them to the
DIMACS CNF format used by SAT solvers. Out of the initial 41696 benchmarks, Yices 2 can
solve 18940 problems without conversion to CNFs (i.e., by rewriting and other simplification
at the bit-vector level). We obtained then 22756 CNF formulas in total. We then removed
trivial formulas and duplicates. There were 325 empty CNFs (trivially SAT), 2685 formulas
that contained the empty clause (trivially UNSAT), and 4286 duplicates. This leaves 15450
formulas. Out of them, we decided to remove three extremely large CNF formulas (of more
than 5 GB each) and keep the remaining 15457 formulas for our evaluation.

By a duplicate, we mean a CNF file that is syntactically identical to another benchmark;
it contains the exact same variables and clauses in the same order. We did not attempt to
identify formulas that are identical modulo variable or clause reordering. It may be somewhat
surprising that problems in SMT-LIB that are syntactically distinct result in the exact same
CNF after bit blasting. We have not investigated this issue very much and we do not know
whether this happens with other SMT solvers than Yices 2. But this may suggest removing
possibly redundant problems from SMT-LIB.

The formulas resulting from this bit blasting vary widely in size. The smallest formula
has two variables and two clauses. The largest formula has more than 9 million variables
and 41 million clauses. Such very large examples are present but they are not common. The
median number of variables is 9115 and the median number of clauses is 29307. All these CNF
benchmarks are available at https://www.csl.sri.com/~bruno/bit-blasting.html.

3 Solvers

Table 1 shows the SAT solvers that we selected in our evaluation. We picked solvers that did
well at the 2019 SatRace and the winners of the 2016–2018 editions of the SAT Competition.
We also added three well-known solvers: MiniSAT [7], Glucose [1], and CryptoMiniSAT [20],
and the latest release of CaDiCaL [3]. We also added MapleCOSMPS LRB by accident (it
participated in the SAT Competition in 2016 but did not win).

All the solvers in this table are based on conflict-driven clause learning (CDCL) pioneered

2 Approved for Public Release, Distribution Unlimited

https://www.csl.sri.com/~bruno/bit-blasting.html

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

by GRASP [13] and Chaff [14]. Except for CaDiCaL and CryptoMiniSAT, all the solvers are
derived from MiniSAT [7] via Glucose [1] and COMiniSATPS [16, 17] and still share a lot of
code with MiniSAT 2.2.0. They employ techniques introduced by MiniSAT and its succes-
sors: learned clause minimization [7], preprocessing with variable and clause elimination [6],
glue-based estimates of learned clause quality [2]. In addition to these common bases, recent
solvers employ techniques such as vivification of learned clauses [12], chronological backtrack-
ing [15], and new branching heuristics [11]. Additional details on each solver and the particular
techniques they implement can be found in the SatRace proceedings [10].

CryptoMiniSAT [20] also derives from MiniSAT but it is now very different. Unlike other
MiniSAT-derived solvers, CryptoMiniSAT implements the in-processing strategy, and includes
many more simplification techniques. CaDiCaL does not borrow code from MiniSAT and it
also uses in-processing. All other solvers in our list work in two phases. They first simplify
the input formula using variable and clause elimination algorithms. After this preprocessing,
they switch to pure CDCL search and perform only limited clause simplification during search.
The in-processing strategy uses simplification procedures more aggressively. Rather than just
performing one round of initial simplification, in-processing solvers apply these simplification
procedures periodically, They alternate between search and simplification. This strategy is used
by both CaDiCaL and CryptoMiniSAT. Both solvers also implement many more simplification
techniques than the others.

4 Experiment

We ran the solvers listed in Table 1 on the 15447 benchmarks produced by Yices 2. For the
experiment, we used a set of ten Linux-based servers running Ubuntu 18.04. All servers have 64
GB RAM and have two four-core x86-64 Intel processors (Xeon Gold 5122 Processors, 16.5M
Cache, 3.60 GHz). We used a timeout of 20 minutes CPU time per benchmark and did not set
a memory limit.

On these servers, solver runtime may be affected by hard-to-predict OS and hardware char-
acteristics. We purposely limited the number of jobs on each server (two jobs per server) to
reduce variability. By running the same binary multiple times, we observed variation in runtime
of about 4% between the fastest and slowest run. This variability must be taken into account
when comparing solver runtimes. Ideally, we should run the same solvers multiple times to get
averages but we did not have enough time for this. Our primary performance metrics is the
number of solved benchmarks, which is less sensitive to small runtime variability.

We ran all the solvers in Table 1 once on all the benchmarks. All solvers were run with
default configurations (i.e., no command-line options), but we disabled generation of DRAT
proofs. To perform the experiments, we had to address a few software issues:

• We fixed a division-by-zero bug in the smallsat solver.

• A more significant problem is that many, if not all, of the MiniSAT-derived solvers do
not respect the SIGXCPU signal which we used for timeout. We set a runtime limit
with the shell ulimit command. When the limit is reached, the OS sends the solver the
SIGXCPU signal, which by default should terminate the process. Solvers intercept this
signal and implement a signal handler that is intended to print statistics when the solver
is interrupted. This mechanism seems to have been inherited from MiniSAT where it was
working properly but the quality of implementation has not kept up. Many solvers just
catch the signal and keep going. They cannot be interrupted by our timeout mechanism

Approved for Public Release, Distribution Unlimited 3

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

Solver SAT UNSAT TOTAL Uniq.

cadical-1.2.1 9024 6145 15169 9
cadical-satrace19 9009 6136 15145 8

MapleCOMSPS LRB 9000 6101 15101 3
MapleLCMDiscChronoBT-DL-v3 8977 6100 15077 3

expMaple CM GCBumpOnlyLRB 8922 6097 15019
cryptominisat5 8898 6114 15012 1

Maple LCM Dist 8929 6077 15006
MapleLCMDistChronoBT 8924 6067 14991

MapleLCMdistCBTcoreFirst 8924 6064 14988
MapleLCMDistChronoBT-DL-v1 8920 6065 14985 1

MapleLCMDistChronoBT-DL-v2.1 8919 6064 14983
smallsat 8924 6048 14972 6

MapleCOMSPS 8912 6056 14968
PSIDS MapleCMDistChronoBT 8917 6048 14965

glucose-4.2.1 8868 6039 14907
minisat-2.2.0-simp 8897 5739 14636 1

virtual best 9058 6181 15239

Table 2: Number of Solved Problems. The fourth column shows the total number of problems
solved by each solver. The SAT and UNSAT columns show how many of these are satisfiable or
unsatisfiable, respectively. The last column shows the number of uniquely solved benchmarks
(i.e., that a solver is the only one to solve).

(or by ctrl-C for that matters). We fixed this issue by removing the faulty signal-handling
code from all solvers.

• We removed an incorrect warning produced by the DIMACS parser used by most MiniSAT-
derived SAT solvers.

• For the solvers that did not provide it, we added an option to disable printing of satisfying
assignments on their standard output. This helped reduce the volume of data produced
by solvers from gigabytes to more manageable sizes.

We note that many of the MiniSAT-derived solvers do not build very cleanly. Compilation
generates a very large number of warnings. Despite this, all the solvers appear to be reliable.
We did not notice incorrect results from any solver. There was no disagreement between solvers
on any benchmark that was solved by more than one of them.

5 Results

The results of our evaluation are shown in Tables 2 and 3. The first table shows the number of
solved instances by each solver. It also includes results for the virtual best solver.4 The second
table shows runtime distributions.

A clear result is that both versions of CaDiCaL are significantly better on our benchmarks
than the other solvers. MapleCOMSPS LRB is in third place and solves 68 fewer problems
than CaDiCaL-1.2.1. The winner of last year’s SAT race is fourth and solves close to 100 fewer
problems than CaDiCaL-1.2.1. Other solvers that did well in this SAT race are further behind.

4The virtual best solver is obtained by selecting the fastest solver on each problem.

4 Approved for Public Release, Distribution Unlimited

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

Solver 1 s 10 s 100 s 1000 s 1200 s timeouts

cadical-1.2.1 11850 2292 664 351 12 278
cadical-satrace19 11872 2256 659 336 22 302

MapleCOMSPS LRB 10732 3268 690 390 21 346
MapleLCMDiscChronoBT-DL-v3 7753 5373 1612 420 19 370

expMaple CM GCBumpOnlyLRB 10006 3646 998 349 20 428
cryptominisat5 11253 2201 1034 498 26 435

Maple LCM Dist 7717 5236 1679 348 26 441
MapleLCMDistChronoBT 7733 5262 1636 329 31 456

MapleLCMdistCBTcoreFirst 7715 5266 1649 338 20 459
MapleLCMDistChronoBT-DL-v1 7775 5246 1610 333 21 462

MapleLCMDistChronoBT-DL-v2.1 7768 5303 1559 331 22 464
smallsat 10815 3240 617 273 27 475

MapleCOMSPS 10671 3223 758 294 22 479
PSIDS MapleCMDistChronoBT 7686 5097 1815 349 18 482

glucose-4.2.1 12188 1778 556 353 32 540
minisat-2.2.0-simp 11713 1709 776 415 23 811

virtual best 13233 1281 449 262 14 208

Table 3: Runtime Distribution. The first column shows the number of problems solved in less
than 1 s. The second column shows the number of problems solved within 1 to 10 s, and so
forth. The last column shows the number of timeouts, i.e., problems not solved in 20 min.

Apart from MapleLCMDiscChronoBT-DL-v3, solvers from 2019 do not seem particularly
better than winners of past SAT competitions. It is also notable that two variants of MapleLCM-
DiscChronoBD-DL-v3 do much worse. In fact, the best solver after CaDiCaL is MapleCOM-
SPS LRB, which finished in 7th position in the 2016 SAT Competition. Interestingly, the
winner that year was a variant of MapleCOMPSPS LRD which does not do well on our bench-
marks. Also, MapleCOSMPS LRB does much better than more recent solvers that implement
techniques such as chronological backtracking [15] and learned-clause vivification [12]. These
new techniques seem to be useful on SAT-Competition benchmarks but their value is less clear
here.

One can see that all solvers are significant improvements over MiniSAT. MiniSAT 2.2.0 is
last in our table. It times out on 811 problems, which is close to 300 more timeouts than any
other solver. It is actually handicapped by its poor results on a specific family of benchmarks
due to Bruttomesso and Sharygina [4]. All other solvers work fine on these benchmarks and we
know that the benchmarks in question are unsatisfiable and have short resolution proofs. In
fact, they can be solved by bounded variable elimination alone. Although MiniSAT implements
bounded variable elimination, it puts limits on the procedure that prevents it form solving these
benchmarks. In particular, MiniSAT uses a limit on the size of clauses created during variable
elimination. This limit is 20 literals by default. When this limit is increased to 400 literals
(using command-line option --cl-lim=400), MiniSAT solves 185 more problems in total.

Table 3 shows that most of our benchmarks are very easy for all solvers. A very large
majority of the problems (75%) are solved in less than 10 s by all solvers. We still see differences
between solvers on these easy benchmarks, in particular in the number of instances solved within
1 s. On the other hand, more than 200 problems were not solved at all. We have built a smaller
subset of “interesting” benchmarks that removes problems on which all solvers behave similarly.
This list includes all problems that are solved by some but not all solvers. We also included

Approved for Public Release, Distribution Unlimited 5

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

ti
m

e
cadical-1.2.1

cadical-satrace19
MapleCOMSPS-LRB

MapleLCMDiscChronoBT-DL-v3
expMaple-CM-GCBumpOnlyLRB

cryptominisat5
Maple-LCM-Dist

MapleLCMDistChronoBT
MapleLCMdistCBTcoreFirst

MapleLCMDistChronoBT-DL-v1
MapleLCMDistChronoBT-DL-v2.1

smallsat
MapleCOMSPS

PSIDS-MapleCMDistChronoBT
glucose-4.2.1

minisat-2.2.0-simp

Figure 1: Cactus Plot on Interesting Problems. The legend lists solvers from best (rightmost
curve) to worst (leftmost curve).

problems solved by all solvers when the difference between fastest and slowest solvers was
large (i.e., more than 100 s). This list of interesting problems contains 1354 instances. Figure 1
shows the traditional cactus plot for our solvers on these interesting problems. This plot visually
shows what we described previously. Both versions of CaDiCaL are our best solvers, followed by
MapleCOMSPS LRB and MapleLCMDistcChronoBT-DL-v3 then a group of ten solvers that
are close to each other. Glucose-4.2.1 is then behind this group and MiniSAT is further to the
left.

6 Playing with CaDiCaL

CaDiCaL [3] is one of the many SAT solvers developed by Armin Biere over the years. It
is written in C++ and its code is available on GitHub.5 It started participating in the SAT
competitions in 2017. In our study, we used the release 1.2.1 of CaDiCaL which was the latest
release available at the time.

As we mentioned previously, CaDiCaL uses in-processing and implements a large number of
different simplifications and other specialized procedures. We experimentally investigate which
of these features matter most on our benchmarks. For this purpose, we just turn off several
options or features that are enabled by default in CaDiCaL then measure performance of the
modified CaDiCaL.

6 Approved for Public Release, Distribution Unlimited

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

compacting : compacting internal variables
chrono: support for chronological backtracking

decompose: elimination of equivalent literals
eagersubsume: apply subsumption to recently learned clauses

elim: bounded-variable elimination
elimgates: recognize clauses that encode and, xor, and if-then-else

lucky : try predefined satisfying assignments
probing : failed-literal probing
rephase: periodically switch preferred variable polarity

scan-index : optimized watched literal search
stabilize: switch between two heuristic modes

subsumption: clause subsumption
ternary : hyper ternary resolution

vivify : clause vivification
walk : random walks

Figure 2: Tested Features in CaDiCaL. Each feature is enabled by default and enables specific
CaDiCaL procedures. Except for scan-index, all are controlled by command-line options
.

6.1 Overview of Tested Features

Among the many features implemented in CaDiCaL, we selected the subset shown in Figure 2.
All of these are enabled by default and activate various simplification and search procedures
available in CaDiCaL. Some of these are standard simplifications such as variable elimination
and subsumptions [6], and failed-literal probing. Chronological backtracking is based on [15].
Vivification was introduced by Piette et al. [18] and it is used in Luo et al.’s procedure for
minimizing learned clauses [12]. It was also proposed by Han and Somenzi under the name
distillation [9].

Compacting is a data-structure optimization procedure that makes internal tables more
compact by removing empty slots and renumbering variables. Decomposition computes strongly
connected components in the problem’s binary implication graph to eliminate variables. It
searches for implication cycles of the form: l0 ⇒ l1 ⇒ . . . ⇒ ln ⇒ l0, from which one can
deduce that l1, . . . , ln can all be replaced by l0. Eager subsumption keeps track of n most
recently learned clauses and when a new clause C is learned, it checks whether C subsumes any
of them. Under the name elimgates we refer to three options of CaDiCaL that enable code to
recognize clausal encodings of common Boolean gates. These clauses can be treated specially
during bounded variable elimination [6]. Lucky and walk refer to two procedures that attempt
to quickly find a satisfying assignment before executing the CDCL search procedure. Walk is a
local search procedure. Lucky tries several assignments (e.g., set all variables to false or to true)
to check whether they satisfy all the clauses. Rephase is a heuristic that periodically updates
the preferred polarity used when assigning decision variables. Other solvers typically use the
caching scheme due to Pipatsrisawat and Darwiche [19]. Rephasing introduces more diversity
in this scheme. Stabilize enables CaDiCaL to essentially work in two modes in which different
heuristics are used for selecting branching variables and controlling restarts. It is related to
the distinction between SAT and UNSAT problems observed by Oh [16]. Ternary is a form of
resolution limited to three (and two) literal clauses.

The scan-index feature is different from the others. It is not enabled or disabled by

5https://github.com/arminbiere/cadical

Approved for Public Release, Distribution Unlimited 7

https://github.com/arminbiere/cadical

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

Disabled Feature SAT UNSAT TOTAL Impact

elim 9002 6096 15098 −71
stabilize 8961 6141 15102 −67
rephase 8988 6149 15137 −32

scan-index 9026 6123 15149 −20
probing 9022 6130 15152 −17

compacting 9013 6144 15157 −12
vivify 9018 6143 15161 −8

subsumption 9017 6144 15161 −8
ternary 9015 6148 15163 −6

decompose 9023 6142 15165 −4
eagersubsume 9023 6142 15165 −4

9024 6145 15169 0

lucky 9025 6151 15176 +7
chrono 9021 6156 15177 +8

walk 9024 6154 15178 +9
elimgates 9025 6157 15182 +12

Table 4: Impact of Disabling Features or Options in CaDiCaL-1.2.1. The impact is the difference
in numbers of solved problems between the default cadical and cadical with a feature disabled.
A negative impact means that the feature is helpful. A positive impact means that cadical does
better when the feature is disabled.

command-line options. Unique among all solvers in our list, CaDiCaL implements an opti-
mal procedure for scanning a clause to search for a new watched literal [8]. This requires
storing a scan index with the clause and searching from this scan index whenever a current
watched literal becomes false. Other solvers use the simpler method of MiniSAT that does not
require a scan index. They always scan a clause from the start. We wanted to evaluate the
impact of this scan-index procedure. To disable it, we modified the CaDiCaL code to force
scanning to start at the beginning of a clause.

Although some of the procedures listed in Figure 2 are also implemented by CryptoMiniSAT
and other solvers, implementation details matter. CaDiCaL uses various optimizations that may
not be implemented in other solvers. Checking the code is a good idea for full details.

6.2 Results

Table 4 shows the results of our experiment. Each row of the table lists a specific features
and gives the number of SAT and UNSAT benchmarks solved when this feature is disabled in
CaDiCaL. We also give the total number of solved benchmarks and the difference in number of
solved benchmarks compared with the default CaDiCaL 1.2.1.

Based on Table 4, we can see that bounded variable elimination, stabilization, and rephasing
have the most impact on performance. Rephasing and stabilization are particularly useful on
satisfiable benchmarks. The scan-index procedure, failed-literal probing, and compacting also
help. Vivifying, subsumption, hyper ternary resolution, decomposition, and eager subsumption
seem to also provide small improvements. Interestingly, we get better results than the default
CaDiCaL by disabling several features. The lucky and random walk search make things worse
on our benchmarks, as do chronological backtracking and special treatment of clauses that
encode logical gates.

Some of these results remain to be more carefully validated. Small variations in number

8 Approved for Public Release, Distribution Unlimited

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

of solved benchmarks should be taken with precaution since CaDiCaL is a randomized solver.
We have tested CaDiCaL on our benchmarks with 18 different random seeds. In this test, the
number of solved instances varied from 15156 to 15176, with an average of 15167.33 and a
standard deviation of 4.59.

Table 4 gives us an initial picture of features of a state-of-the-art SAT solver like CaDiCaL
that matter most for our bit-vector benchmarks. This study is far from complete, as CaDiCaL
includes many more parameters and options than the ones we tested. We limited our exper-
iments to Boolean features that can be turned on or off. Other aspects that are unique to
CaDiCaL (such as the use of the move-to-front heuristic) are more difficult to investigate since
they require significant code modification.

7 Conclusion

Efficient SAT solvers are key to solving SMT problems in the theory of fixed size bit vectors.
Progress in SAT solving is hard to quantify. It is measured empirically on benchmarks used in
regular SAT competitions. Unfortunately, it is not clear whether good performance in these SAT
competitions correlate with good performance on SMT benchmarks. Our empirical evaluation
shows that CaDiCaL is currently the best SAT solver on CNF problems produced with Yices 2,
by a significant margin. Other solvers that are close to or better than CaDiCaL on SAT-
competition benchmarks are not close in our evaluation. This implies that SAT-competition
benchmarks are different and not representative of the SAT problems we produce by bit blasting.

Our initial investigation identified several features and procedures of CaDiCaL that seem to
be most beneficial on our benchmarks. Some of these are not difficult to implement and could
be easily added to other solvers. Other procedures such as chronological backtracking that have
proved effective in SAT competitions do not seem to help on our benchmarks.

Benchmarking is of course a difficult problem and our evaluation is still limited. We have
heard that other SMT solvers than Yices work best with CaDiCaL too,6 but a larger exper-
imental evaluation involving several solvers would be useful. We have not mentioned various
potential issues with the SMT-LIB benchmarks (e.g., many hard problems are crafted or do not
come from real application domains, there may be too many similar problems), and we have
not thoroughly examined SAT solver performance on different benchmark families.

Acknowledgments

This material is based upon work supported in part by NSF grant 1816936, and by the Defense
Advanced Research Project Agency (DARPA) and Space and Naval Warfare Systems Center,
Pacific (SSC Pacific) under Contract No. N66001-18-C-4011. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of NSF, DARPA, or SSC Pacific.

References

[1] Gilles Audemard and Laurent Simon. GLUCOSE: a solver that predicts learnt clauses quality. In
SAT 2009 Competitive Events Booklet, pages 7–9, 2009.

6Personal conversation with Mathias Preiner

Approved for Public Release, Distribution Unlimited 9

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In
Twenty-First International Joint Conference on Artificial Intelligence (IJCAI’2009), pages 399–
404, 2009.

[3] Armin Biere. CaDiCaL at the SAT race 2019. In Proceedings of SAT Race 2019: Solver and
Benchmark Descriptions, pages 8–9, 2019.

[4] Roberto Bruttomesso and Natasha Sharygina. A scalable decision procedure for fixed-width bit-
vectors. In Proceedings of the 2009 International Conference on Computer-Aided Design (IC-
CAD’09), pages 13–20, 2009.

[5] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided Verifi-
cation (CAV’2014), volume 8559 of Lecture Notes in Computer Science, pages 737–744. Springer,
July 2014.

[6] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause elimi-
nation. In Fahiem Bacchus and Toby Walsh, editors, Theory and Practice of Satisfiability Testing
(SAT 2005), volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[7] Niklas Eén and Niklas Sörensen. An extensible SAT-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[8] Ian P. Gent. Optimal implementation of watched literals and more general techniques. Journal of
Artificial Intelligence Research, 48:231–252, 2013.

[9] Hyojung Han and Fabio Somenzi. Alembic: An efficient algorithm for CNF preprocessing. In
Proceedings of the 44th Annual Design Automation Conference (DAC’07), pages 582–587, 2007.

[10] Marijn J.H. Heule, Matti Järvisalo, and Martin Suda, editors. Proceedings of SAT Race 2019:
Solver and Benchmark Descriptions. Department of Computer Science, University of Helsinki,
2019. http://hdl.handle.net/10138/306988.

[11] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In Nadia Creignou and Daniel Le Berre, editors, Theory
and Applications of Satisfiability Testing (SAT 2016), volume 9710 of Lecture Notes in Computer
Science, pages 123–140. Sprnger, 2016.

[12] Mao Luo, Chu-Min Li, Fan Xio, Felip Manyà, and Zhipeng Lü. An effective learnt clause minimiza-
tion approach for CDCL SAT solvers. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pages 703–711, 2017.

[13] João P. Marques-Silva and Karem A. Sakallah. GRASP - a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

[14] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation Con-
ference (DAC’01), pages 530–535, June 2001.

[15] Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing (SAT 2018),
volume 10929 of Lecture Notes in Computer Science, pages 111–121. Springer, 2018.

[16] Chanseok Oh. Between SAT and UNSAT: The fundamental difference in CDCL SAT. In Marijn
Heule and Sean Weaver, editors, Theory and Applications of Satisfiability Testing (SAT 2015),
volume 9340 of Lecture Notes in Computer Science, pages 307–323. Springer, 2015.

[17] Chanseok Oh. Patching MiniSat to deliver performance of modern SAT solver. In SAT Race
Solver Description, 2015.

[18] Cédric Piette, Youssef Hamadi, and Lakhdar Säıs. Vivifying propositional clausal formulas. In
18th European Conference on Artificial Intelligence (ECAI 2008), Frontiers in Artifical Intelligence
and Applications, pages 525–529. IOS Press, 2008.

[19] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satisfia-
bility solvers. In João Marques-Silva and Karem A. Sakallah, editors, Theory and Applications
of Satisfiability Testing (SAT 2007), volume 4501 of Lecture Notes in Computer Science, pages

10 Approved for Public Release, Distribution Unlimited

http://hdl.handle.net/10138/306988

An Empirical Evaluation of SAT Solvers on Bit-vector Problems Bruno Dutertre

294–299. Springer, 2007.

[20] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic prob-
lems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing (SAT 2009),
volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer, 2009.

Approved for Public Release, Distribution Unlimited 11

	Introduction
	Benchmarks
	Solvers
	Experiment
	Results
	Playing with CaDiCaL
	Overview of Tested Features
	Results

	Conclusion

