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Abstract

We present a novel approach for key management in wireless sensor networks. Using initial
trust built from a small set of shared keys, low-cost protocols enable neighboring sensors
to authenticate and establish secure local links. As the risk of sensor compromise increases
with time, the keys are used only for a limited period right after deployment. Once secure
local links are established, other security services such as group-key refresh can be pro-
vided. The protocols we present require little memory and processing power, and require a
small number of shared keys independent of the network size. Moreover, these protocols do
not depend on a trusted server or base station. To validate the applicability of our approach
to ad hoc wireless sensor networks, we have implemented our protocols on the TinyOS-
based Mica platform and applied them to secure a perimeter monitoring application.
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1 Introduction

Networks of wireless sensors present a cost-effective solution to a range of applications in
critical domains such as detection of chemical or biological agents or tracking of enemy
vehicles. In these critical applications, using incorrect or maliciously corrupted data can
have disastrous consequences. Security services are essential to ensure the authenticity,
confidentiality, freshness, and integrity of the critical information collected and processed
by such networks. To support these security services, one needs entity authentication and
key management that are resilient to external attacks against these networks and to failure
or compromise of these sensors.

If all sensors have sufficient memory and processing power, approaches based on public-
key cryptography or on the Diffie-Hellman key exchange protocol may be applicable, but
the necessary cryptographic primitives are currently too expensive for the most resource-
constrained devices. Less costly alternatives that employ trusted servers sharing a long-term
secret with each client are available. However, such approaches have significant adminis-
trative overhead as clients must be registered and keys set up before deployment. Also,
servers must have sufficient memory and computation power to ensure good performance,
and connectivity must be maintained between clients and servers. Furthermore, unless ad-
ditional costly measures are taken, attacks against a server may result in denial of service,
or in the loss of a large set of long-term keys, compromising all security services. These
disadvantages and constraints make server-based solutions unsuitable for sensor networks.

This report presents key-management services that enable a sensor network to set up
cryptographic keys in an autonomous fashion, without relying on expensive cryptography
or trusted servers, and with minimal administrative overhead.

The approach requires the sensors to share a small set of secret keys. These keys are
loaded in each sensor before deployment, and, unlike other key predistribution scliemes [

], the number of keys required does not increase with the network size. The shared keys
enable a pair of neighboré and B — that is, two sensors that can communicate directly
with each other — to mutually authenticate and securely exchange & kgyunique to
the pair(A, B). This keyK,;, can then be used to secure local communication betwleen
and B. We call the process of establishing these pairwise keygstrappingand call the
corresponding linksecure local links

Since sensors are typically not tamperproof, we cannot assume that the initial keys
used for bootstrapping can be kept secret forever. However, we can assume that it takes
time for an adversary to physically compromise sensors and get the keys. Thus, sensors
that are deployed at the same time can trust each other for a small time interval right after
sensor deployment. Bootstrapping exploits this interval of trust to establish secure local
links inexpensively. In particular, a sensor can authenticate and set up pairwise keys with
its neighbors by using secrets that only recently deployed sensors possess. An extension of



the basic bootstrapping protocol supports multiphase deployment, in which secure links are
established between sensors that are deployed in different phases.

Because of its low cost, this approach is well suited for key management in networks
of resource-constrained sensors. The main benefits of the approach can be summarized as
follows.

e Low memory and computation cost: Each sensor needs to store only a small set of
(symmetric) keys, independent of network size, and no expensive operations such as
those used in public-key cryptography are required.

e Low key setup overhead: Sensors deployed at the same time are preconfigured with
the same set of keys. As a result, our approach has a small administrative key setup
overhead.

e Self organizing: Sensors autonomously establish secure links without involving a
trusted server that may become a bottleneck or a single point of failure.

The remainder of the report describes our key-management services in greater detalil.
Section3 presents the basic bootstrapping protocol. An extended protocol for multiphase
deployment of sensors is discussed in SectiorAn example network-level key-refresh
service that builds upon the secure local links is described in Sextionr implementation
of these protocols in the TinyOS framework is presented in Seétiamd related work is
discussed in Section

2 Notation and Cryptographic Primitives

The following table summarizes the notation used in this report.



A,B,C,... | Node identities

Ng, Ny Random numbers (nonces) generated
by AorB

R, Random number stored in nodebe-
fore deployment

Gr(m) Keyed one-way hash function applied

to stringm using keyk
MACk(m) | Message authentication code for mes-
sagem, generated using key

bk Group authentication key used for
bootstrapping

bko Key generation key used for bootstrap-
ping

gk; Key shared by all sensors of generation

¢ and used for authentication with pr
vious generations

Ky Pairwise key established by neighbg
AandB

D
1

=

S

G is a keyed one-way hash function. It has the property that, given a random quantity
r and a data stringn, it is computationally infeasible to find the kdysuch thatr =
Gr(m). Moreover, givenm andk, one can computés,(m) efficiently, but one cannot
learn anything aboufi;(m) without knowingk. More formally, G is assumed to form a
pseudo-random function family. That is, a polynomial time adversary cannot distinguish
between the functiois, for a randomly chosen key, and a true random functiofi of
same domain and range &5%. The notion of undistinguishability is defined rigorously
in [1], for example.

MAC is an algorithm for constructing secure message-authentication codeskusing
Given k and a messager, MAC(m) can be efficiently computed, but one cannot effi-
ciently constructM A C',.(m) givenm but notk. We also assume that tliéA C is collision
resistant. Knowingn and MAC(m), it is computationally intractable to construct a mes-
sagem’ such thatMAC(m’) = MACy(m). Like G, such aMAC can be constructed
from a pseudo-random function family.

3 Bootstrapping Service

Authentication and key management require initial trust between some of the parties in-
volved. For example, a public-key certificate is accepted as valid if signed by an authority
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one trusts. If only symmetric-key cryptography is used, the parties that trust each other must
somehow acquire a common shared secret that will enable them to communicate securely.
In traditional networks, the initial secrets that are necessary to bootstrap the authentication
services are typically set up by hand. For example, if a central authentication server is used,
an initial shared key is distributed by an administrator when the client is registered with the
server. This initial key is typically communicated offline to ensure secrecy.

In the case of large networks of embedded devices, manually setting a large number
of keys is not practical. In many scenarios, access to the devices for administration is
impossible once the devices are deployed. For example, sensors could be dropped from a
plane over an inaccessible region or deployed in a toxic environnigntrf such cases,
device configuration is possible only before deployment, and there are no secure offline
channels. Once deployed, the network must be autonomous and self-organizing. The initial
keys should then be set up securely by the devices themselves, without manual intervention.

The typical scenario is for a sét of wireless sensors to be deployed or dropped in
the environment. At this point, the devices must discover their neighbors and self-organize
in an ad hoc network. During this initial phase, the main security concerns are external
attacks and possibly malicious devices already present in the environment. The sensors
from S themselves may be assumed initially trustworthy, as it takes time for an adversary
to compromise them. As the risk of device compromise increases with time, it is crucial to
very quickly establish the initial secure links. This calls for an efficient localized algorithm
with minimal communication overhead. Our bootstrapping protocol is a localized algorithm
that builds initial trusted links between sensors that are within direct communication range
of each other. It is executed in a short time window after the sensors have been deployed.

3.1 Protocol Description

Since all the sensors &f are assumed initially trustworthy, two neighbotsand B can
trust each other and establish a secure link if they can make sure that both of them belong
to S. Hence, a fairly weak form of authentication is sufficient, namely, the ability for a
sensor to prove that it belongs.$o This is implemented cheaply by loading a segreup
authentication keyk; into all the members of. Another secret key, thkey generation
key denoted bybko, is also stored in all sensors 6f It is used by neighborgl and B
to generate a pairwise ke, after they have authenticated. Loading these two keys in
all devices can be done easily when the sensors are programmed, and has very minimal
administration overhead.

The protocol is straightforward. A sensor, sdyinitiates the protocol by generating a
random noncéV, and broadcasting lzello message of the following form:

(Hello, A, No, MAC), (Hello, A, N,)).

The message contaings identity and the noncé&/,, and a message authentication code
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(MAC) generated usingk;. On reception of such a message, any sensér cdn check
whether the MAC is valid, thus establishing that the sender possesses the sedrkt.key
Let B be such a sensor. Onéehas verified the MAC, it generates a random noigend
sends the following reply tal:

<ACk, A, B, Nb, MACbkzl (Ack, A, B, Nb, Na)>.

This acknowledgment communicates4dhe nonceV,, and proves tol that B knowsbk;
and has receively,. WhenA receives the message, it can check whether the MAC is valid,
and if so, extract the nona¥,.

After this exchangeA and B have proven to each other that they know the group
authentication key, and they are also both in possession of the ndfRcasd V,. They
construct a pairwise symmetric key as follows:

Koy = Gpry(Na, Np),

whereG is a keyed one-way hash function. This pairwise key enables them to communicate
securely in the future. The kel{,; is actually split into two subkeysy}, and K2, used
for encryption and authentication of future messages, respectively.

3.2 Security

This bootstrapping protocol is a variant of the implicit key exchange protocol AKERZ.of |
It can be proven to be secure against an adversary who does not know ttbé keysl b ko
using the models and techniques introduced by Bellare and Rogaway. i fie proof
relies on the assumption th&fA C' andG are pseudorandom function families. Under this
assumption, one can show that the following properties are satisfied for any adv@rsary
initiator sensorA4, and respondeaB.

e The probability thatB accepts a hello message that appears to be fdmt was not
sent byA is negligible.

e The probability thatd accepts an acknowledgment message that appears to be from
B but was not sent by is negligible.

e E cannot distinguish between the k&Y, ;, and a random bit string of the same length.

These properties can be stated precisely and proven rigorously as shanTihi proof
shows that the protocol is secure against an adversamo can listen to traffic and inject
messages, as long &sdoes not know the bootstrapping keyis andbks.

Since sensors are typically not tamperproof, an adversary could potentially obtain the
keys by physically compromising a sensor. Clearly, if an adversary obk&inand bk;



during the bootstrapping time window, then it can compute the pairwise Kgydrom

the messages it intercepts, or interfere with bootstrapping by forging hello and acknowl-
edgment messages. This risk is small if the bootstrapping window is kept short. However,
an additional risk exists if the adversary can record the messages exchanged bétween
and B during bootstrapping and later discover the key. Since all sensors use the same
key-generation key, compromise bf; can lead to the compromise of a large number of
pairwise keys. Our countermeasure to this attack is to erasebbgtand bk2 as soon as
possible, after the bootstrapping window has elapsed.

3.3 Robustness and Cost

The unreliability of the communication link is a major issue in designing protocols for
wireless sensor networks. We use several mechanisms to make the bootstrapping protocol
robust to message loss.

First, all the sensors that are deployed together will play both the initiator and responder
role. All of them will initiate the bootstrapping protocol at least once by broadcasting a hello
message. Two neighbossand B have then at least two chances to establish a secure link:
once with B and once withA as the initiator. Optionally, the sensors can be programmed
to send more than one hello message, thus executing the bootstrapping protocol more than
once. This increases the probability that bootstrapping succeeds between two neighbors
even if some messages are lost.

In addition, several timing mechanisms are employed to reduce the probability of mes-
sage collisions. Randomization is used to prevent all sensors from sending a hello at the
same time. When first started, a sensor will wait for a random period of time after de-
ployment before sending its hello message. A similar technique is used to reduce the risk
of collisions between several acknowledgments to a hello. When a sdrilsmadcasts a
hello message, neighbors df that already share a pairwise key withdo not respond.

Such sensors either already responded to a previous helloAramnthey have sent a hello

to which A responded. Except for these sensors, every neighbétledt received the hello

is expected to respond. To reduce the probability of collisions between acknowledgments
from different responders, replies tbare sent after a randomized wait time.

A final mechanism reduces the risk of collisions between hello messages and acknowl-
edgments. When a hello message is transmitted at#jrtieen a time intervalt, ¢ + A]
is reserved for acknowledgments to this hello. Transmissions of hellos are triggered by a
timer. If a sensoB receives a hello at time it will not broadcast its own hello until after
t+ A. If B'stimer expires in the interval, thel will not send its hello but restart the timer,
with a randomized delay, to retry later.

All these mechanisms are necessary to make the protocol robust in a network where
radio links are unreliable. Since the protocol requires message exchanges only between
neighbors, it is inexpensive in terms of communication. For a seAsdhe cost is one



broadcast message per hello, and at most one reply Artoreach of its neighbors. A more
economical approach could be envisaged that requires only one hello message per node. A
protocol that relies on this approach to exchange session keys is discus$séd In fuch
protocols, the key«,;, must be constructed from nonces attached to the hellos f@nd

B. This is very cheap in terms of communication, but also very unreliable if hellos are lost
because of collisions or radio noise.

A main benefit of our bootstrapping protocol over other approackies] fs its low
memory requirement. Only two secret keys are necessary for bootstrapping, irrespective of
the network size. The computational cost is also relatively small as all the cryptographic
primitives required can be implemented using block ciphers.

4 Multiphase Deployment

Sensors may be deployed in different phases. For example, new sensors may be added
when previously deployed sensors fail or when the capability of the existing network is
determined to be insufficient. We assume that sensors are deployed in successive gener-
ations. The bootstrapping protocol of Sectidapplies to sensors of a single generation.
This section presents an extension of bootstrapping that enables a devfspeneration
to establish a secure link with a seng$of a later generatiog > 7.

The basic idea is fod to store a random quantity,, and a secref,, ; derived fromR,.
The secret has the property that no other sensor of geneiatorearlier generation, can
efficiently computeS,, ; from R,. On the other hand, a sensor of generagican efficiently
computeS, ; from R,. The secret is used to establish a secure link betwkand sensors
of generationj. The construction of, ; relies on a keyed one-way hash function such as
the functionG used previously. For authentication across multiple generations, we add an
extra keygk; that is shared by all sensors of generatipand the secref,, ; is constructed

by
Sa:j = ngj (Ra)'

Thus, under the assumption titais a secure one-way function, only sensors of generation
J can construct, ; from R,. SensorA itself knowsS, ; and R,, but it does not possess
gk;. Several secrets such 8g; must be stored il before deployment; each corresponds
to one generation between- 1 andi + n, wheren > 0 is the number of future generations
with which A can establish secure links.

SensorA of generationi and B of generationj use the following protocol, called
cross-generation bootstrapping (XGB). WhBnis first deployed, it adverstises the event
by broadcasting hello message:

(Hello, B, j, Np)



Thehellomessage consists 8Fs identity and generation, and a randomly generated nonce
Np. Upon receiving the messagé,extracts the generation numbgand extracts corre-
sponding secref, ;. ThenA sends the following acknowledgment

(Ack, A, B, Ry, MACs, ,(Ack, A, B, Ry, Ny))

When B receives this message, it can compsitg usinggk; andR,. ThenB will verify
whether the MAC is valid to establish thatpossesses the secigt ;. If the MAC is
determined to be validB completes the protocol by sending a second acknowledgment
that B can authenticate using the secret:

(Ack2, B, A, MAC's, ,(Ack2, B, A)).

After XGB, A and B will derive a new session key based 8p;, R4, andN, for securing
their communication in a way similar to that of the bootstrapping protocol.

Because of the one-way property of functiéh A cannot obtairyk;. Thus, A may
not tamper with the communication between a sensor of generatimigl another sensor
other than itself. AlsoA cannot masquerade as another seuSaf generationi, of an
earlier generation, or of a later generation when communicating with a sensor of generation
Jj becausel cannot efficiently computé&’ . (R.).

As previously, the security of the XBG protocol relies critically on the assumption that
sensors of generatighare trustworthy when deployed and remain trustworthy for a long
enough time to complete the protocol. It is also crucial for all sensors of geneyation
erase the keyk; as soon as the cross-generation protocol is over.

Using the secure local links established by the XGB protocol, one can securely transmit
a group key,K,, from generation. and pre-generation sensors to generatiofi + 1)
sensors. In other words, we have a set of old sensors of generations smalletthanat
share a secret group kéy,. This set may be strictly smaller than the set of all generation
and pre-generationsensors. For example, some sensors may be excluded because they are
detected to be compromised or misbehaving. When generatiohis deployed, we want
them to obtain the group key, so that all sensors can participate in a common application.
Again, we assume that sensors are not compromised shortly after they are deployed.
After generatior(: + 1) sensors are deployed, there exists a time window during which all
generatior(i+ 1) sensors can be trusted to behave correctly and no adversary can obtain the
secrets stored in these sensors. During this time window, old sensors can establish secure
local links with new sensors of generation- 1 using XBG, and they can transmi{,
to them using the secure local links. To prevent a misbehaving old sensor from causing
generation(i + 1) sensors to use an incorrect group key, genergtion 1) sensors can
exchange the group keys they receive among themselves to filter out incorrect group key(s),
assuming the majority of the group keys obtained from distinct (based oRthalues)



pre-generatior{s + 1) sensors are correct. Moreover, thanks to its inability to olfain
for another sensar, a misbehaving pre-generatign+ 1) sensor cannot masqueradeZzas
in this process. Thus the misbehaving sensor cannot perform a Sybil afféeckithnumber
the correct sensors by presenting itself as multiple pre-genergatierl-) sensors.

5 Using Secure Local Links

Once neighbors can communicate via secure local links, other security services can be
built inexpensively. As a simple example, chaining can be used to secure communication
between distant nodes. We present a group-key distribution protocol built on top of the
secure local links.

Aninexpensive way of adding security to a sensor network is to rely on a common group
key known by all the sensors. For example, this approach is supported by Tiny$ea [
link-layer encryption service for TinyOS. Using a global key, messages between sensors
can be encrypted for confidentiality, or protected against corruption by using a MAC. An
important advantage of this approach is that secure multicast is very efficient. The sender
of a multicast message encrypts the message and computes the MAC once using the group
key. Every recipient decrypts the message and checks the MAC only once.

A limitation of using a shared group key is that compromise of a single sensor is suf-
ficient to obtain the key, which gives an adversary access to all network traffic. To recover
from such an attack, one needs the means to distribute a new group key to all group mem-
bers except those that are considered compromised. This can be easily implemented by
exploiting the secure local links.

Our key refresh protocol provides this service. It can be initiated by any member of a
group, although it is typically done by a base station. The initiator generates a new, random
group key and optionally constructs a list of sensors to be excluded from the group. The
new key together with the exclusion list, a sequence number, and the initiator’s identity is
distributed via the secure local links to all sensors, except those on the exclusion list. First
the initiator securely sends a copy of the key and exclusion list to its good neighbors (i.e.,
those not on the list), using the pairwise key it shares with each of these neighbors.

A key-refresh message sent Hyto B is of the following form:

(KeyRefresh, B, A, O, N, {Kg}Kib’ L, MACKgb(- ).

In this message) is the originator of the new key, that is, the sensor that initiated the key
refresh,lV is the group key’s sequence numb&y, the new group key, and the exclusion

list. The message is protected by using the pairwise/Kgythat A and B set up during
bootstrapping. More precisely, the subkiy, is used to guarantee confidentiality &F,
while K72, is used for authentication and integrity.



When B receives such a key-refresh message, it checks the message integrity using
Kgb, and it checks whether the message is fresh, based on the sequence Nuanikethe
originator identityO. If both checks succeed accepts the new group key carried by the
message, and forwards it to all its neighbors excepnhd any sensor on the exclusion list.

This requires a re-encryption and MAC computation for eacB’efgood neighbors.

This protocol distributes the new group key securely and robustly. As long as the good
group members are connected, the flooding-like procedure distributes the new key to all
good members in a robust manner. However, this procedure is expensive in terms of com-
munication and computation. The key-refresh message is decrypted once but encrypted
multiple times by each sensor, and sent in separate messages to each neighbor. This may
not be a significant issue if the group key is not changed very often, but more efficient
solutions may be desirable.

Including the identity of the originator and a sequence number provides the means to
arbitrate between conflicting key-refresh messages, which can occur if multiple nodes ini-
tiate the protocol at roughly the same time. Key-refresh messages are totally ordered using
the lexicographic order on the p&iv, O). When a key-refresh message is received®bit
is accepted and forwarded only if it is higher in the lexicographic order than all key-refresh
messages seen I#yin the past.

This protocol is secure as long as the originator and all nonexcluded sensors are not
compromised. If one of the relaying nodes or the originator is compromised it could exploit
the protocol to effect denial of service. A paossible protection against such compromises is
to require that the originator of all key refresh messages come from a trusted node, such as
a base station. This could be done using a protocol sughTesla [L4]. We are currently
investigating extensions of our protocols for authenticating distant nodes that could also be
used in this context. We are also examining monitoring mechanisms to detect misbehaving
nodes in a timely manner.

6 Implementation

We have implemented and experimented with the bootstrapping and key-refresh protocols
using Mica devicesd]. The Mica platform is based on an Atmel ATmega 103L or Atmega
128 microcontroller and the RF Monolithics TR100 radio transceiver. The microcontroller
is an 8-bit processor that runs at 4 MHz, and includes 4 kB of RAM and 128 kB of flash
program memory. Mica supports a variety of sensor boards with photo-diode, thermistor,
microphone and sounder, and magnetic and acceleration sensors. The radio has a fixed
frequency of 916.5 MHz and a range that can be varied from inches to hundreds of feets,
depending on power.

The Mica platform runs UC Berkeley’s TinyOS operating systéin [TinyOS is a
modular operating system designed for small sensor platforms. In the TinyOS model, an
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application consists of a set of software components that interact using event passing and
a simple tasking mechanism. The TinyOS infrastructure provides a collection of low-level
components for interaction with sensor hardware, which can be flexibly assembled and
integrated with application components. Since version 1.0, TinyOS and application com-
ponents can be written in NesC, an extension of the C programming language that supports
the TinyOS component and composition model. All our implementation was done with
TinyOS 1.0.

6.1 Radio Stack

Implementing our security protocols in TinyOS required significant extensions to the TinyOS
radio stack. In version 1.0, TinyOS actually provided two different radio stacks for the Mica
platform. One was the standard radio implementation that does not include any security. In
this implementation, radio messages consist of a header, a payload, and a cyclic redundancy
check (CRC) that is used to detect message corruption. The header includes fields such as
destination address, message type, and length. This version of the radio stack was not
suitable for our protocols because the message formats they require do not match TinyOS
messages very well. For example, all our protocols use cryptographic MAC for authentica-
tion and integrity, which means that a CRC is unnecessary. Also, some of the header fields
required by TinyOS are not used by our protocols.

The second radio stack available with TinyOS is TinyS&d.[ It provides link-layer
security based on a fixed network-wide key. In TinySec, the CRC is replaced by a MAC and
the payload is encrypted. This use of cryptography for securing radio communication could
address some of our needs but it is not sufficiently flexible for our protocols. TinySec relies
on a fixed key that is used for all messages and provides no interface for changing the key.
In our protocols, several keys are maintained for each neighbor of a sensor. Some messages
require different keys depending on the destination. Conversely, checking a received mes-
sage requires identifying the sender to find the correct pairwise keys to use. Furthermore,
some MAC computations that our protocols use require information that is not included
in the messages sent (e.g., the acknowledgmenttéti@amessage during bootstrapping).

For these reasons, we need a radio stack that provides flexible per-message formatting and
encryption.

We have developed a new radio stack for TinyOS that provides these services. This
stack is an extension and combination of the standard TinyOS stack and TinySec. It pro-
vides four communication services that use the following four types of messages:

e Plain messages in a format similar to that used by the standard TinyOS stack. Mes-
sages are sentin clear and a CRC is added for error detection.

e Encrypted messages, similar to the format used by TinySec. The message payload is
encrypted, and a MAC is added for integrity and authentication.
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Stack bytes in ROM bytes in RAM
TinyOS 9440 356
TinySec 14630 1078
Our Stack 11818 914

Table 1: Code Size with Different Stacks

e Authenticated messages: a variant of the TinySec format in which the payload is sent
in clear and a MAC is added.

e Raw messages: intended to be formatted by the application. A raw message consists
of a single header byte that specifies the message length and a payload.

Thus, two of the communication services provided by our radio stack are the same as what
the TinyOS stack and TinySec provide. Authenticated messages are a simple variant of
TinySec messages. The raw-message interface gives the application full responsibility for
formatting and error checking. All four types of communication services are available
within the same radio stack, and can be accessed via different interfaces. By default, the
encrypted and authenticated message services use group keys that are fixed at compilation
time, but our radio stack provides an interface for changing these keys at runtime.

An application that sends a message via the raw-message interface is free to format the
payload in any way. Conversely, when a raw-message is received, the radio stack forwards
it to the application without performing any check. This interface gives the most flexibility
and it is the one we use for the bootstrapping and key refresh protocols.

Our radio stack reuses many components of TinyOS and TinySec, and attempts to re-
main compatible with them. For example, we use the same MAC algorithm as TinySec,
and we encrypt the payload in CBC mode using the cipher stealing technique also em-
ployed by TinySec. The block ciphers we use for computing MACs and for encryption are
also inherited from TinySec.

The size and performance of our radio stack are similar to the TinySec stack.1Table
shows the code size and RAM usage of the same example application compiled with the
TinyOS stack, the TinySec stack, and our new stack. The data was obtained with the
TinyOS 1.0 distribution. In this example, both TinySec and our stack used the SkipJack
block cipher. The application is one of the demo applications distributed with TinyOS; it
periodically increments a counter and sends its value on the radio. As could be expected,
using cryptography increases the code size and RAM usage of both our stack and TinySec,
compared with the nonsecure TinyOS stack, but the code size fits easily within the Mica

1This implementation was done using version 1.0 of TinyOS. A more recent version of TinyJen-[
cludes some of the same extensions as our radio stack.
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program memory. On the other hand, the RAM consumption is close to 25% of the total
Mica RAM, which may be a lot for certain applications. Several optimizations are possible
to reduce the memory used by the block cipher. For example, the SkipJack implementation
stores a constant table of 256 bytes in RAM. It is possible to move this table into ROM, at
the cost of a slight reduction in performance. With the table stored in ROM, SkipJack is
about 7% slower than with the table in RAM.

6.2 Protocol Implementation

Our bootstrapping protocol is intended for authentication and key distribution between
neighbor sensors in a network. We have implemented this protocol on the Mica platform
using the radio stack described previously. Heflosand acknowledgment messages are
sent and received via the raw-message interfaces since they require special formatting and
MAC construction.

The bootstrapping protocol is implemented by a NesC component caéiedre-
LinkManager . The main role of th&ecureLinkManager  module is to build a table
of authenticated neighbors. At the end of bootstrapping, the table contains the identity of
each authenticated neighbor and the two pairwise keyskig.and K2 established with
this neighbor, and other bookkeeping data.

The bootstrapping protocol uses a different block cipher than those available with the
TinySec distribution, namely, AES. The main reason for developing a new cipher imple-
mentation was to reduce the memory space needed to store the pairwise keys. TinySec
provides implementation of two block ciphers — RC5 and SkipJack — but these imple-
mentations are optimized for speed. They use buffers to store intermediate data derived
from the cryptographic keys to speed up encryption and decryption. Storing this data re-
quires 128 bytes of memory for SkipJack and 104 bytes for RC5. This is too much if one
needs to store cryptographic material equivalent to two keys per neighbor. We have devel-
oped an AES implementation that requires less RAM. This implementation uses 128-bit
keys, has a block size of 128 bits, and is optimized for space. Using this implementation,
the neighbor table requires only 48 bytes per neighbor for storing cryptographic material.

All the cryptographic operations performed by tBecureLinkManager = module
rely on this AES implementation. This includes MAC computation and generation of the
pairwise keys as discussed in Sectirn addition, we use the AES cipher for implement-
ing a secure pseudo-random generator for generating nonces. This generator is initialized
with a random AES key, that must be different for each sensor, and that is constructed when
the Mica nodes are programmed.

We have also developed a prototype implementation of the key refresh protocol of Sec-
tion 5. This protocol is used to change the group keys used by the TinySec-like services of
our radio stack. The implementation of this key-refresh protocol relies on the neighbor table
constructed by bootstrapping to flood key-refresh messages. These key-refresh messages

13



are formatted at the application level and are transmitted via the raw-message interface of
the stack. The encryption and MAC applied to these messages use the pairwise key stored
in the neighbor table and thus employ our implementation of AES.

The whole code for bootstrapping and key refresh together with the radio stack occupies
around 17,000 bytes of program memory. The total RAM usage depends on the size of the
neighbor table. Assuming a table of as many as 10 nodes, an application requires 1753
bytes, which includes the neighbor table and the data structures and buffers used by the
radio stack.

6.3 An Example Application

We have tested our bootstrapping and key refresh implementations in a demonstration ap-
plication: a perimeter monitoring scenario in which sensors along a perimeter communicate
sensor readings (in our case, light levels) via an ad hoc network of other nodes. The routing
layer is an implementation of destination-sequenced distance-vector (DSDV) roling [
written for TinyOS by Intel Research’s heterogeneous sensor networks projgct [

During normal operation, sensor readings are sent along dynamically updated multihop
paths to a base station. However, the routing protocol is vulnerable to malicious route
update messages. For instance, a compromised “black hole” node can falsely advertise that
it is close to the base station, and then not forward sensor readings. Even in the case where
messages are signed with a group key (as in TinySec), all sensor measurements can be
thwarted by a single malicious node that knows the group key. However, with the fallback of
pairwise keys obtained via bootstrapping, we can — if we know the identity of the malicious
node — refresh the group key to trusted nodes only. After a straightforward assembly of
the TinyOS components for bootstrapping, key refresh, and routing, our implementation
successfully demonstrated this capability. A screenshot of this application is shown in
Figurel.

7 Related Work

Because of resource constraints, most of the key-management and distribution protocols
developed for standard networks are not applicable to large-scale sensor networks. Readers
are referred to] for a more detailed discussion of how the resource constraints impact
security. We review recent work on key management for sensor networks.

Eschenauer and Gligof]Jand Chan et al.4] have proposed key-management schemes
based on random key predistribution. A subset of keys is randomly selected from a large
key pool and distributed to each sensor before deployment. Secure communication chan-
nels can be established by using common keys shared by neighbor nodes. Through random
graph analysis and simulations, the authors show that random key predistribution can ensure
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Figure 1: Perimeter monitoring demonstration.

with high probability that the network is connected via secure links. For example, given a
network with 10,000 sensors, where each sensor can directly communicate with 40 sensors
and stores a random key set of size 250 obtained from a key pool of size 100,000; then, the
network is almost certainly connected. However, it is not clear whether such schemes can
be used for sensors with very limited memory such as the Mica platform. As network size
increases, one must either increase the number of keys given to each sensor or decrease the
size of the key pool to ensure with high probability that the whole network is connected.
Assigning too many keys to each node is impractical for sensors with limited memory, and
reducing the size of the key pool has an impact on security. With a small key pool, ac-
cess to a few sensors may be sufficient to compromise a large number of communication
links. On the other hand, a random predistribution scheme can be combined with our boot-
strapping protocol. Instead of assuming that all nodes share common bootstrapping keys
bk1 andbks, one could predistribute a small number of keys randomly chosen from a key
pool. This would make the protocol partially resilient to compromise of a node during the
bootstrapping window.

Other approaches such as SPINg [rely on a trusted base station for distributing keys
between sensors. A major part of the SPINS protocols is a very efficient approach for au-
thenticating multicast messages that originate from the base station. SPINS also introduced
a link-layer encryption and authentication algorithm called SNEP. This algorithm adds very
little overhead over unencrypted messages but it requires both ends of a communication
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link to maintain consistent counters. This may be difficult to ensure if the radio link is
unreliable. TinySec1] is an alternative security service, developed in the TinyOS frame-
work, to add security in sensor networks. TinySec assumes that all sensors share common
cryptographic materials, and as discussed in this report can be enhanced using our boot-
strapping and key-refresh protocols. Our implementation borrows many of its components
from TinySec.

8 Conclusion

We have presented a collection of lightweight protocols for authentication and key distribu-
tion in resource-constrained sensor networks. These protocols have been implemented on
a representative sensor platform. They require only inexpensive cryptographic primitives
and use little memory. Security is achieved by taking advantage of bounded periods of
trust, just after sensors have been deployed, to quickly and cheaply establish pairwise keys.
Bootstrapping keys that enable sensors to authenticate during this trust period are used only
within that time, and erased after pairwise keys have been exchanged.

In future work, we are planning to extend these protocols to support authentication and
key exchange between distant nodes. The challenge is to develop protocols for this purpose
that are as economical as possible, while ensuring security even if some of the nodes in a
network have been compromised.
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