
SDL Technical Report SRI-SDL-04-03 • October 21, 2004

Timed Systems in SAL

Bruno Dutertre and Maria Sorea∗

∗ Abteilung Künstliche Intelligenz, Universität Ulm, Germany

System Design Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

The Symbolic Analysis Laboratory (SAL) is a set of tools for the specification, exploration, and veri-
fication of state-transition systems. SAL includes symbolic model-checking tools based on solvers and
decision procedures for linear arithmetic, uninterpreted functions, and propositional logic, among others.
This enables the analysis of a variety of infinite-state systems. In particular, SAL can be used to model
and verify timed systems, which combine real-valued and discrete state variables.

This document reports on several examples and experiments in modeling and verification of timed
system in SAL. Different specification approaches are presented and compared, from a direct encoding of
traditional timed automata to a novel modeling method based on event calendars. We present verification
techniques that rely on induction and abstraction, and show how these techniques are efficiently supported
by the SAL symbolic model-checking tools.

Contents

1 Introduction 5

2 Timed Automata in SAL 7
2.1 Timed Automata . 7
2.2 Translation to SAL . 9

2.2.1 Synchronizer . 9
2.2.2 Base Modules .10
2.2.3 Full System .12

2.3 Example Verifications .12
2.4 Discussion .13

3 Timeout Automata 16
3.1 Definition .16
3.2 Fischer’s Mutual Exclusion Protocol .17

3.2.1 SAL Model . 18
3.2.2 Analysis .21
3.2.3 Performance .27
3.2.4 Variant Specifications .30

3.3 The Train-Gate-Controller Revisited .33

4 Calendar Automata 36
4.1 The TTA Startup Protocol .37
4.2 A Simplified Startup Protocol in SAL .38

4.2.1 Calendar .39
4.2.2 Nodes .40
4.2.3 Full Model . 40

4.3 Protocol Verification .41
4.3.1 Correctness Property .41
4.3.2 Proof by Induction .41
4.3.3 Proof via Abstraction .42
4.3.4 Results .44

5 Conclusion 46

1

A An Overview of SAL 50
A.1 Specification Language .50
A.2 Analysis Tools .53

B The Train-Gate-Controller in SAL 56

C The Train-Gate-Controller with Timeouts 60

D Fischer’s Mutual Exclusion Protocol 64

E Fischer’s Protocol: Revised Specifications 67

F Simplified TTA Startup 70

2

List of Figures

2.1 Train gate controller. 8
2.2 Synchronizer for the Train Gate Controller .10
2.3 Discrete Transitions in SAL .11

3.1 Fischer’s Protocol .18
3.2 Fischer’s Protocol: Process Module .20
3.3 Fischer’s Protocol: Clock Module .21
3.4 Counterexample tok-induction . 24

4.1 TTA cluster and TDMA schedule. .37
4.2 State-machine of the TTA node startup algorithm .38
4.3 Calendar Encoding for the Simplified Startup Protocol39
4.4 Node Specification .40
4.5 Verification Diagram for the Simplified Startup .43

A.1 Example SAL Specification .51

3

List of Tables

3.1 Proof Times Using ICS 2.0 .28
3.2 Proof Times Using UCLID .28
3.3 Proof Times Using CVC .29
3.4 Proof Times Using SVC .29
3.5 Proof Times Using ICS 2.0, Revised Specifications .32

4.1 Verification Times .44

4

Chapter 1

Introduction

SAL, the Symbolic Analysis Laboratory [BGL+00], is a framework for the specification and analysis of
concurrent systems. SAL is intended to combine different tools for abstraction, program analysis, theorem
proving, and model checking toward the calculation of properties (symbolic analysis) of transition sys-
tems. SAL complements the PVS verification system by providing more automated forms of analysis of
systems that can be specified as transition relations (see [For03] for a description of SAL and a discussion
of its relation to other SRI tools). SAL supports a relatively abstract and high-level specification language
that includes many of the types and constructs found in PVS, and this allows for specifying systems and
their properties in a convenient and succinct manner. The SAL language is not restricted to finite state
systems and supports infinite types such as the reals, the integers, or recursive data types.

The current SAL environment includes tools for constructing and checking the well-formedness of
specifications, an interactive simulator, and several model checkers [dMOR+04]. In particular SAL in-
cludes a tool that performs bounded model checking of infinite-state systems. This model checker relies
on a solver for deciding the validity of logical formulas that can mix linear arithmetic, equalities with un-
interpreted function symbols, and propositional logic. The default solver used by SAL is ICS [FORS01],
which integrates a SAT solver and decision procedures for a combination of logical theories. The theories
decided by ICS include linear arithmetic over reals and integers, equality with uninterpreted function sym-
bols, and others. The SAL bounded model checker can also use other solvers provided they can decide
the appropriate logical theories.

Many formalisms have been proposed for modeling and verifying real-time systems. Examples in-
clude different types of timed transition systems [AD94, KPSY93, HMP94, LV91, MMT91, JM94], timed
process algebras [MT90, NS94, DS95], and real-time logics [CHR91, AH93, FMS88], among others. All
these formalisms have in common the ability to specify and analyze infinite state-transition systems where
delays are modeled via numerical variables that range over the reals or the integers. Since the SAL tools
can reason about systems that mix real-valued and discrete variables, SAL is a natural candidate for the
specification of real-time systems. This document examines several examples and their specification and
analysis using the SAL tools. Because SAL has a rich language, it can support many different mod-
eling approaches. We present and compare several possible approaches, and discuss their benefits and
applicability to several types of real-time systems.

Chapter 2 considers the encoding in SAL of an existing formalism, namely, timed automata. It
presents a translation of timed-automata models into SAL state-transition systems, and shows how the
SAL infinite-state bounded model checker can be applied to the verification of such systems. The ap-
proach is illustrated on a simple train-gate controller introduced in [Alu91]. This approach works well
as long as one is concerned with safety properties, but not so well if one is interested in liveness. Be-

5

cause SAL is intended for the modeling and analysis of discrete transition systems, not for systems with
continuous dynamics, it is difficult to accurately capture the semantics of timed automata in SAL.

Chapters 3 and 4 introduce new classes of timed transition systems that do not require continuously
varying clocks and are then better suited to SAL. The inspiration for these models is the concept of
event calendarsthat has been used for decades in computer simulation of discrete-event systems. Unlike
clocks, which measure delays since the occurrence of past events, a calendar stores information about
future events and the time at which they are scheduled to occur. This provides a simple mechanism for
modeling time progress: time always advance to the next event in the calendar, that is, to the time where
the next discrete transition is enabled. This solves the main difficulty encountered when encoding timed
automata via transition systems, namely ensuring maximal time progress.

Chapter 3 considers a first class of models that rely ontimeouts. This formalism is applied to a
classic example of real-time systems, Fischer’s mutual exclusion protocol. We prove the correctness of
the protocol via a sequence of lemmas, all of which can be proved automatically by SAL’s bounded model
checker. We also show how the train-gate controller can be formalized using timeout automata.

A second class of timed transition systems is defined in Chapter 4. It extends timeout automata by
addingevent calendarto model inter-process communication. This model is applied to a more substantial
example of real-time system, based on the fault-tolerant TTA startup protocol. A new verification tech-
nique is also presented that relies on a form of abstraction. This technique uses bounded model checking
for automatically proving that an abstraction is correct, and provides efficient automation to support a
proof method based on disjunctive invariants proposed by Rushby [Rus00].

The presentation assumes some familiarity with the SAL language and tools. An overview of the
main aspects of SAL relevant to our examples is given in Appendix A. More complete descriptions of the
language and tools are available via the SAL web site athttp://sal.csl.sri.com/.

6

http://sal.csl.sri.com/

Chapter 2

Timed Automata in SAL

Timed automata [AD94] are one of the most widely used models of real-timed systems. This chapter
discusses the translation of timed automata in SAL, and the verification of safety properties using the
SAL infinite-state bounded model checker.

2.1 Timed Automata

Timed Automata [AD94] are state-transition graphs augmented with a finite set of real-valued variables
calledclocks. The states of the transition graphs are calledcontrol locationsor simply locations. The
full state of a timed automaton consists of its current control location and the values of all its clocks.
Since the clocks are real-valued, timed automata have an infinite state space. A run of a timed automaton
is the interleaving of two types of state transitions.Discrete transitionshave zero duration; they update
the control location and may reset some of the clocks.Time-progress transitionsmodel the continuous
evolution of the clocks as time passes. At a discrete transition, clocks keep their value or are reset to zero.
During a time-progress transition, all the clocks increase at a uniform rate but the control location remains
unchanged. States of the control graph and transition guards may be labeled with clock constraints, which
determine when discrete transitions may occur.

Figure 2.1 shows a simple system built as the synchronous composition of three timed automata. The
example, originally introduced in [Alu91], models a railway-crossing system that consists of a train, a
gate, and a controller. The edges represent discrete transitions that change the control locations of each
component. All transitions are labeled by events (e.g.,approach, exit, or lower), and optionally by a
clock constraint and by one or more clock-reset actions. For example, the eventapproachchanges the
train location fromt0 to t1, and sets clockx to zero. The transition fromt1 to t2 is labeled by the clock
constraintx > 2, which means that the transition may be taken only ifx is larger than 2. During time-
progress transitions, the system locations do not change but the three clocksx, y, andz increase by the
same amount. Some locations such ast1 are labeled with a clock constraint orlocation invariant. The
invariant constrains how long the system may stay in the location. For example, the train component may
remain in locationt1 as long as the invariantx 6 5 is satisfied.

Informally, the train component specifies that the eventapproachmust occur at least two time units
before the train enters the crossing (which is symbolized by the occurrence of eventin), and that the
delay between the train signaling itsapproachand itsexit is at most five time units. Similarly, the con-
troller component specifies that the commandlower must be issued exactly one time unit after the event
approach, and thatraise must be issued at most one time unit afterexit. The gate component specifies

7

t1
x <= 5

g0

raise, y:=0

g3
y <= 2

lower, y:=0

GATE

c0

exit, z:=0

c3
z <= 1

approach, z:=0

z=1
lower

CONTROLLERraise

c1
z <= 1

g1
y <= 1

down

g2

y >= 1
up

t0

out

t3
x <= 5

t2
x <= 5

approach, x:=0

in
TRAINexit x > 2

c2

Figure 2.1: Train gate controller.

delays for lowering or raising the barriers. It takes at most one time unit for the barriers to close after the
commandlower is issued by the controller, and between one and two time units for the barriers to open
after the commandraise is sent.

The components function mainly on their own and communicate with each other only to perform spe-
cific tasks related to the crossing. This communication is modeled by letting the components synchronize
on common events. The train and the controller components must synchronize on the eventsapproach
andexit, while the controller and the gate synchronize onlowerandraise.

Timed automata are one of the most successful formalisms for real-time system verification because
model checking timed automata is decidable. Given a timed automaton and a property expressed in
a timed logic such as TCTL [ACD90] orTµ [HNSY94], algorithms exist to automatically answer the
question “does this timed automaton satisfy the given property?”. The fundamental graph-theoretic model
checking algorithm by Alur, Courcoubetis, and Dill [ACD90] constructs a finite quotient, the so-called
region graph, of the infinite state graph. Algorithms directly based on the explicit construction of this
quotient are rarely efficient in practice, since the number of equivalence classes of states of the region
graph grows exponentially with the largest time constant and the number of clocks. Better algorithms use
symbolic representations of the region graph obtained by characterizing regions as Boolean combinations
of linear inequalities over clocks [HNSY94]. Tools specialized to the verification of timed automata —
such as Uppaal [LPY97], Kronos [DOTY96], HyTech [HHWT97], and Tempo [Sor01] — employ these
algorithms.

8

2.2 Translation to SAL

We now investigate a translation of timed automata to SAL, and the verification of properties using the
SAL model-checking tools. The approach is illustrated using the train-gate-controller example of Fig-
ure 2.1 and follows closely the method proposed in [Sor02]. The translation attempts to preserve the
structure of the example as much as possible: The three components are modeled as base SAL modules
and the full system is the composition of these three modules.

Constructing this composition in SAL requires some care, as none of SAL’s composition operators
exactly matches the product of timed automata. The SAL language is designed for the specification of
unlabeledstate-transition systems that communicate via common state variables, while timed automata
are labeledtransition systems that communicate by synchronizing on commonevents. For example, in
Figure 2.1, discrete transitions such asin or out are performed asynchronously. They cause the train
component to change its control location but the other two components do nothing. The other discrete
transitions are performed simultaneously by two components while the other is idle. On the other hand,
during any time-progress transition, time advances by the same amount for all three components. Time-
progress transitions are then performed synchronously by all components.

SAL allows one to compose state-transition systems either synchronously or asynchronously. In a
synchronous composition, all components perform all transitions simultaneously, in locked steps. In an
asynchronous composition, only one component performs a transition at a time while the others stay idle.
The two types of composition can be mixed to build complex systems from base modules. For example,
one may combine two SAL modules asynchronously and compose the result synchronously with another
module. However, neither operation exactly fits the product of timed automata.

2.2.1 Synchronizer

Our solution is to adjoin a synchronizer component to the timed automata. The composition ofn timed
automataM1, . . . ,Mn is modeled in SAL as the synchronous composition ofn modulesM1, . . . ,Mn and
a synchronizerS. At each step, the output variables of the synchronizer determine the type of transition
to be performed — either a time-progress or a discrete transition. Each timed automatonMi receives
these variables as input. On a time-progress transition, the synchronizer outputs a delayδ, and everyMi

increases its local clocks byδ. Time increases then by the same amount for all timed automata. On a
discrete transition, the synchronizer outputs a label that specifies which action must be taken. Actions that
require synchronization between two or more components are performed jointly by these components,
while the others execute an idle step. Actions local to a componentMi are executed byMi alone while the
other components synchronously perform an idle step.

The synchronizer for the train-gate-controller example is the moduletransition_module shown in
Figure 2.2. The figure also shows the definition ofTIME and the enumerated types that represent actions
and transition types. Since we use a dense-time model, time is represented by the reals. The typeACTION
contains all the actions performed by the three components of Figure 2.1. The typeTransitionType
contains two entries:regular denotes a discrete step, where time does not elapse, whileelapse specifies
a time-progress step.

The functionnext_trans_type switches between discrete and time-progress transitions and is used
by transition_module to alternate between time progress and discrete steps. This strict alternation
between the two transition types is not absolutely necessary but it has the advantage of preventing con-
secutive time-progress steps from occurring. This considerably improves performance during analysis via
bounded model checking, and has other advantages discussed in Section 2.4.

Apart from the alternation betweenregular and elapse, the synchronizer is completely non-
deterministic. At each step, it may select an arbitrary action or let time advance by any non-negative

9

tgc: CONTEXT =
BEGIN

TIME: TYPE = REAL;
ACTION: TYPE = {approach, in, out, exit, lower, down, raise, up};
TransitionType : TYPE = {regular, elapse};
...
next_trans_type(t: TransitionType): TransitionType =

IF t = regular THEN elapse ELSE regular ENDIF;
...
transition_module: MODULE =
BEGIN
OUTPUT
delta: REAL,
action: ACTION,
trans: TransitionType

TRANSITION
delta’ IN { x : REAL | x >= 0 };
action’ IN { approach, in, out, exit, lower, down, raise, up };
trans’ = next_trans_type(trans)

END;
...

END

Figure 2.2: Synchronizer for the Train Gate Controller

valueδ. Oncetransition_module is composed synchronously with other SAL modules, the latter can
restrict the set of possible actions, or constrain the range of possible values forδ.

2.2.2 Base Modules

Each component of the train-gate-controller example is specified as a base SAL module. To illustrate the
translation, we consider the train component. The possible control location of the corresponding module
are defined via the following enumeration type:

T_STATE: TYPE = {t0,t1,t2,t3};

The input variables of thetrainmodule are as follows.

train : MODULE =
BEGIN
INPUT
delta: TIME,
action: ACTION,
trans: TransitionType

The input variablesdelta, action, andtrans are the output variables oftransition_module. They
control which type of transitions thetrain module performs at each step.

Local variables represent the control location and clocks of the timed automaton. For example, the
clock of the train module is represented by a real-valued variablex and its control location by the local
variablet_state. Initially the train is in locationt0 and the value of the clockx is zero.

10

LOCAL
t_state: T_STATE,
x : TIME

INITIALIZATION
t_state = t0;
x = 0

The remainder of the SAL specification defines discrete and timed-progress transitions. The main
issue is to make sure that thetrainmodule and the synchronizer component interact properly. To prevent
deadlocks,train must specify the discrete events it accepts in every location, and it must also control
how far time can advance when a time-progress step is taken.

For example,approach is the only discrete event thattrain can accept in locationt0; the occurrence
of eventsin, out, orexit while the train is int0 would cause a deadlock. In SAL, the events are selected
non-deterministically by the synchronizertransition_module and are received bytrain on its input
variableaction. The specification must then ensure that this variable has a value other thanin, out,
andexit if the train location ist0. This requirement is not ensured by the synchronizer, but because
train andtransition_module are composed synchronously, thetrainmodule can specify the values
of action it accepts.

A subtlety is thataction, like any other module variable in SAL, is a state variable. At the start
of a discrete transition, variableaction has a current value. This value is what it is, andtrain cannot
constrain it. On the other hand,train can impose constraints on the valueaction will have in the next
state, that is, onaction’. This enablestrain to refuse certain events. For example, by making sure that
no discrete transition is enabled whent_state = t0 andaction’ is equal to eitherin, out, or exit,
thetrainmodule prevents the occurrence of these events when it is in locationt0.

TRANSITION
[t0_t1:
trans’ = regular AND t_state = t0 AND action’ = approach -->
t_state’ = t1;
x’ = 0

[] t1_t2:
trans’ = regular AND t_state = t1 AND action’ = in AND x > 2 -->
t_state’ = t2

[] t2_t3:
trans’ = regular AND t_state = t2 AND action’ = out -->
t_state’ = t3

[] t3_t0:
trans’ = regular AND t_state = t3 AND action’ = exit -->
t_state’ = t0

Figure 2.3: Discrete Transitions in SAL

The SAL specification of the discrete steps of the train automaton of Figure 2.1 follows these general
principles. In addition to constraints onaction’, one must also ensure that discrete transitions are enabled
only whentrans’ is equal toregular. This guarantees thattrain does not perform a discrete transition
while the other modules perform a time-progress step. The discrete transitions are specified as shown in
Figure 2.3. Each guarded command in the figure encodes a discrete transition of the timed automaton.
Clock constraints are specified in the guards, and each transition updates the control locationt_state
and possibly resets the clockx.

11

The time-progress transitions are specified in the same manner, but thetrain module must also
constrain how far time can advance. This is necessary to make sure that location invariants are not violated.
For example, let us assume that the train is in locationt1, with the clockx equal to some real numberα.
From such a state, a time-progress transition of durationδ leads to the state (t1, α + δ). By the location
invariant associated witht1, the train must leavet1 beforex becomes larger than 5 (cf. Figure 2.1). Thus, a
time-progress transition taken from state (t1, α) must be such thatα+δ 6 5. As previously, this is specified
in SAL via constraints ondelta’.

The constraints induced by the location invariants and the effect of the time-progress transition on the
clockx are specified as follows.

[] delay_train:
trans’ = elapse AND
(t_state = t1 => x + delta’ <= 5) AND
(t_state = t2 => x + delta’ <= 5) AND
(t_state = t3 => x + delta’ <= 5) -->
x’ = x + delta’

This time-progress transition for thetrain module advances the train’s clockx by delta’. The three
invariant associated with locationst1, t2, andt3 are specified in the guard. As a result the transition is
enabled only ifx+delta’ satisfies the current location invariant.

To complete thetrain module, one must add an idle transition that encodes inactivity. This transi-
tion is taken when the other two components perform a discrete step on an action that does not require
participation of the train:

[] skip_train:
trans’ /= elapse AND
NOT (action’ = approach OR action’ = in OR

action’ = out OR action’ = exit) -->
x’ = x

2.2.3 Full System

The gate and controller are encoded in the same way as the train component, as shown in Appendix B. The
entire system is specified as the synchronous composition of thetrain, gate, andcontrollermodules,
together with thetransition_module.

system: MODULE =
transition_module || train || gate || controller;

2.3 Example Verifications

The specification of the train-gate-controller system is now complete. The safety property we wish to
check says that the gate should be closed whenever the train is in the crossing. This is specified as
follows:

safe: LEMMA system |- G(t_state = t2 => g_state = g2);

The symbolG represents thealwaysmodality of linear temporal logic.
As a first example of analysis, we run the infinite-state bounded model checkersal-inf-bmc to

search for counterexamples to propertysafe:

12

sal-inf-bmc -d 1 -v 1 tgc safe
...
no counterexample between depths: [0, 1].
total execution time: 0.46 secs

The option-d 1 specifies the depth of the search, in this case, only one step, and the option-v 1 controls
how much informationsal-inf-bmc outputs. Argumenttgc is the name of the SAL context in which
the propertysafe is specified. SAL searches for this context in a file namedtgc.sal.

As expected,sal-inf-bmc does not find any counterexample at depth one. We can increase the
search depth by hand, but it is more efficient to run the bounded model checker with iterative deepening.
With this option,sal-inf-bmc searches for counterexamples of increasing length. It stops when either a
counterexample is detected or the search range is covered:

sal-inf-bmc -v 1 -d 56 -it tgc safe
...
no counterexample between depths: [0, 56].
total execution time: 975.68 secs

Iterated deepening is indicated by the option-it and-d 56 specifies the maximal depth. It turns out that,
for this example, searching for counterexamples up to depth 56 is sufficient. The completeness threshold
is 56. There are 28 reachable symbolic states, and between every discrete step there is at most one time-
progress step, which gives a maximal path length of 56. Since no counterexample of length 56 or less has
been found, we can conclude that our system is safe. Of course, this argument requires user’s knowledge
of the size of the symbolic state space.

Bounded model checking is a primarily a refutation method, intended to discover counterexamples to
properties, but it can also be used for performing proofs byk-induction [dMRS03]. For example, property
safe can be proved byk-induction at depthk = 9. Fork-induction,sal-inf-bmc must be invoked with
the-i flag and the depthk is specified using the-d option:

sal-inf-bmc -v 1 -d 9 -i tgc safe
...
proved.
total execution time: 2.01 secs

This is much more efficient than the previous approach.
We can also introduce a bug in the model, for example, by changing the guardx > 2 in the transition

from t1 to t2 to x > 0. With this modification,sal-inf-bmc with iterative deepening finds a counterex-
ample at depth 4, in 1.76 secs.

2.4 Discussion

As the example illustrates, it is possible to specify timed automata in SAL in a systematic fashion. The
translation preserves modularity: each component of the example is translated into a base module in SAL,
and the product of the timed automata corresponds to the synchronous composition of SAL modules and
a synchronizer.

The translation is intended to preserve all safety properties of the original system. Given a predicate
P on clocks and control locations, one can show that the timed-automata system satisfies�P if and only
if the SAL translation also satisfies�P. Preserving safety properties of this form is sufficient in most
applications. However, one should be aware that the translation may introduce deadlocks in SAL that do

13

not exist in the original system. This is caused by the strict alternation between time-progress and dis-
crete transitions enforced by the synchronizer. The encoding of time-progress steps ensures that location
invariant are satisfied, that is, that time does not advance too far. On the other hand, no lower bound is
imposed ondelta’; a time-progress step can be of arbitrarily small duration. In some cases, a time step
that is too small may lead to a state in which no discrete transition is enabled, and thus to a deadlock.

For example, it is possible for the train-gate-controller system to reach a state in which the train is in
locationt1, the controller is inc1, and the gate is ing3. From such a state, a discrete transition is enabled
only if one of the clock constraintsx > 2 andy > 1 is satisfied. In the SAL model, a time-progress step
taken in such a state increases bothx andy by delta’. If delta’ is too small, the system may reach
a state in whichx’ is less than 2 andy’ is less than 1. From this state, no discrete transition is enabled
and the SAL system is in a deadlock. The original timed automaton can also reach the same state, but this
does not cause a deadlock as it can perform another time step.

The introduction of extra deadlocks in the SAL translation rarely matters in practice, as the SAL model
still has the same set of reachable states as the original timed automaton. It is also clear that one could
modify the synchronizer definition so that several time-progress steps may be taken in succession. One
just needs to replace the line

trans’ = next_trans_type(trans)

by the following non-deterministic assignment

trans’ IN { elapse, regular }.

With this modification, the SAL system agrees with the traditional semantics of timed automata and does
not have extra deadlock states anymore. However, this revised specification has two disadvantages.

First, it considerably increases the cost of bounded model checking. When the train-gate-controller
example is modified to permit successive time steps,sal-inf-bmc is considerably slower than when
successive time-steps are disallowed. A search for counterexamples to propertysafe using iterative
deepening takes more than six hours:

sal-inf-bmc -v 1 -d 35 -it tgc safe
...
no counterexample between depths: [0, 35].
total execution time: 22932.49 secs

A similar verification at depth 56 was completed in less than 20 min using the previous specifications.
Allowing several time-progress steps to occur in succession has a more serious drawback: it makes

most proofs byk-induction fail. More precisely, ifP is a state-predicate and the safety property�P cannot
be proved byk-induction whenk = 1, then�P is not provable either byk-induction for anyk > 1. For
example, propertysafe cannot be proved byk-induction if successive time-progress steps are allowed,
while it is provable byk-induction at depth 9 if discrete and time-progress steps are forced to alternate.

The reason whyk-induction fails fork > 1 if it fails for k = 1 is that a trajectory of length one can
always be extended into a trajectory of lengthk by adding a succession of time-progress steps of duration
zero, which behave like idle steps. In particular, if�P cannot be proved byk-induction at depth one, then
there are two statesσ andσ′ of the SAL model such that

• σ satisfiesP,

• σ′ is a successor state ofσ,

• σ′ does not satisfyP.

14

In other words, the trajectoryσ −→ σ′ is a counterexample to the induction step in the proof of�P. The
trajectoryσ −→ σ′ can be extended into another trajectory of the form

σ
0
−→σ1 . . . σk−2

0
−→σk−1 −→ σ′,

where the firstk−1 steps are time-progress transitions of length zero. We then haveσ1 = . . . = σk−1 = σ,
and the transitionσk−1 −→ σ′ is the same as the transition that leads fromσ to σ′. The existence of this
trajectory means thatk-induction at depthk will fail for �P.

Removing idle steps, that is, requiring all time steps to have a positive duration does not fix this
problem in general (and causes other problems since zero-delay time steps are sometimes necessary). In
typical examples, a discrete transition that is enabled in a stateσ remains enabled if the clocks progress
in σ by a small enough amount. In such a case, a sequence of time-progress transitions with sufficiently
small durations is essentially the same as an idle step. By the same reasoning as before, a counterexample
of length 1 can be extended into a counterexample of lengthk by adding small time-progress steps. As a
consequence, induction at depthk > 1 cannot do better than induction at depth 1.

In summary, adopting the traditional semantics of timed automata — which allows several time steps
to occur in succession — is a poor choice if one intends to prove properties viak-induction. It is acceptable
if one is interested only in finding counterexamples by bounded model checking, but this typically incurs
a significant loss of performance. A synchronizer that alternates between time-progress and discrete
transitions as presented in Figure 2.2 is generally preferable as it preserves all safety properties, makes
k-induction possible, and is more efficient for bounded model checking.

Overall, we can conclude that it is possible to describe timed automata in SAL in a systematic way that
preserves modularity and safety properties. The translation amounts to encoding the semantics of timed
automata as state-transition systems, with an explicit distinction between time-progress and discrete tran-
sitions. Using this translation, one can analyze timed automata with the SAL tools, which support bounded
model checking and verification byk-induction. However, the translation is not as straightforward as one
would wish. The product of timed automata requires a synchronizer module and the addition of idle transi-
tions to all timed modules. This can become unwieldy if the number of events and timed modules is large.
The encoding of time-progress transition must also be done with care to ensure that the location invariants
are not violated. Furthermore, the translation we use does not exactly match the standard timed-automata
semantics as it does not allow successive time-progress transitions to occur. This modified semantics is
necessary for makingk-induction useful, but its drawback is to introduce deadlocks that do not exist in
the traditional semantics. The translation is not perfect but it is sufficient for the properties most often
encountered in practice.

15

Chapter 3

Timeout Automata

Real-time systems arediscrete-event systems, that is, systems whose state does not change continuously
but only at discrete points in time. Any evolution or trajectory of such a system can be represented by
an increasing sequence of time points at which events occur (and where the state may change) together
with the state of the system at each of these time points. Such a real-time trajectory may be written as a
sequence of pairs

〈t0, σ0〉, 〈t1, σ1〉, 〈t2, σ2〉, . . .

wheret0, t1, t2, . . . is an increasing sequence of time points, andσ0, σ1, σ2, . . . are the system states.
Timed automata are one possible formalism for specifying such trajectories. A trajectory of a timed

automaton is any sequence as above that satisfies the two following conditions:

• t0 = 0 andσ0 is an initial state of the automaton.

• For all i ∈ N, eitherσi+1 is a successor ofσi by a time-progress transition of durationδ > 0 and
ti+1 = ti + δ, orσi+1 is a successor ofσi by a discrete step andti+1 = ti .

Starting with timed automata is not the only option for defining such trajectories. In the remainder of
this report, we examine two variant specification approaches that are better suited to SAL and have other
advantages over timed automata. Both approaches are inspired by a very successful modeling method that
has been used for decades in discrete-event system simulation, namely, the use ofevent calendars.

Such a calendar (also called event list) is a data structure that stores future events and the times at
which these events are scheduled to occur. Unlike a clock, which measures the time elapsed since its
last reset, a calendar contains information about the future. By following this principle, one can model
real-time systems as standard state-transition systems of the form of the form〈S, I ,→〉, whereS is a state
space,I ⊆ S is the set of initial states, and→ is a transition relation onS. The state spaceS is built from
a collection of state variables: each stateσ of S is a mapping that assigns a value of an appropriate type
to each of the system’s state variables. To specify delays and timing constraints, we rely on special state
variables to store the time at which future discrete transitions will be taken.

3.1 Definition

A first class of models we consider are transition systems with timeouts. Their state variables include a
variablet that stores the current time and a finite setT of timeouts. The variablet and the timeouts are all
real-valued. The initial states and transition relation satisfy the following requirements:

16

• In any initial stateσ, we haveσ(t) 6 σ(x) for all x ∈ T.

• If σ is a state such thatσ(t) < σ(x) for all x ∈ T then the only transition enabled inσ is a time
progress transition. It increasest to min(σ(T)) = min{σ(x) | x ∈ T} and leaves all other state
variables unchanged.

• Discrete transitionsσ → σ′ are enabled in states such thatσ(t) = σ(x) for somex ∈ T and satisfy
the following conditions

◦ σ′(t) = σ(t)

◦ for all y ∈ T we haveσ′(y) = σ(y) orσ′(y) > σ′(t)

◦ there isx ∈ T such thatσ(x) = σ(t) andσ′(x) > σ′(t).

In all reachable states, a timeoutx never stores a value in the past, that is, the inequalityσ(t) 6 σ(x) is an
invariant of the system. A discrete transition can be taken whenever the timet reaches the value of one
timeoutx. Such a transition must increase at least one suchx to a time in the future, and if it updates other
timeouts thanx their new value must also be in the future. Whenever the condition∀x ∈ T : σ(t) < σ(x)
holds, no discrete transition is enabled and time advances to the value of the next timeout, that is, to
min(σ(T)). Conversely, time cannot progress as long as a discrete transition is enabled.

Discrete transitions are instantaneous since they leavet unchanged. Several discrete transitions may be
enabled in the same state, in which case one is selected non-deterministically. Several discrete transitions
may also need to be performed in sequence beforet can advance, but the constraints on timeout updates
prevent infinite zero-delay sequences of discrete transitions.

In typical applications, the timeouts control the execution ofn real-time processesp1, . . . , pn. A time-
out xi stores the time at which the next action frompi must occur, and this action updatesxi to a new time,
strictly larger than the current timet, wherepi will perform another transition. As an illustration, the fol-
lowing section presents a SAL model of Fischer’s mutual exclusion algorithm based on timeout automata,
and a correctness proof developed with SAL’s infinite-state bounded model checker. We then show how
the timeout-automata model can be applied to the train-gate-controller example described previously.

3.2 Fischer’s Mutual Exclusion Protocol

Fischer’s protocol has become a benchmark in the evaluation of real-time formalisms and tools. The
protocol ensures mutual exclusion amongN processes using real-time clocks and a shared variablelock,
whose value range from 0 toN. Initially the value oflock is zero. Processes are indexed by an integer
between 1 andN (the process id) and behave as follows:

loop
wait until lock = 0; % sleeping state
wait for a delay <= delta1; % waiting state
set lock to process id;
wait for a delay >= delta2; % trying state
if lock = process id
critical section; % critical state
set lock to 0;

end
end

A process can then be modeled as an automaton with four control states as shown in Figure 3.1. The states
correspond to thewait statements and to the critical section.

The parametersdelta1 anddelta2 are two positive constants that determine the length of the delays:

17

TryingCritical

Sleeping Waiting

if lock /= 0

if lock = 0

if lock /= i

if lock = i

set lock := 0 set lock := i

Figure 3.1: Fischer’s Protocol

• a process can stay in statewaiting for a delay at mostdelta1

• a process must stay in statetrying for at least a delaydelta2 before transitioning to state
critical

Mutual exclusion is ensured provideddelta1 is strictly smaller thandelta2.

3.2.1 SAL Model

We begin by specifying the number of processes,N, and the types over which the state variables range.

fischer: CONTEXT =
BEGIN
N: NATURAL = 4;
IDENTITY: TYPE = [1 .. N];
LOCK_VALUE: TYPE = [0 .. N];
TIME: TYPE = REAL;
PC: TYPE = {sleeping, waiting, trying, critical};

For the time being, we give explicit values to the two parametersdelta1 anddelta2. An alternative
specification where the parameters are left uninterpreted is discussed in Section 3.2.4.

delta1: TIME = 2;
delta2: TIME = 4;

18

Process Module

Figure 3.2 shows how the processes are specified in SAL. A process is modeled as a SAL module param-
eterized by the process’s identityi. All the processes have a common input variabletime that keeps the
current time in the system. The global variablelock is shared by all the processes (i.e., every process
can read and write tolock). Each process also outputs itstimeout variable, which gives the time of the
process’s next transition. The local variablepc holds the process’s current control state.

The initialization section sets thelock to zero, and assigns a value larger than the initialtime to the
process’stimeout variable.

The transition relation consists of six guarded commands. These six transitions are enabled only when
the globaltime equals the process’stimeout. Every transition also updatestimeout to a value that
is strictly larger thantime. The updates are non-deterministic: every transition assigns totimeout an
arbitrary value in a real-valued interval. The bounds of this interval specify maximal or minimal delays
between successive transitions from the process. For example, on transitionwaking_up, thetimeout is
set non-deterministically to a time point in the interval (time, time + delta1]. The process will perform
its next transition within a delay less than or equal todelta1, and will then stay in control statewaiting
for a delay no more thandelta1. Similarly, transitionsetting_lock specifies that the process must
stay in control statetrying for a delay at least equal todelta2. In all other cases, the transition updates
timeout to an arbitrary time in the future.

Clock Module

To complete the specification, a clock component is introduced to perform the time-progress transitions.
This clock module is shown in Figure 3.3. Its unique input variable is an array ofN timeouts, one per
process. Theclock advances the globaltime variable to the smallest element of thetime_out array,
whenevertime is strictly smaller than all timeouts. This relies on the functionmin that computes the
minimum of an array:

recur_min(x: TIMEOUT_ARRAY, min_sofar: TIME, idx: [0 .. N]): TIME =
IF idx = 0 THEN min_sofar
ELSE recur_min(x, min(min_sofar, x[idx]), idx-1)

ENDIF;

min(x: TIMEOUT_ARRAY): TIME = recur_min(x, x[N], N-1);

Full System

The complete system is the asynchronous composition of theN processes and theclock module:

processes: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY
([] (i: IDENTITY): (RENAME timeout TO time_out[i] IN process[i]));

system: MODULE = clock [] processes;

In the full system, the global variabletime keeps the current time and the variabletime_out[i] con-
tains the time when the next discrete transition ofprocess[i] is scheduled to occur. As discussed in
Section 3.1, there are two types of transition:

19

process[i: IDENTITY]: MODULE =
BEGIN
INPUT time: TIME
GLOBAL lock: LOCK_VALUE
OUTPUT timeout: TIME
LOCAL pc: PC

INITIALIZATION
pc = sleeping;
timeout IN { x: TIME | time < x };
lock = 0

TRANSITION
[waking_up:
pc = sleeping AND time = timeout AND lock = 0 -->

pc’ = waiting;
timeout’ IN { x: TIME | time < x AND x <= time + delta1 }

[] try_again_later:
pc = sleeping AND time = timeout AND lock /= 0 -->

timeout’ IN { x: TIME | time < x }
[] setting_lock:
pc = waiting AND time = timeout -->

pc’ = trying;
lock’ = i;
timeout’ IN { x: TIME | time + delta2 <= x }

[] entering_cs:
pc = trying AND time = timeout AND lock = i -->

pc’ = critical;
timeout’ IN { x: TIME | time < x }

[] lock_changed:
pc = trying AND time = timeout AND lock /= i -->

pc’ = sleeping;
timeout’ IN { x: TIME | time < x }

[] exiting_cs:
pc = critical AND time = timeout -->

pc’ = sleeping;
lock’ = 0;
timeout’ IN { x: TIME | time < x }

]
END;

Figure 3.2: Fischer’s Protocol: Process Module

20

TIMEOUT_ARRAY: TYPE = ARRAY IDENTITY OF TIME;

clock: MODULE =
BEGIN
INPUT time_out: TIMEOUT_ARRAY
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses: time < min(time_out) --> time’ = min(time_out)]

END;

Figure 3.3: Fischer’s Protocol: Clock Module

• If time < time_out[i] for all i, thenclock advances time to to the smallest oftime_out[1],
. . . ,time_out[N] (time-progress transition).

• Otherwise, the componentprocess[i] for whichtime_out[i] = time performs adiscrete tran-
sition. This transition updatestime_out[i] to a new value strictly larger than the current time.

Several processes may have discrete transitions enabled at the same instant, that is, we may have
time_out[i] = time_out[j] = time for two distinct processesi andj. Sincetime cannot progress
as long astime_out[i] = time or time_out[j] = time, both discrete transitions will be taken, one
after the other, in a non-deterministic order.

By construction, the propertytime <= time_out[i] is an invariant of the system. As a conse-
quence, in every reachable state, either the clock or one of the processes has a transition enabled. Since
the modules are composed asynchronously, the full system cannot deadlock.

3.2.2 Analysis

The goal of Fischer’s protocol is to ensure mutual exclusion, that is, that two distinct processes cannot be
in their critical sections at the same time:

mutual_exclusion: THEOREM
system |- G(FORALL (i, j: IDENTITY):

i /= j AND pc[i] = critical => pc[j] /= critical);

Bounded Model Checking

It is good practice to first search for possible errors in the SAL specifications by using the bounded model
checker. For this purpose, we search for trajectories that violate the mutual-exclusion property. Since we
expect the property to hold, such a trajectory is likely to indicate a bug in the SAL model. For a small-size
system (N = 2), the bounded model checker shows that there are no counterexamples of length 20 or less:

sal-inf-bmc -v 3 -it -d 20 fischer mutual_exclusion
...
no counterexample between depths: [0, 20].
total execution time: 697.62 secs

21

We can repeat this analysis withN = 3 and we still obtain the expected result: no counterexample is
found.

A second validation step is to introduce bugs in the specifications and check that the bounded model
checker finds them. For example, we have stated that mutual exclusion is satisfied provideddelta1 is
strictly smaller thandelta2. We can now examine what happens if the conditiondelta1 < delta2
does not hold. First, we modify the definitions:

delta1: TIME = 2;
delta2: TIME = 2;

then, we check thatmutual_exclusion is not satisfied with these parameters:

sal-inf-bmc -v 3 -it -d 20 fischer mutual_exclusion
...
Counterexample:
========================
Path
========================
Step 0:
--- System Variables (assignments) ---
lock = 0;
pc[1] = sleeping;
pc[2] = sleeping;
pc[3] = sleeping;
time = 0;
--- Constraints ---
time_out[1] > 0;
time_out[3] >= time_out[2];
time_out[3] > 0;
time_out[3] >= 0;
time_out[1] >= 0;
time_out[2] > 0;
time_out[1] > time_out[2];
time_out[2] >= 0;

...
Step 10:
--- System Variables (assignments) ---
lock = 1;
pc[1] = critical;
pc[2] = critical;
pc[3] = sleeping;
--- Constraints ---
time_out[1] >= 0;
time_out[2] >= 0;
time_out[3] = PRE(time_out)[3];
time = PRE(time);
time >= 0;
time_out[3] >= 0;
time_out[2] = PRE(time_out)[2];
time_out[1] > PRE(time);

total execution time: 12.32 secs

22

The shortest counterexample has length 10. It is displayed by the bounded model checker in a symbolic
form that represents a sequence of states and transitions. As can be seen above, the mutual exclusion
property is not satisfied.

A First Proof

The analysis by bounded-model checking discussed above gives us some confidence that mutual exclusion
is satisfied, as no counterexample was found. We now examine how the property can be proved byk-
induction.

We start with a small-sized example, by setting the number of processesN to 2. However, even for
such a smallN, direct attempts at provingmutual_exclusion by k-induction fail. For example, with
k = 14, we obtain

sal-inf-bmc -v 3 -d 15 -i fischer mutual_exclusion
...
k-induction rule failed, please try to increase the depth.
total execution time: 31.99 secs

Increasingk does not help asmutual_exclusion is not inductive, whateverk. For anyk > 0, one can
find a trajectory

σ0→ . . .→ σk,

of the transition system such that mutual exclusion holds in the statesσ0, . . . , σk−1 but not inσk. As a
consequence, the inductive step in the proof ofmutual_exclusion by k-induction fails.

It is not very hard to find the trajectory mentioned above by hand, but, for a fixedk, it is even easier to
let the model checker do it. For this purpose, we invokesal-inf-bmc with the-ice option:

sal-inf-bmc -v 3 -d 14 -i -ice fischer mutual_exclusion
...
k-induction rule failed, please try to increase the depth.
Counterexample:
========================
Path
========================
...

Step 15:
--- System Variables (assignments) ---
lock = 1;
pc[1] = critical;
pc[2] = critical;
--- Constraints ---
time = PRE(time);
time_out[1] > PRE(time);
time >= 0;
time_out[1] >= 0;
time_out[2] >= 0;
time_out[2] = PRE(time_out)[2];

total execution time: 51.28 secs

23

lock ? 2 0 12

Discrete transition
by process 1

pc[1]

pc[2] criticaltryingwaiting sleeping waiting trying critical

trying criticalwaiting

time

S0 S10 S15S13S11S9S7S5S3S1 S2 S4 S6 S8 S12 S14

Figure 3.4: Counterexample tok-induction

Figure 3.4 depicts the counterexample tok-induction found by the model checker. The diagram shows
the evolution of the system’s three discrete variables with time. The counterexample consists of the states
S0 to S15 shown in the figure; discrete and time-progress transitions alternate: stateS1 is reached from
S0 by a discrete transition, thenS2 is reached fromS1 by a time-progress step, and so forth. The main
features of this trajectory are the following:

• It starts from a stateS0 in whichpc[1]=waiting.

• Process 1 stays idle until the discrete transition fromS12 to S13 and, after two more steps, we have
pc[1]=critical.

• From S0 to S12, the trajectory consists exclusively of discrete steps by process 2 and time-
progress transitions, and after the last discrete step from process 2 (fromS11 to S15), we have
pc[2]=critical.

One can construct a trajectoryS0, . . . ,Sk with the same essential features for anyk:

• S0 is a state wherepc[1]=waiting.

• FromS0 to Sk−3, only process 2 executes, and we havepc[2]=critical in statesSk−3 to Sk.

• In the last three stepsSk−3→ Sk−2→ Sk−1→ Sk, process 1 enters its critical section.

The existence of such a trajectory means thatk-induction cannot prove the mutual-exclusion property for
anyk. The property is not inductive.

The trajectory of Figure 3.4 causes a direct proof byk-induction to fail, but it also points to a so-
lution. In the figure, process 1 stays in statewaiting for a long time before executing its first discrete
step. This time is more thandelta2 since it includes an interval during which process 2 is in state
trying. In stateS0, the differencetime_out[1] - time must then be greater thandelta2, which is
itself greater thandelta1. But, by construction, a process cannot stay in control statewaiting for more
than the delaydelta1. Thus,S0 is not reachable by the transition system; it does not satisfy the property
pc[1]=waiting => time_out[1] - time <= delta1, which we know to be invariant.

To provemutual_exclusion, we can then attempt to use the following auxiliary invariant:

time_aux2: LEMMA
system |- G(FORALL (i: IDENTITY):

pc[i] = waiting => time_out[i] - time <= delta1);

24

This lemma can be proved by induction at depthk = 1.

sal-inf-bmc -v 10 -d 1 -i fischer time_aux2
...
proved.
total execution time: 0.69 secs

Then, the mutual-exclusion property is provable as follows:

sal-inf-bmc -v 3 -d 9 -i -l time_aux2 fischer mutual_exclusion
...
proved.
total execution time: 4.16 secs

This usesk-induction at depth 9, withtime_aux2 as an auxiliary invariant. This is the smallest depth at
which the proof byk-induction succeeds.

This proof works only for Fischer’s protocol with two processes. In a system with at least three
processes, the auxiliary invarianttime_aux2 is not sufficient fork-induction to succeed. A few attempts
with relatively smallk (sayk = 6) show that there is a counterexample tok-induction that starts from a
stateS0 that satisfies the following constraints:

pc[1]=waiting, pc[2]=critical, pc[3]=sleeping, lock /= 0,
time_out[3] < time_out[1], time_out[3] < time_out[2].

A little analysis shows that this trajectory can be extended into a counterexample tok-induction for arbi-
trary large lengthk by letting process 3 perform a sequence oftry_again_later transitions. Transition
try_again_later does not change any of the discrete state variables, and incrementstime_out[3] by
a positive amountε, which can be arbitrarily small. From stateS0, a try_again_later transition by
process 3, followed by a time-progress transition of lengthε leads to a stateS′0 which is the same asS0,
except thattime_out[3] has increased byε. If ε is sufficiently small, all transitions enabled inS0 remain
enabled inS′0: the two transitions that lead fromS0 to S′0 are essentially the same as an idle step fromS0.
By adding as many of these steps as necessary, a counterexample tok-induction can be constructed for
arbitrary largek.

A More Scalable Proof

We now describe a proof of the mutual-exclusion property that works for an arbitrary number of processes.
The proof consists of a sequence of lemmas that all describe invariants of the system and are all proved
by induction at depth 1 (or 0). Not requiring induction at higher depths avoids the difficulties caused by
thetry_again_later transition discussed previously.

The sequence of invariants that lead to the proof can be found by reasoning backward. Our goal is to
prove the propertymutual_exclusion:

mutual_exclusion: THEOREM
system |- G(FORALL (i, j: IDENTITY):

i /= j AND pc[i] = critical => pc[j] /= critical);

A first step is to replace this property by the following stronger invariant:

mutex: THEOREM
system |- G(FORALL (i: IDENTITY): pc[i] = critical => lock = i);

25

This is easily seen to implymutual_exclusion. Propertymutex is not inductive, but it can be strength-
ened further into the following inductive lemma:

logical_aux1: LEMMA
system |- G(FORALL (i, j: IDENTITY):

pc[i] = critical => lock = i AND pc[j] /= waiting);

Provinglogical_aux1 requires two auxiliary lemmas:

time_aux1: LEMMA
system |- G(FORALL (i: IDENTITY): time <= time_out[i]);

time_aux3: LEMMA
system |- G(FORALL (i, j: IDENTITY):

lock = i AND pc[j] = waiting => time_out[i] > time_out[j]);

Lemmatime_aux1 is a property that is true by construction for all timeout automata and it is provable
by induction at depth 1. The last step is to find a proof oftime_aux3, but this lemma is provable using
propertytime_aux2 encountered previously.

Overall, the mutual-exclusion property is proved by a sequence of calls tosal-inf-bmc as follows.
First, we provetime_aux1 andtime_aux2 by induction:

sal-inf-bmc -v 3 -i -d 1 fischer time_aux1
...
proved.
total execution time: 0.94 secs

sal-inf-bmc -v 3 -i -d 1 fischer time_aux2
...
proved
total execution time: 0.96 secs

Then, we provetime_aux3 usingtime_aux2 as a lemma:

sal-inf-bmc -v 3 -i -d 1 -l time_aux2 fischer time_aux3
...
proved.
total execution time: 1.18 secs

Now, logical_aux1 is provable usingtime_aux1 andtime_aux3:

sal-inf-bmc -v 3 -i -d 1 -l time_aux3 -l time_aux1 fischer logical_aux1
...
proved.
total execution time: 1.11 secs

In the last step, we show thatlogical_aux1 implies mutual_exclusion. The proof is done
by induction at depth 0, which amounts to showing that invariantlogical_aux1 is stronger than
mutual_exclusion:

sal-inf-bmc -v 3 -i -d 0 -l logical_aux1 fischer mutual_exclusion
...
proved.
total execution time: 0.67 secs

26

3.2.3 Performance

Tables 3.1 and 3.2 show the CPU time for verifying the mutual exclusion property using SAL 2.0 with
two of the solvers supported by SAL, namely, ICS 2.0 and UCLID. The runtimes are given in seconds,
and were measured for a number of processesN ranging from 2 to 20. The results were measured on a
desktop PC with a Pentium 4 CPU, a clock speed of 2 GHz, and 1 GByte of RAM. The PC was running
the Linux operating system (Kernel 2.4.18). The time reported in the table was the total proof time as
displayed bysal-inf-bmc. Since all the proofs are by induction, the total proof time includes two calls
to the solver — one for the base case and one for the induction step — plus the processing time used
by sal-inf-bmc itself. The tests were performed with each call to ICS or UCLID limited by a timeout
of 1000 s (16 min 40 s) and a memory limit of 1 GByte. The middle columns in Tables 3.1 and 3.2
correspond to the following five proof commands:

ta1: sal-inf-bmc -v 10 -d 1 -i -s ics fischer time_aux1

ta1: sal-inf-bmc -v 10 -d 1 -i -s <solver> fischer time_aux2

ta3: sal-inf-bmc -v 10 -d 1 -i -s <solver> -l time_aux2 fischer time_aux3

la1: sal-inf-bmc -v 10 -d 1 -i -s <solver> -l time_aux3 -l time_aux1
fischer logical_aux1

me: sal-inf-bmc -v 10 -i -d 0 -s <solver> -l logical_aux1
fischer mutual_exclusion

where<solver> is eitherics or uclid. Tables 3.3 and 3.4 report the results of similar experiments
using thecvc andsvc solvers, respectively. Failure of a solver is reported as either “time” (timeout) or
“memory” (memory exhaustion) in the tables.

The following table indicates the solver versions that were used in this experiment. We used the latest
versions of each tool, as available in December 2003:

Solver Version URL
ICS ICS 2.0 beta http://www.icansolve.com/
UCLID + zchaff UCLID 1.0 alpha http://www-2.cs.cmu.edu/~uclid/

zchaff.2001.2.17 http://ee.princeton.edu/~chaff/zchaff.html
CVC CVC 1.0a http://verify.stanford.edu/CVC/
SVC SVC 1.11 http://verify.stanford.edu/SVC/

As can be seen, the performance of the bounded model checker varies significantly depending on the
solver used. On this SAL formalization of Fischer’s protocol, both UCLID and ICS do much better than
CVS or SCV. With ICS or UCLID, one can prove mutual exclusion for as many as 13 or 10 processes,
respectively. CVC or SVC cannot do better than 6 and 4 processes, respectively. It is also notable that
ICS and UCLID do not fail on the same properties. ICS fails to prove propertytime_aux1 for N > 14,
while UCLID can prove it for allN between 2 and 20. Conversely, lemmatime_aux3 is proved by ICS
for N between 2 and 19, while UCLID runs out of time forN > 11. By selecting the best solver for each
property, one can then prove the protocol correct for a system with as many as 19 processes.

All these numbers must be taken with caution. They reflect the performance ofsal-inf-bmc on the
specific formalizationof Fischer’s protocol given in Appendix E. As is well known, the performance of a
satisfiability solver is very sensitive to minor variations in a problem presentation. For example, different
variable orderings can make a huge difference. It has been our experience that small syntactic changes
in the SAL specifications can cause substantial differences in proof times. The next section shows how
performance can be considerably improved by rewriting parts of SAL model.

27

http://www.icansolve.com/
http://www-2.cs.cmu.edu/~uclid/
http://ee.princeton.edu/~chaff/zchaff.html
http://verify.stanford.edu/CVC/
http://verify.stanford.edu/SVC/

N ta1 ta2 ta3 la1 me total

2 0.85 0.84 0.92 0.91 0.63 4.15
3 1.62 1.05 1.25 1.16 0.80 5.88
4 1.91 1.35 1.75 1.55 0.94 7.50
5 1.96 1.77 2.41 1.86 1.08 9.08
6 3.37 2.02 3.40 2.25 1.31 12.35
7 6.83 3.02 4.22 2.75 1.52 18.34
8 11.78 3.77 5.09 3.23 1.78 25.65
9 26.94 6.08 4.86 3.91 2.09 43.88

10 60.68 8.77 5.73 4.40 2.31 81.89
11 161.93 18.05 6.08 5.01 2.52 193.59
12 420.56 21.43 6.49 5.32 2.59 456.39
13 784.17 22.86 7.01 6.10 2.97 823.11
14 time 62.67 11.87 7.03 3.30 N/A
15 time 63.30 10.24 8.33 3.64 N/A
16 time 64.63 14.17 9.58 4.01 N/A
17 time 65.01 14.95 10.55 4.45 N/A
18 time 64.57 74.73 11.49 5.01 N/A
19 time 283.12 433.25 12.41 5.16 N/A
20 time 221.07 time 12.92 5.68 N/A

Table 3.1: Proof Times Using ICS 2.0

N ta1 ta2 ta3 la1 me total

2 1.32 1.36 1.40 1.31 0.52 5.91
3 1.90 1.98 3.22 1.82 0.66 9.58
4 2.39 3.80 13.62 2.61 0.85 23.27
5 15.30 5.97 61.07 5.49 1.05 88.88
6 16.32 9.18 74.62 7.00 1.29 108.41
7 33.06 19.86 204.80 7.74 1.56 267.02
8 13.00 29.15 317.22 17.71 1.85 378.93
9 14.00 30.23 410.88 22.87 2.17 480.15

10 16.91 49.99 614.08 34.09 2.30 717.37
11 60.80 332.94 time 61.91 2.63 N/A
12 70.92 255.22 time 65.15 2.81 N/A
13 88.53 819.70 time 140.97 3.14 N/A
14 132.14 839.70 time 199.72 3.53 N/A
15 147.71 706.21 time 207.20 4.08 N/A
16 204.60 603.11 time 247.12 4.49 N/A
17 125.19 765.99 time 326.94 4.97 N/A
18 150.41 611.01 time 454.17 5.55 N/A
19 157.93 579.01 time 401.45 5.73 N/A
20 328.75 376.96 time 478.97 6.37 N/A

Table 3.2: Proof Times Using UCLID

28

N ta1 ta2 ta3 la1 me total

2 0.66 0.73 0.82 0.72 0.41 3.34
3 1.04 1.52 1.61 1.03 0.55 5.75
4 1.75 5.17 3.69 1.50 0.71 12.82
5 3.29 26.26 8.49 1.95 0.85 40.84
6 7.17 163.02 18.47 2.54 1.06 192.26
7 15.72 time 58.03 3.29 1.29 N/A
8 33.85 memory 209.71 4.16 1.55 N/A
9 77.82 memory 775.02 5.17 1.84 N/A

10 181.98 memory time 6.19 2.06 N/A
11 434.19 memory memory 7.57 2.29 N/A
12 1185.71 memory memory 8.79 2.40 N/A

Table 3.3: Proof Times Using CVC

N ta1 ta2 ta3 la1 me total

2 1.39 1.40 0.71 0.64 0.36 4.50
3 13.20 21.92 2.49 1.00 0.47 39.08
4 113.21 527.04 39.98 1.83 0.65 682.71
5 time time 611.46 3.63 0.80 N/A
6 time time time 8.71 0.99 N/A
7 time time time 22.47 1.22 N/A
8 time time time 62.36 1.48 N/A
9 time time time 176.70 1.79 N/A

10 time time time 483.50 2.11 N/A

Table 3.4: Proof Times Using SVC

29

3.2.4 Variant Specifications

As can be seen in Table 3.1, lemmatime_aux1 is the bottleneck in the proof with ICS. A straightforward
modification of the SAL specifications removes this bottleneck. With the revised specifications, much
larger instances of the protocol, with as many as 53 processes, can be verified. We then examine a more
general version of the protocol, where the two parametersdelta1 anddelta2 are uninterpreted.

Removing the Recursive Definition

Lemmatime_aux1 states a basic invariant that is true for all timeout automata, namely, the fact thattime
<= time_out[i] for all i. Proving this property by induction should be straightforward: it follows
immediately from the definition ofprocess, and the fact that the minimum of thetime_out array is
smaller than or equal to any of its elements. However, the latter fact is expensive to establish by ICS
because of the recursive definition ofmin that we have employed so far:

recur_min(x: TIMEOUT_ARRAY, min_sofar: TIME, idx: [0 .. N]): TIME =
IF idx = 0 THEN min_sofar
ELSE recur_min(x, min(min_sofar, x[idx]), idx-1)

ENDIF;

min(x: TIMEOUT_ARRAY): TIME = recur_min(x, x[N], N-1);

For any fixedN, SAL unfolds this definition into a cascade of if-then-elses. For example, forN = 3,
min(x) expands to (something equivalent to) the following expression.

LET min_sofar1 = x[3] IN
LET min_sofar2 = IF min_sofar1 < x[2] THEN min_sofar1 ELSE x[2] ENDIF
IN IF min_sofar2 < x[1] THEN min_sofar2 ELSE x[1] ENDIF

This expansion results in an expression withN−1 cascading conditionals. Furthermore, for all the solvers
supported by SAL, including ICS and UCLID, proving inequalities such asmin(x) <= x[2] from this
expression requires an exponential number of case splits.

The following trick allows one to eliminate inefficient recursive definitions from the SAL specifica-
tions. First, we define a predicateis_min(x, t) that is true if and only ift = min(x).

is_min(x: TIMEOUT_ARRAY, t: TIME): bool =
(FORALL (i: IDENTITY): t <= x[i]) AND
(EXISTS (i: IDENTITY): t = x[i]);

This definition makes explicit all the properties of the minimum. Then, we rewrite theclock module as
follows:

clock: MODULE =
BEGIN
...

TRANSITION
[time_elapses:

(FORALL (i: IDENTITY): time < time_out[i]) -->
time’ IN { t: TIME | is_min(time_out, t) }

]
END;

30

This is clearly equivalent to the previous specifications: the transition is enabled whenevertime is strictly
smaller than all the timeouts, and it advancestime to the smallest element in thetime_out array.

Removing the recursive definition ofmin has a dramatic impact on performance. The proof of lemma
time_aux1 is now the cheapest of the five verification steps. The most expensive step by far is now
proving lemmatime_aux3. We found that another trick can accelerate the proof oftime_aux3: al-
thoughtime_aux3 is provable fromtime_aux2 alone, adding the following lemma reduces proof time
significantly.

time_aux0: LEMMA
system |- G(time >= 0 AND FORALL (i: IDENTITY): time_out[i] > 0);

The full verification includes then a new step, namely, the proof oftime_aux0 by induction:

ta0: sal-inf-bmc -v 10 -d 1 -i -s <solver> fischer time_aux0

The proof oftime_aux3 is now as follows:

ta3: sal-inf-bmc -v 10 -d 1 -i -s <solver> -l time_aux2 -l time_aux0
fischer time_aux3

Table 3.5 shows the proof times obtained with ICS for the revised SAL model. The numbers were mea-
sured on the same machine, with the same timeout and memory limit as previously, but with a more recent
SAL version (SAL 2.3). The proof succeeds for allN between 2 and 43, and for some values ofN above
44. The largest example that could be successfully verified with ICS includedN = 53 processes.

Removing the inefficient recursive definition also reduces proof times when solvers other than ICS are
used, but the improvement is not as dramatic. The largest examples we could verify with UCLID, CVC,
and SVC contained 12, 6, and 4 processes, respectively.

Uninterpreted Constants

So far, all the SAL models of Fischer’s protocol we have discussed gave explicit values to the two protocol
parametersdelta1 anddelta2. It is also possible to analyze the protocol without assigning specific
values to these parameters. We just need to specify that the two parameters satisfy the constraintdelta1
< delta2. This can be done by relying on the SAL type system, and declaring the two constants as
follows:

delta1: {x: REAL | 0 < x};

delta2: {x : REAL | delta1 < x};

Thus,delta1 is an arbitrary positive real anddelta2 is an arbitrary real larger thandelta1.
With this modification, the mutual exclusion property can be proved exactly as before. The perfor-

mance obtained with ICS is analoguous to the verification with explicit constants. All instances with
N 6 45 can be verified, and the largest verified example has sizeN = 54. The proof can also be done
with CVC or SVC for small examples. UCLID cannot be used, as the theory decided by UCLID — the
so-calledseparation logic— is not expressive enough for dealing with uninterpreteddelta1 anddelta2.
For example, lemmatime_aux2 is not in the separation logic ifdelta1 is uninterpreted.

31

N ta0 ta1 ta2 ta3 la1 me total

2 0.60 0.57 0.61 0.68 0.69 0.44 3.59
3 0.76 0.74 0.77 1.04 0.98 0.56 4.85
4 0.95 0.94 0.99 1.54 1.29 0.72 6.43
5 1.17 1.15 1.20 2.07 1.70 0.87 8.16
6 1.36 1.36 1.40 3.08 2.06 1.03 10.29
7 1.52 1.52 1.63 2.75 2.49 1.23 11.14
8 1.83 1.85 1.97 4.10 2.99 1.52 14.26
9 2.00 1.96 2.20 3.94 3.74 1.75 15.59

10 2.30 2.31 2.43 9.29 4.51 2.03 22.87
11 2.44 2.48 2.83 8.04 5.76 2.37 23.92
12 2.75 2.76 3.21 6.60 5.26 2.70 23.28
13 3.00 3.09 3.59 10.83 6.28 3.01 29.80
14 3.19 3.20 3.78 9.35 6.87 3.03 29.42
15 3.53 3.54 4.29 11.03 8.00 3.42 33.81
16 3.82 3.74 4.60 16.00 8.82 3.68 40.60
17 4.20 4.32 5.20 17.82 10.12 4.15 45.81
18 4.55 4.63 5.53 20.62 11.58 4.66 51.57
19 4.77 4.94 6.14 20.68 12.63 5.18 54.34
20 5.13 5.05 6.61 18.14 13.12 5.72 53.77
21 5.28 5.39 6.90 74.31 15.32 6.19 113.39
22 5.81 5.92 7.76 27.84 16.35 6.73 70.41
23 6.23 6.34 8.40 279.63 18.66 6.64 325.90
24 6.66 6.76 9.18 44.88 20.60 7.98 96.06
25 7.17 6.89 9.74 88.71 20.39 7.86 140.76
26 7.68 7.38 10.33 50.27 22.33 8.31 106.30
27 7.77 8.03 11.31 126.88 24.20 9.16 187.35
28 8.20 8.37 12.02 119.04 25.64 9.77 183.04
29 8.73 8.75 12.61 111.68 28.49 10.79 181.05
30 9.35 9.54 14.20 252.60 29.14 11.76 326.59
31 9.49 10.16 15.29 56.38 36.49 12.29 140.10
32 10.15 10.82 15.85 120.48 35.32 12.85 205.47
33 11.24 11.05 17.04 141.23 37.03 14.02 231.61
34 10.89 11.85 18.10 591.98 40.96 13.22 687.00
35 11.52 12.22 19.64 199.78 47.40 14.34 304.90
36 12.18 12.54 20.56 444.16 46.59 15.24 551.27
37 12.54 13.41 21.78 586.76 56.08 16.67 707.24
38 13.80 14.16 23.02 401.76 57.94 17.30 527.98
39 13.56 13.61 24.38 738.99 66.67 18.24 875.45
40 14.15 14.42 26.24 346.09 60.29 19.69 480.88
41 14.69 15.07 27.61 391.54 65.05 21.03 534.99
42 15.72 16.14 29.34 288.12 67.82 20.83 437.97
43 16.02 16.76 31.69 206.23 81.03 22.10 373.83
44 16.38 17.49 32.98 time 89.77 21.16 N/A
45 17.26 17.68 36.84 623.13 78.31 22.26 795.48
46 18.75 19.12 36.64 967.27 95.39 23.71 1160.88
47 17.32 17.48 37.23 time 112.34 24.93 N/A
48 19.88 18.39 43.23 time 133.98 26.14 N/A
49 18.66 20.48 41.96 time 102.78 27.37 N/A
50 19.46 21.34 44.19 927.81 104.09 29.23 1146.12
51 20.25 21.04 46.94 time 132.29 29.85 N/A
52 21.73 22.13 50.98 time 115.19 31.98 N/A
53 22.25 23.13 53.21 689.94 137.64 32.63 958.80
54 23.38 23.72 61.39 time 187.79 33.18 N/A

Table 3.5: Proof Times Using ICS 2.0, Revised Specifications

32

3.3 The Train-Gate-Controller Revisited

The SAL specification for the train-gate-controller example from Section 2 is a direct translation from the
timed automata model. We now examine a timeout-automata model of the same example. This illustrates
a slight generalization that can be useful when components synchronize on simultaneous actions.

The components of the train-gate-controller communicate via actionsynchronization. Edges labeled
with the same event correspond to actions that must happen simultaneously. This was modeled in SAL by
using a global typeactions, that comprises all the actions of the system. To model this form of synchro-
nization using timeout automata, we use a message-passing approach, where messages are communicated
with zero delay. For example, thetrain sends thecontroller the signalapproach. Upon receiving
this signal thecontroller sends another signal tolower thegate. The typeSIGNAL contains all the
signals necessary for the communication between the three components.

SIGNAL: TYPE = {approach, exit, lower, raise};

As in the model we used for Fischer’s protocol, a global variabletime keeps the current time and
the variablestime_out[i] contain the time when the next discrete transition of theith component is
scheduled to occur. Here, the indexi is used to enumerate the three components, that is,i=1 represents
thetrain component,i=2 thegate, and finallyi=3 thecontroller.

The clock module is responsible for performing the time-progress transitions, by advancing time
up to the next timeout when a discrete transition is due. This information is provided as input from the
train, thegate, and thecontroller. The functionmin computes the new value oftime as minimum
of time_out[1], time_out[2], time_out[3]. This value is then communicated to every component,
through the output variabletime. In the case of the train gate controller, the clock module is an extension
of the basic clock structure as depicted in Figure 3.3, with two additional global Boolean variables,flag1
andflag2. These variables are used to coordinate the time-progress steps; after a component has sent a
signal, time is not allowed to elapse until the signal has been received. This models communication via
instantaneous message passing. The values of the two flags are maintained by the three components.

tgc: CONTEXT =
BEGIN
SIGNAL: TYPE = {approach, exit, lower, raise};
TIME: TYPE = REAL;
N: NATURAL = 3;
INDEX: TYPE = [1..N];
TIMEOUT_ARRAY: TYPE = ARRAY INDEX OF TIME;
...
clock: MODULE =
BEGIN
INPUT time_out: TIMEOUT_ARRAY
GLOBAL flag1, flag2: BOOLEAN
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses:

time < min(time_out) AND (NOT flag1) AND (NOT flag2)
--> time’ = min(time_out)]

END;
...

END

33

The input variabletime is the output variable ofclock. This variable controls the current time. The
train has two output variables,timeout contains the time when the next discrete transition is enabled,
while msg1 is the message signaled to thecontroller.

train: MODULE =
BEGIN
INPUT
time: TIME

OUTPUT
timeout: TIME,
msg1: SIGNAL,

GLOBAL flag1: BOOLEAN
LOCAL
t_state: T_STATE

INITIALIZATION
t_state = t0;
timeout IN { x: TIME | time < x };
flag1 = FALSE

The discrete transition of the train automaton are specified as follows. One must ensure that every step
is performed at the corresponding time point, which is guaranteed by the constrainttime = timeout
associated with every transition. For example, in the transition fromt0 to t1 the train outputs the signal
approach (msg1’ = approach), sets the Boolean variableflag1 to true (flag1’ = TRUE), and the new
value oftimeout determines when the next discrete step will be taken. Thetimeout is updated non-
deterministically to any time in the interval (time + 2, time + 5]. This reflects the constraints imposed
by the invariant of locationt1 and the guard of the edge fromt1 to t2 in the timed automata model of
Figure 2.1.

TRANSITION
[t0_t1:
t_state = t0 AND time = timeout -->
t_state’ = t1;
msg1’ = approach;
flag1’ = TRUE;
timeout’ IN {x: TIME | time + 2 < x AND x <= time + 5}

Thecontroller hasmsg1 as an input variable, over which it receives signals from thetrain, and
msg2 as an output, with which it sends signals to thegate.

controller : MODULE =
BEGIN
INPUT
time: TIME,
msg1: SIGNAL,

OUTPUT
timeout: TIME,
msg2: SIGNAL

GLOBAL flag1, flag2: BOOLEAN

Upon receiving the signal approach from the train (msg1 = approach and flag1 is true), the
controller moves to locationc1, setsflag1 to false, and increases itstimeout variable. On the tran-
sition fromc1 to c2 the controller sends the lower signal to the gate (msg2’ = lower) and setsflag2 to
true.

34

TRANSITION
[c0_c1:

c_state = c0 AND msg1 = approach AND flag1 -->
c_state’ = c1;
flag1’ = FALSE;
timeout’ = time + 1

[] c1_c2:
c_state = c1 AND time = timeout -->
c_state’ = c2;
msg2’ = lower;
flag2’ = TRUE;
timeout’ IN {x: TIME | time < x}

The gate changesflag2 to false after receiving themsg2 = lower signal.

TRANSITION
[g0_g1:

g_state = g0 AND msg2 = lower AND flag2 -->
g_state’ = g1;
flag2’ = FALSE;
timeout’ IN {x: TIME | time < x AND x <= time + 1}

The three components are composed asynchronously (i.e., using the[] operator in SAL). TheWITH
construction introduces a new state variabletime_out as an array for the output state variablestimeout
used in each component. TheRENAME construction picks out the member of thetime_out array to be
wired up to the corresponding component.

tgc_module: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY

(RENAME timeout TO time_out[1] IN train)
[]
(RENAME timeout TO time_out[2] IN gate)
[]
(RENAME timeout TO time_out[3] IN controller);

Finally, thetgc_module is composed asynchronously with theclock.

system: MODULE = clock [] tgc_module;

The safety property of the train gate controllersafe is specified as in Section 2, and can be proved by
k-induction at depth 14 in 46.15 seconds. Other interesting properties can be specified that describe the
timing behavior of the train gate controller system.

time_aux1: LEMMA system |- G(FORALL (i:INDEX): time <= time_out[i]);
time_aux2: LEMMA system |- G(t_state = t2 => time_out[1] - time <= 5);
time_aux3: LEMMA system |- G((t_state = t1 AND g_state = g1) =>

time_out[1] > time_out[2]);

35

Chapter 4

Calendar Automata

Timeouts are convenient for application like Fischer’s protocol, wheren processesp1, . . . , pn communi-
cate via shared variables that they read or write independently. Processpi has full control of its local
timeout, which determines whenpi performs its transitions. Other processes have no access topi ’s time-
out and their actions cannot impactpi until it “wakes up”. To model interaction via message passing with
transmission delays, we addevent calendarsto our transition systems.

A calendar is a finite set (or multiset) of the formC = {〈e1, t1〉, . . . , 〈en, tn〉}, where eachei is an event
and ti is the time when eventei is scheduled to occur. Alltis are real numbers. We denote by min(C)
the smallest number among{t1, . . . , tn} (with min(C) = +∞ if C is empty). Given a realu, we denote by
Evu(C) the subset ofC that contains all events scheduled at timeu:

Evu(C) = {〈ei , ti〉 | ti = u ∧ 〈ei , ti〉 ∈ C}

As before, the state variables of a calendar-based systemM include a real-valued variablet that denotes
the current time and a finite setT of timeouts. In addition, one state variablec stores a calendar. These
variables control when discrete and time-progress transitions are enabled, according to the following rules:

• In all initial stateσ, we haveσ(t) 6 min(σ(T)) andσ(t) 6 min(σ(c)).

• In a stateσ, time can advance if and only ifσ(t) < min(σ(T)) andσ(t) < min(σ(c)). A time
progress transition updatest to the smallest of min(σ(T)) and min(σ(c)), and leaves all other state
variables unchanged.

• Discrete transitions are enabled in states whereσ(t) = min(σ(T)) or σ(t) = min(σ(c)) and must
satisfy the following requirements:

◦ σ(t) = σ′(t)

◦ for all y ∈ T we haveσ′(y) = σ(y) orσ′(y) > σ′(t)

◦ if σ(t) = min(σ(c)) then Evσ′(t)(σ′(c)) ⊆ Evσ(t)(σ(c))

◦ there is x ∈ T such thatσ(x) = σ(t) and σ′(x) > σ′(t), or we have Evσ′(t)(σ′(c)) ⊂
Evσ(t)(σ(c)).

These constraints ensure thatσ(t) 6 min(σ(T)) andσ(t) 6 min(σ(c)) are invariants: timeout values and
the occurrence time of any event in the calendar are never in the past. Discrete transitions are enabled
when the current time reaches the value of a timeout or the occurrence time of a scheduled event. The

36

.. Node .. Guardian

 Time

 TDMA round n

N1N4 N2 N3 N4 N1 N2... ...

Cluster CommunicationCluster

N4

N2

N3

N1

Figure 4.1: TTA cluster and TDMA schedule.

constraints on timeout are the same as before. In addition, a discrete transition may add events to the
calendar, provided these new events are all in the future. To prevent instantaneous loops, every discrete
transition must either consume an event that occurs at the current time or update a timeout as discussed
previously.

Calendars are useful for modeling communication channels that introduce transmission delays. An
event in the calendar represents a message being transmitted and the occurrence time is the time when the
message will be received. The action of sending a messagem to a processpi is modeled by adding the
event “pi receivesm” to the calendar, which is scheduled to occur at some future time. Message reception
is modeled by transitions enabled when such event occurs, and whose effects include removing the event
from the calendar. From this point of view, a calendar can be seen as a set of messages that have been sent
but have not been received yet, with each message labeled by its reception time.

The main benefit of timeouts and calendars is the simple mechanism they provide for controlling how
far time can advance. Time progress is deterministic. There are no states in which both time-progress and
discrete transitions are enabled, and any state in which time progress is enabled has a unique successor:
time is advanced to the point where the next discrete transition is enabled. This semantics ensures maximal
time progress without missing any discrete transitions. A calendar-based model never makes two time-
progress transitions in succession and there are no idle steps. All variables of the systems evolve in discrete
steps, and there is no need to approximate continuous dynamics by allowing arbitrarily small time steps.

4.1 The TTA Startup Protocol

The remainder of this report describes an application of the preceding modeling principles to the TTA
fault-tolerant startup protocol [SRSP04]. TTA implements a fault-tolerant logical bus intended for safety-
critical applications such as avionics or automotive control functions. In normal operation,N computers
or nodes share a TTA bus using a time-division multiple-access (TDMA) discipline based on a cyclic
schedule. The goal of the startup algorithm is to bring the system from the power-up state, in which the
N computers are unsynchronized, to the normal operation mode in which all computers are synchronized
and follow the same TDMA schedule. A TTA system or “cluster” with four nodes and the associated
TDMA schedule are depicted in Figure 4.1. The cluster has a star topology, with a central hub or guardian
forwarding messages from one node to the other nodes. The guardian also provides protection against
node failures. It prevents faulty nodes from sending messages on the bus outside their allocated TDMA

37

1.1 2.1

2.2
3.2

3.1INIT LISTEN START
COLD−

ACTIVE

Figure 4.2: State-machine of the TTA node startup algorithm

slot and, during startup, it arbitrates message collisions. A full TTA system relies on two redundant hubs
and can tolerate the failure of one of them [SRSP04].

The startup algorithm executed by the nodes is described schematically in Figure 4.2. When a node
i is powered on, it performs some internal initializations in the state, then it transitions to the
state and listens for messages on the bus. If the other nodes are already synchronized, they each send ani-
frameduring their TDMA slot. If nodei receives such a frame while in the state, it can immediately
synchronize with the other nodes and moves to the state (transition 2.2). After a delayτlisten

i , if i has
not received any message, it sends acs-frame(coldstart frame) to initiate the startup process and moves to
the state (transition 2.1). Nodei also enters if it receives a cs-frame from another node
while in thelisten state. In, nodei waits for messages from other nodes. Ifi receives either
an i-frame or a cs-frame, then it synchronizes with the sender and enters the state. Otherwise, if no
frame is received within a delayτcoldstart

i , theni sends a cs-frame and loops back to (transition
3.1). The state represents normal operation. Every node in this state periodically sends an i-frame,
during its assigned TDMA slot. The goal of the protocol is to ensure that all nodes in the state are
actually synchronized and have a consistent view of where they are in the TDMA cycle.

The correctness of the protocol depends on the relative values of the delaysτlisten
i andτcoldstart

i . These
timeouts are defined as follows:

τlisten
i = 2τround+ τ

startup
i

τcoldstart
i = τround+ τ

startup
i

whereτround is the round duration andτstartup
i is the start ofi’s slot in a TDMA cycle. Nodes are indexed

from 1 toN. For a fixed slot timeτ we then haveτstartup
i = (i − 1).τ andτround = N.τ.

4.2 A Simplified Startup Protocol in SAL

We now consider the SAL specification of a simplified version of the startup protocol, where nodes are
assumed to be reliable. Under this assumption, the hub has a limited role. It forwards messages and
arbitrates collisions, but does not have any fault masking function. Since the hub has reduced functionality,
it is not represented by an active SAL module but by a shared calendar.

38

IDENTITY: TYPE = [1 .. N];
TIME: TYPE = REAL;
message: TYPE = { cs_frame, i_frame };

calendar: TYPE = [#
flag: ARRAY IDENTITY OF bool,
content: message,
origin: IDENTITY,
send, delivery: TIME

#];

empty?(cal: calendar): bool = FORALL (i: IDENTITY): NOT cal.flag[i];
...
i_frame_pending?(cal: calendar, i: IDENTITY): bool =
cal.flag[i] AND cal.content = i_frame;

...
bcast(cal: calendar, m: message, i: IDENTITY, t: TIME): calendar =
IF empty?(cal) THEN
(# flag := [[j: IDENTITY] j /= i],
content := m,
origin := i,
send := t,
delivery := t + propagation #)

ELSE cal WITH .flag[i] := false
ENDIF;

consume_event(cal: calendar, i: IDENTITY): calendar =
cal WITH .flag[i] := false;

Figure 4.3: Calendar Encoding for the Simplified Startup Protocol

4.2.1 Calendar

In TTA, there is never more than one frame in transit between the hub and any node. To model the hub,
it is then sufficient to consider a bounded calendar that contains at most one event per node. To simplify
the model, we also assume that the transmission delays are the same for all the nodes. As a consequence,
a frame forwarded by the hub reaches all the nodes (except the sender) at the same time. All events in
the calendar have then the same occurrence time and correspond to the same frame. These simplifications
allow us to specify the calendar as shown in Figure 4.3.

A calendar stores a frame being transmitted (content), the identity of the sender (origin), and the
time when the frame was sent (send) and when it will be delivered (delivery). The boolean arrayflag
represents the set of nodes that are scheduled to receive the frame. Example operations for querying
and updating calendars are shown in Figure 4.3. Functionbcast is the most important. It models the
operation “nodei broadcasts framem at timet” and shows how collisions are resolved by the hub. If the
calendar is empty wheni attempts to broadcast, then framem is stored and scheduled for delivery at time
t + propagation, and all nodes excepti are scheduled to receivem. If the calendar is not empty, then the
frame fromi collides with a framem′ from another node, namely, the one currently stored in the calendar.
The collision is resolved by giving priority tom′ and droppingi’s frame. In addition, nodei is removed
from the set of nodes scheduled to receivem′ because channels between hub and nodes are half-duplex:
sincei is transmitting a framem, it cannot receivem′.

39

4.2.2 Nodes

Figure 4.4 shows fragments of a node’s specification in SAL. Thenode module is parameterized by a
node identityi. It reads the currenttime via an input state variable, has access to the global calendarcal
that is shared by all the nodes, and exports three output variables corresponding to its localtimeout, its
current statepc, and its view of the current TDMAslot. The transitions specify the startup algorithm
as discussed previously using SAL’s guarded command language. The figure shows two examples of
transitions:listen_to_coldstart is enabled when time reachesnode[i]’s timeout while the node is
in the  state. The node enters the state, sets its timeout to ensure it will wake up after a
delayτcoldstart

i , and broadcasts a cs-frame. The other transition models the reception of a cs-frame while
node[i] is in the state. Nodei synchronizes with the frame’s sender: it sets its timeout to the
start of the next slot, compensating for the propagation delay, and sets itsslot index to the identity of the
cs-frame sender.

PC: TYPE = { init, listen, coldstart, active };

node[i: IDENTITY]: MODULE =
BEGIN
INPUT time: TIME
OUTPUT timeout: TIME, slot: IDENTITY, pc: PC
GLOBAL cal: calendar

INITIALIZATION
pc = init;
timeout IN { x: TIME | time < x AND x < max_init_time};
...

TRANSITION
...
[] listen_to_coldstart:
pc = listen AND time = timeout -->
pc’ = coldstart;
timeout’ = time + tau_coldstart(i);
cal’ = bcast(cal, cs_frame, i, time)

...
[] cs_frame_in_coldstart:
pc = coldstart AND cs_frame_pending?(cal, i) AND time = event_time(cal, i) -->
pc’ = active;
timeout’ = time + slot_time - propagation;
slot’ = frame_origin(cal, i);
cal’ = consume_event(cal, i)

...

Figure 4.4: Node Specification

4.2.3 Full Model

The complete startup model is the asynchronous composition ofN nodes and a clock module that manages
thetime variable. The clock’s input includes the shared calendar and the timeout variable from each node.
The module makes time advances when no discrete transition from the nodes is enabled, as discussed in
Section 4.

40

Becausetime cannot advance beyond the calendar’s delivery time, the full model ensures that all
pending messages are received. For example, transitioncs_frame_in_coldstart of Figure 4.4 is en-
abled whentime is equal to the frame reception timeevent_time(cal, i). Let σ be a system state
where this transition is enabled. Since the delivery times are the same for all nodes, the same transition is
likely to be enabled for other nodes too. Let’s then assume thatcs_frame_in_coldstart is also enabled
for node j in stateσ. In general, enabling a transition does not guarantee that it will be taken. However,
the model preventstime from advancing as long as the frame destined fori or the frame destined forj is
pending. This forces transitioncs_frame_in_coldstart to be taken in both nodei and nodej. Since
nodes are composed asynchronously, the transitions of nodei and j will be taken one after the other from
stateσ, in a non-deterministic order. For the same reason, transitions that are enabled on a condition of
the formtime = timeout are all eventually taken. Timeouts are never missed.

4.3 Protocol Verification

4.3.1 Correctness Property

The goal of the startup protocol is to ensure that all the nodes that are in the state are synchronized
(safety) and that all nodes eventually reach the state (liveness). We focus on the safety property.
Our goal is to show that the startup model satisfies the following LTL formula with linear arithmetic
constraints:

synchro: THEOREM
system |-
G(FORALL (i, j: IDENTITY): pc[i] = active AND pc[j] = active AND
time < time_out[i] AND time < time_out[j] =>
time_out[i] = time_out[j] AND slot[i] = slot[j])

This says that any two nodes in state have the same view of the TDMA schedule: they agree on
the current slot index and their respective timeouts are set to the same value, which is the start of the next
slot. Because nodes are composed asynchronously, agreement betweeni and j is not guaranteed at the
boundary between two successive slots, whentime = time_out[i] or time = time_out[j] holds.

4.3.2 Proof by Induction

A direct approach to proving the above property is thek-induction method supported bysal-inf-bmc. A
first attempt withk = 1 immediately shows that the property is not inductive. Increasingk does not seem
to help. The smallest possible TTA system has two nodes, and the corresponding SAL model has 13 state
variables (5 real variables, 6 boolean variables, and 2 bounded integer variables).1 On this minimal TTA
model,k-induction at depth up tok = 20 still fails to prove the synchronization property.

However, as long as the number of nodes remains small, we can prove the property usingk-induction
and a few auxiliary lemmas:

time_aux1: LEMMA
system |- G(FORALL (i: IDENTITY): time <= time_out[i]);

time_aux2: LEMMA
system |- G(empty?(cal) OR

(cal.send <= time AND time <= cal.delivery));

1The variableslot of each process stores an integer in the interval [1,N].

41

delivery_delay1: LEMMA
system |- G(FORALL (i: IDENTITY):

event_pending?(cal, i) =>
event_time(cal, i) = cal.send + propagation);

The first two lemmas are invariants that hold for any calendar-based model, the other is an obvious relation
between the transmit and reception time of messages. These lemmas are all inductive; they can be proved
automatically bysal-inf-bmc usingk-induction at depth 1.

For N = 2, we can then show that the synchronization property holds with the following command:

sal-inf-bmc -v 3 -d 8 -i -l time_aux1 -l time_aux2
-l delivery_delay1 simple_startup4 synchro

...
proved.
total execution time: 80.35 secs

This instructssal-inf-bmc to perform a proof byk-induction at depth 8 using the three lemmas. With
N = 3, an inductive proof at depth 14 with the same lemmas fails; the execution time is of the order of
2 hours. With higher depths,sal-inf-bmc runs out of memory, or the user runs out of patience.

4.3.3 Proof via Abstraction

The previous verification uses only induction and is straightforward, but it has a major limitation: it works
only for N = 2. The last step in the proof is not scalable as the induction depth required increases with
the number of nodes. To analyze the protocol with a larger number of nodes, we need a less expensive
proof method. Since all we can do is proof by induction, our strategy is to strengthen the invariant. We
are looking for an invariantφ that implies propertysynchro, and can be proved withsal-inf-bmc using
induction at depth 1.

To obtain an appropriateφ, we use the method proposed by Rushby [Rus00]. Given a transition system
M = 〈S, I ,→〉, this method amounts to constructing an abstraction ofM (or verification diagram [MP94])
based onn state predicatesA1(σ), . . . ,An(σ). The abstraction is a transition systemM0 = 〈S0, I0,→0〉

with state spaceS0 = {a1, . . . ,an}. The abstract states are in a one-to-one correspondence with then
predicates. Then, the systemM0 is a correct abstraction ofM if two properties are satisfied:

• For all stateσ of I , there is an abstract stateai of I0 such thatAi(σ) is satisfied.

• For every abstract stateai , the following formula holds:

∀σ ∈ S, σ′ ∈ S : Ai(σ) ∧ σ→ σ′ ⇒ A j1(σ
′) ∨ . . . A jk(σ

′),

wherea j1, . . . ,a jk are the successors ofai inM0.

Less formally, the abstract system makes statements aboutM of the form “if Ai is true in the current state,
then the next state will satisfyA j1 or . . . orA jk”. It also states that some of the predicatesA1, . . . ,An are
true in all the initial states ofM. If the abstraction is correct, then clearly the disjunctionA1 ∨ . . . ∨ An is
an inductive invariant ofM.

This form of abstraction has two interests for our purposes. First, it is often relatively easy for the user
to find adequate predicatesA1, . . . ,An by “tracing” the execution ofM. Second, it is possible to prove
that a candidate abstraction is correct usingsal-inf-bmc. We illustrate this approach on the simplified
startup algorithm.

42

A1 A2 A3 A4 A5 A6

Figure 4.5: Verification Diagram for the Simplified Startup

Discovering the abstraction: By examining how the startup protocol works, one can decompose its
execution into successive phases, as shown below:

A1 A2 A3 A4 A5 A5 A6A6

time0

No active nodes At least one active node

cs−frame cs−frame i−frame i−frame

In the first phase, A1, all nodes are either in the or  states and no frame is sent. Phase A2 starts
when one node enters and broadcasts a cs-frame, and ends when that frame is transmitted.
Collisions may occur in phase A2 as several nodes may broadcast a cs-frame at approximately the same
time. In phase A3, at least one node is in the state, and all nodes are waiting. In A4 a second
cs-frame is sent. By definition of the delaysτcoldstart

i , no collision can occur in A4. After A4, all the nodes
that have received the second cs-frame become active. This leads to phase A5, in which at least one node
is active. Phase A6 corresponds to the transmission of an i-frame by an active node. After A6, the system
returns to phase A5, and so forth.

The six phases A1 to A6 form the basis of our abstraction. For example, the abstraction predicateA2
is defined in SAL as a boolean state variable as follows:

A2 = cs_frame?(cal) AND pc[cal.origin] = coldstart
AND (FORALL (i: IDENTITY):

pc[i] = init OR pc[i] = listen OR pc[i] = coldstart)
AND (FORALL (i: IDENTITY): pc[i] = coldstart =>

NOT event_pending?(cal, i)
AND time_out[i] - cal.send >= tau_coldstart(i)
AND time_out[i] - time <= tau_coldstart(i))

AND (FORALL (i: IDENTITY): pc[i] = listen =>
event_pending?(cal, i)
OR time_out[i] >= cal.send + tau_listen(i));

Figure 4.5 shows the abstract system derived from A1 to A6. The transitions specify which phases may
succeed each other. Every abstract state is also its own successor but we omit self loops from the diagram
for clarity.

Proving that the abstraction is correct: Several methods can be used for proving in SAL that the
diagram of Figure 4.5 is a correct abstraction of the startup model. The most efficient technique is to build
a monitor module that corresponds to the candidate abstraction extended with an error state. The monitor
is defined in such a way that the error state is reached whenever the startup model performs a transition

43

that, according to the abstraction, should no occur. For example, the monitor includes the following
guarded command which specifies the allowed successors of abstract statea2:

state = a2 -->
state’ = IF A2’ THEN a2 ELSIF A3’ THEN a3 ELSE bad ENDIF

wherebad is the error state. This corresponds to the diagram of Figure 4.5:a2 anda3 are the only two
successors ofa2 in the diagram. The abstraction is correct if and only if the error state is not reachable, that
is, if the propertystate /= bad is invariant. Furthermore, if the abstraction is correct, this invariant is
inductive and can be proved automatically withsal-inf-bmc usingk-induction at depth 1. This requires
the same auxiliary lemmas as previously and an additional lemma per abstract state.

To summarize, our proof of the startup protocol is constructed as follows:

• An abstractor module defines the boolean variablesA1 to A6 from the state variables of the
concretetta module.

• A monitor module whose input variables areA1 to A6 specifies the allowed transitions between
abstract states.

• We then construct the synchronous composition of thetta module, theabstractor, and the
monitor.

• We show that this composition satisfies the invariant propertyG(state /= bad), by induction
usingsal-inf-bmc.

• Finally, usingsal-inf-bmc again, we show that the previous invariant implies the correctness
propertysynchro.

4.3.4 Results

Simplified Startup Fault-Tolerant Startup
N lemmas abstract. synchro total lemmas abstract. synchro total
2 34.85 4.91 3.97 43.73 166.82 31.19 10.60 208.61
3 55.38 14.13 7.02 76.53 234.53 71.44 25.38 331.35
4 87.56 31.56 10.76 129.88 324.94 154.50 67.45 546.89
5 111.23 117.89 17.86 246.98 432.71 456.42 168.75 1057.88
6 154.92 334.31 26.53 515.76 547.51 731.60 346.35 1625.46
7 197.62 642.72 33.41 873.75 739.17 1143.48 648.49 2531.14
8 255.07 1400.34 45.08 1700.49 921.85 1653.10 1100.38 3675.33
9 316.36 2892.85 56.84 3266.05 1213.51 3917.37 1524.91 6655.79

10 378.89 4923.45 84.79 5387.13 1478.82 4943.18 3353.97 9775.97

Table 4.1: Verification Times

Table 4.1 shows the runtime ofsal-inf-bmc when proving the correctness of the simplified TTA
startup protocol, for different numbers of nodes. The runtimes are given in seconds and were measured
on a Dell PC with a Pentium 4 CPU (2 GHz) and 1 Gbyte of RAM. The numbers are grouped in three
categories: proof of all auxiliary lemmas, proof of the abstraction, and proof of the synchronization
property. For small numbers of nodes (less than 5), proving the lemmas is the dominant computation cost,

44

not because the lemmas are expensive to prove but because there are several of them. For larger numbers
of nodes, checking the abstraction dominates.

Using the same modeling and abstraction method, we have also formalized a more complex version
of the startup algorithm. This version includes an active hub that is assumed to be reliable, but nodes may
be faulty. The verification was done under the assumption that a single node is Byzantine faulty, and may
attempt to broadcast arbitrary frames at any time. With a TTA cluster of 10 nodes, the model contains 99
state variables, of which 23 variables are real-valued. The simplified protocol is roughly half that size.
For a cluster of 10 nodes, it contains 52 state variables, of which 12 are reals.2

Other noticeable results were discovered during the proofs. In particular, the frame propagation delay
must be less than half the duration of a slot for the startup protocol to work. This constraint had apparently
not been noticed before. Our analysis also showed that the constantsτlisten

i do not need to be distinct for
the protocol to work, as long as they are all at least equal to two round times.

2The full specifications are available athttp://www.sdl.sri.com/users/bruno/sal/. The simplified model is given in
Appendix F.

45

http://www.sdl.sri.com/users/bruno/sal/

Chapter 5

Conclusion

We have described different methods for specifying and analyzing timed systems in SAL. In particular,
we have presented a novel approach to modeling real-time systems based on calendars and timeouts.
This approach enables one to specify dense-timed models as standard state-transition systems with no
continuous dynamics. As a result, it is possible to verify these timed models using general-purpose tools
such as provided by SAL. We have illustrated how the SAL infinite-state bounded model checker can be
used as a theorem prover to efficiently verify timed models. Two main proof techniques were used: proof
by k-induction and a method based on abstraction and verification diagrams. By decomposing complex
proofs in relatively manageable steps, these techniques enable us to verify a non-trivial example of fault-
tolerant real-time protocol, namely the TTA startup algorithm, with as many as ten nodes.

This analysis extends previous work by Steiner, Rushby, Sorea, and Pfeifer [SRSP04] who have veri-
fied using model checking a discrete-time version of the same algorithm. They modeled a full TTA cluster
with redundant hubs, and their analysis showed that the startup protocol can tolerate a faulty node or a
faulty hub. This analysis went beyond previous experiments in model-checking fault-tolerant algorithms
such as [YTK01] and [BFG02] by vastly increasing the number of scenarios considered. It achieved
sufficient performance to support design exploration as well as verification.

Lönn and Pettersson [LP97] consider startup algorithms for TDMA systems similar to TTA, and verify
one of them using UPPAAL [LPY97]. Their model is restricted to four nodes and does not deal with faults.
Lönn and Pettersson note that extending the analysis to more than four nodes will be very difficult, as the
verification of a four nodes was close to exhausting the 2 Gbyte memory of their computer, and because
of the exponential blowup of model checking timed automata when the number of clocks increases.

The model and verification techniques presented here can be extended in several directions, including
applications to more complex versions of the TTA startup algorithm with redundant hubs, and verification
of liveness properties. Other extensions include theoretical studies of the calendar-automata model and
comparison with timed automata.

46

Bibliography

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.5th Symp. on
Logic in Computer Science (LICS 90), pages 414–425, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 25 April 1994.

[AH93] R. Alur and T. A. Henzinger. Real-Time Logics: Complexity and Expressiveness.Informa-
tion and Computation, 104(1):35–77, May 1993.

[Alu91] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis, Stanford
University, 1991.

[BFG02] C. Bernardeschi, A. Fantechi, and St. Gnesi. Model checking fault tolerant systems.Soft-
ware Testing, Verification and Reliability, 12:251–275, December 2002.

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Muñoz, Sam Owre, Harald
Rueß, John Rushby, Vlad Rusu, Hassen Saïdi, N. Shankar, Eli Singerman, and Ashish Ti-
wari. An overview of SAL. In C. Michael Holloway, editor,LFM 2000: Fifth NASA Langley
Formal Methods Workshop, pages 187–196, Hampton, VA, June 2000. NASA Langley Re-
search Center.

[CHR91] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A Calculus of Durations.Information
Processing Letters, 40(5):269–276, December 1991.

[dMOR+04] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria Sorea, and
Ashish Tiwari. Tool presentation: SAL 2. To be presented at CAV 2004, 2004.

[dMOS03] Leonardo de Moura, Sam Owre, and Natarajan Shankar. The SAL Language Manual. Tech-
nical Report SRI-CSL-01-02, Computer Science Laboratory, SRI International, 2003. Avail-
able athttp://sal.csl.sri.com/documentation.html.

[dMR02a] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers.Annals
of Mathematics and Artificial Intelligence, 2002.

[dMR02b] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers. In
Proceedings of the Fifth International Symposium on the Theory and Applications of Satis-
fiability Testing (SAT 2002). Cincinnati, Ohio, 2002.

[dMRS02] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for bounded
model checking over infinite domains. In Andrei Voronkov, editor,18th Conference on
Automated Deduction (CADE), volume 2392 ofLecture Notes in Computer Science, pages
438–455. Springer-Verlag, July 27-30 2002.

47

http://sal.csl.sri.com/documentation.html

[dMRS03] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and in-
duction: From refutation to verification. In Andrei Voronkov, editor,Computer-Aided Ver-
ification, CAV 2003, volume 2725 ofLecture Notes in Computer Science, pages 14–26.
Springer-Verlag, 2003.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS.Lecture Notes in
Computer Science, 1066:208–219, 1996.

[DS95] J. Davies and S. Schneider. A Brief History of Timed CSP.Theoretical Computer Science,
138(2):243–271, February 1995.

[FMS88] J. Farnam, A. Mok, and D. Stuart. Formal Specification of Real-Time Systems. Technical
Report UTCS-TR-88-25, Department of Computer Science, University of Texas at Austin,
1988. Available athttp://www.cs.utexas.edu/users/cpg/RTS/pubs.html.

[For03] Formal Methods Program. Formal methods roadmap: Pvs, ics, and sal. Technical Report
SRI-CSL-03-05, Computer Science Laboratory, SRI International, Menlo Park, CA, Octo-
ber 2003. Available athttp://fm.csl.sri.com/doc/roadmap03.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated canonizer and solver.
In G. Berry, H. Comon, and A. Finkel, editors,Proceedings of CAV’2001, volume 2102 of
Lecture Notes in Computer Science, pages 246–249. Springer-Verlag, 2001.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid sys-
tems.Lecture Notes in Computer Science, 1254:460–463, 1997.

[HMP94] T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Methodologies for Timed Tran-
sition Systems.Information and Computation, 112(2):273–337, 1994.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-
time systems.Information and Computation, 111(2):193–244, June 1994.

[JM94] F. Jahanian and A. Mok. Modechart: A Specification Language for Real-Time Systems.
IEEE Transactions on Software Engineering, 20(12):933–947, December 1994.

[KPSY93] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration Graphs: A class of decidable
hybrid systems. InHybrid Systems, volume 736 ofLecture Notes in Computer Science,
pages 179–208. Springer-Verlag, 1993.

[LP97] Henrik Lönn and Paul Pettersson. Formal verification of a TDMA protocol start-up mech-
anism. InPacific Rim International Symposium on Fault-Tolerant Systems (PRFTS ’97),
pages 235–242, Taipei, Taiwan, December 1997. IEEE Computer Society.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. U in a nutshell.Int. Journal on Software Tools
for Technology Transfer, 1(1–2):134–152, October 1997.

[LV91] N. Lynch and F. Vaandrager. Forward and Backward Simulations for Timing-Based Sys-
tems. InProceedings of REX Workshop. Real-Time: Theory and Practice, volume 600 of
Lecture Notes in Computer Science, pages 397–446, Mook, The Netherlands, June 1991.
Springer-Verlag.

48

http://www.cs.utexas.edu/users/cpg/RTS/pubs.html
http://fm.csl.sri.com/doc/roadmap03

[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Timed-Constrained Automata. InCONCUR’91:
2nd International Conference on Concurrency Theory, volume 527 ofLecture Notes in Com-
puter Science, pages 408–423, Amsterdam, The Netherlands, August 1991. Springer-Verlag.

[MP94] Z. Manna and A. Pnueli. Temporal Verification Diagrams. InInternational Symposium
on Theoretical Aspects of Computer Software (TACS’94), volume 789 ofLecture Notes in
Computer Science, pages 726–765, Sendai, Japan, April 1994. Springer-Verlag.

[MT90] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. InProceed-
ings of CONCUR’90, volume 458 ofLecture Notes in Computer Science, pages 410–415,
Amsterdam, The Netherlands, August 1990. Springer-Verlag.

[NS94] X. Nicollin and J. Sifakis. The Algebra of Timed Processes, ATP: Theory and application.
Information and Computation, 114(1):131–178, October 1994.

[Pet81] G. L. Peterson. Myths About the Mutual Exclusion Problem.Information Processing Let-
ters, 12(3):115–116, June 1981.

[Rus00] J. Rushby. Verification Diagrams Revisited: Disjunctive Invariants for Easy Verification.
In Computer Aided Verification (CAV 2000), volume 1855 ofLecture Notes in Computer
Science, pages 508–520, Chicago, IL, July 2000. Springer-Verlag.

[Sor01] Maria Sorea. Tempo: A model-checker for event-recording automata. InProceedings of
RT-TOOLS’01, Aalborg, Denmark, August 2001. Also available as Technical Report SRI-
CSL-01-04, Computer Science Laboratory, SRI International, Menlo Park, CA, 2001.

[Sor02] Maria Sorea. Bounded model checking for timed automata. InProceedings of the Third
Workshop on Models for Time-Critical Systems (MTCS 2002), volume 68 ofElectronic
Notes in Theoretical Computer Science, 2002. http://www.elsevier.com/locate/
entcs/volume68.html.

[SRSP04] Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer. Model checking a fault-
tolerant startup algorithm: From design exploration to exhaustive fault simulation. To be
presented at DSN 2004, 2004.

[YTK01] T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic verification of fault tolerance using
model checking. InProc. of 2001 Pacific Rim International Symposium on Dependable
Computing, page 95, Seoul, Korea, December 2001.

49

http://www.elsevier.com/locate/entcs/volume68.html
http://www.elsevier.com/locate/entcs/volume68.html

Appendix A

An Overview of SAL

We give a brief overview of the main features of the SAL language and verification tools. More complete
descriptions can be found in [dMOS03] and [dMOR+04]. The SAL system and documentation can be
downloaded athttp://sal.csl.sri.com.

A.1 Specification Language

In SAL, specifications are organized in modules calledcontexts. Figure A.1 shows the contextpeterson
that describes Peterson’s mutual exclusion algorithm [Pet81]. The specification is contained in the file
peterson.sal; the names of the file and the context must match. Thepeterson example illustrates
the syntax of the SAL language and the general organization of typical SAL contexts. First, a context
introduces a number of types, constants, and possibly function definitions. Then it defines one or more
state-transition systems calledmodules. These definitions are followed by a set of lemmas or theorems
about the modules.

In Figure A.1, the context starts by defining an enumerated typePC, which consists of the three ele-
mentssleeping, trying, andcritical. This definition is followed by the description of a base module
calledprocess. Another module calledsystem is then constructed as the asynchronous composition of
two instances ofprocess. The rest of the context lists a number of theorems aboutsystem.

Base Modules and Guarded Commands

The description of a base module includes the module’s variables and parameters, aninitialization section
that specifies initial values of these variables, and atransition section that defines the module’s state-
transition relation. In most examples, the transition relation of a base module is defined using guarded
commands.

A base module’s variables and their types define the state space of the module. For example, the
state space of moduleprocess is the set of all tuples of the form〈x1, x2,pc1,pc2〉, wherex1 andx2 are
booleans, andpc1 and pc2 are values of typePC. In SAL, a moduleM can have four disjoint sets of
variables:

• input variablescan be observed but not modified byM;

• output variablescan be modified byM and can be observed but not modified by other modules;

50

http://sal.csl.sri.com

peterson: CONTEXT =
BEGIN
PC: TYPE = {sleeping, trying, critical};

process[tval : BOOLEAN]: MODULE =
BEGIN
INPUT pc2 : PC, x2 : BOOLEAN
OUTPUT pc1 : PC, x1 : BOOLEAN
INITIALIZATION
pc1 = sleeping

TRANSITION
[wakening:
pc1 = sleeping --> pc1’ = trying; x1’ = (x2 = tval)

[] entering_critical:
pc1 = trying AND (pc2 = sleeping OR x1 = (x2 /= tval))
--> pc1’ = critical

[] leaving_critical:
pc1 = critical --> pc1’ = sleeping; x1’ = (x2 = tval)

]
END;

system: MODULE =
process[FALSE]
[]
RENAME pc2 TO pc1, pc1 TO pc2,

x2 TO x1, x1 TO x2 IN process[TRUE];

mutex: THEOREM system |- G(NOT(pc1 = critical AND pc2 = critical));

invalid: THEOREM system |- G(NOT(pc1 = trying AND pc2 = critical));

livenessbug1: THEOREM system |- G(F(pc1 = critical));

livenessbug2: THEOREM system |- G(F(pc2 = critical));

liveness1: THEOREM system |- G(pc2 = trying => F(pc2 = critical));

...

END

Figure A.1: Example SAL Specification

51

• local variablescan be modified byM but are not visible to other modules;

• global variablesare shared between modules; they can be observed and modified by several mod-
ules.

For example, moduleprocess can read but not update the two input variablespc2 andx2. These variables
are controlled by the module’s environment. On the other hand, variablespc1 and x1 are under the
module’s control. They can be observed but not modified by the environment.

A guarded command has the following form

<label>: <guard> --> <assignments>

The label is optional but helps identify the transition when SAL tools display execution traces (for exam-
ple, when model checkers display counterexamples to LTL properties). The guard is a boolean condition
that specifies when the transition is enabled, and the assignments define how the transition updates the
module’s variables. Primed variables refer to the “new” state and unprimed variables to the “old” state.
Any variable that does not occur primed in the assignment is not modified by the transition. For example,
transitionwakening of Figure A.1 is as follows

wakening: pc1 = sleeping --> pc1’ = trying; x1’ = (x2 = tval)

It is enabled in any states where the conditionpc1 = sleeping is satisfied. From such ans, transition
wakening moves the module to a new states′ wherepc1 is equal totrying and wherex1 is true if x2
was equal totval in states or false otherwise. The componentspc2 andx2 are left unchanged by the
transition; they have the same value ins′ and ins.

Theprocess module is deterministic as only one of its three guarded commands may be enabled in
any state. More generally, several guarded commands of a module may be enabled at the same time. In
such a case, one of them is chosen non-deterministically. Conversely, if all guards are false, the module
cannot perform any transition.

Composition Operators

SAL provides two composition operators for building complex systems from other modules. In Fig-
ure A.1, modulesystem is the asynchronous composition of two instances ofprocess: one with the
parametertval instantiated toFALSE and the other with the parameter set toTRUE.

Modules communicate via their common state variables, that is, via the input, output, and global
variables that have the same names. It is possible to hide or rename variables to wire modules together. For
example, in the definition ofsystem, one must rename the input and output variables ofprocess[TRUE]
so that the output variables ofprocess[FALSE] are input toprocess[TRUE] and vice versa.

The asynchronous composition operator is denoted by[]. SAL also provides a synchronous compo-
sition operator denoted by||. The two types of compositions can be freely mixed. For example, one may
construct a system as the synchronous composition of two modules, themselves built by asynchronous
composition of other submodules.

The composition operators have the usual semantics. In an asynchronous composition, only one mod-
ule makes a transition at a time. In a synchronous composition all modules must make simultaneous
transitions.

52

Assertions

Properties are written as shown in Figure A.1, in the form

<property name>: THEOREM <module name> |- <temporal formula>

This asserts that a module satisfies a property written in temporal logic. Other keywords thanTHEOREM
can be used (e.g.,LEMMA or CLAIM). As far as the verification tools are concerned, there is no semantic
difference between claims, lemmas, and theorems, but the different keywords may help the user identify
more or less important properties.

In this report, we always linear-time temporal logic (LTL) to express properties, although SAL also
allows one to use CTL. The LTL modalities are denoted byG (henceforth), F (eventually), andX (next).

A.2 Analysis Tools

SAL is intended to be an open environment, in which it is easy to integrate a variety of analysis tools.
The current SAL distribution includes a translator from textual SAL specifications to XML, a lightweight
well-formedness checker, a deadlock checker, and several model checkers.

The most useful SAL tool for analyzing timed system is a bounded model checker for infinite-state
systems, that relies on the ICS decision procedures and solver. SAL also provides a bounded model
checker for finite state systems, which uses a SAT solver. The infinite-state bounded model checker
was developed at SRI by Leonardo de Moura and Harald Rueß and is based on lazy theorem proving
and lemmas on demand [dMRS02, dMR02a, dMR02b]. More details on the tools are available athttp:
//ics.csl.sri.com/ andhttp://sal.csl.sri.com/.

In general, a SAL state-transition systemM is characterized by its state spaceX, a set of initial states
I ⊆ X, and a transition relationT ⊆ X × X. Analysis tools such as the SAL bounded model checkers
represent the set of initial states and the transition relation symbolically as two predicatesI (x) andT(x, x′).
A statex ∈ X is an initial state if and only if it satisfies the predicateI (x). A statex′ is a successor ofx by
the transition relationT if and only if the pair (x, x′) satisfiesT(x, x′). Similarly, a state propertyP can be
represented symbolically via a predicateP(x).

Bounded Model Checking

In its basic form, bounded model checking searches for counterexamples to a safety property. Given a
state-transition systemM = (X, I ,T) and a state propertyP, bounded model checking at depthk ∈ N
amounts to finding a finite sequence of statesx0, . . . , xk that satisfies the formula

φ = I (x0) ∧ T(x0, x1) ∧ . . . ∧ T(xk−1, xk) ∧ ¬P(xk). (A.1)

If such a sequence exists then one can conclude thatM does not satisfy�P (written GP in SAL), since
xk is reachable from the initial statex0 and does not satisfyP. Bounded model checking requires deter-
mining the satisfiability of a formula such asφ. SAL provides two bounded model checkers that rely on
two different types of solvers. A bounded model checker for finite-state systems,sal-bmc, encodes a
transition system as boolean formulas and relies on a SAT solver. A bounded model checker for infinite
state systems,sal-inf-bmc, encodesI andT as quantifier-free first-order formulas that combines linear-
arithmetic constraints, boolean constraints, and equalities of terms built from uninterpreted functions. The

53

http://ics.csl.sri.com/
http://ics.csl.sri.com/
http://sal.csl.sri.com/

satisfiability of the resulting formulaφ is then determined by an external solver. The default solver is ICS1

butsal-inf-bmc can also use UCLID,2 CVC,3 SVC,4 and CVC Lite.5

With the formulaφ defined in (A.1), bounded model checking searches for a statexk that violatesP
and is reachable ink transition steps from one of the initial states. The unsatisfiability ofφ means only
that no such state exists. It doesnot imply that all the states reachable in fewer thank steps satisfyP. For
example, the system may deadlock afterk − 1 steps and have no trajectories of lengthk at all, or it may
happen that all states reachable ink steps satisfyP, while some states reachable ink − 1 steps do not.
Thus, the absence of counterexamples to�P at depthk does not imply that no counterexample exists at a
lower depth. Although perfectly logical given the definition ofφ, this may be somewhat unintuitive. One
may prefer searching for a sequence of statesx0, . . . , xk that satisfies the following formula

ψ = I (x0) ∧ T(x0, x1) ∧ . . . ∧ T(xk−1, xk) ∧ ¬(P(x0) ∨ . . . ∨ P(xk)). (A.2)

If such a sequence exists, one can conclude as above that�P is not satisfied. There is a trajectory of length
k that passes through a statexi that violatesP. With this new formulation — andprovided trajectories
of length k exist— the absence of counterexample at depthk implies the absence of counterexample at
lower depths. If the system deadlocks, and has no trajectory of lengthk, then bounded model checking at
depthk will answer “no counterexample found” for both formulations, but counterexamples may exist at
lower depths.

SAL gives the user options to choose between the two formulations of bounded model checking. With
the “iterative deepening” option,sal-bmc andsal-inf-bmc uses formulaφ to search for a counterex-
ample to�P of minimal length: the satisfiability ofφ is determined fork = 0, then fork = 1, and so forth,
until either a counterexample is found or a maximal depthd is reached. In the default mode, both tools
use the other formulation and search for the satisfiability of formulaψ for a user-specified depthk.

Bounded model checking is not limited to safety properties of the form�P. The SAL bounded model
checkers can find counterexamples to other LTL properties. This relies on a translation of LTL properties
to Büchi automata.

K-Induction

Bounded model checking searches for counterexamples of bounded length to an LTL property such as
�P. If no counterexample is found, one cannot conclude in general that�P is satisfied. In other words,
bounded model checking cannot prove�P. However, it can be easily adapted to support proofs by induc-
tion. This allows one to do more than searching for counterexamples and actually prove safety properties.

The standard induction rule for a property�P consists of proving that the following two formulas are
valid:

• Base case:
I (x)⇒ P(x)

• Induction step:
P(x) ∧ T(x, x′)⇒ P(x′)

1http://www.icansolve.com/
2http://www-2.cs.cmu.edu/~uclid/
3http://verify.stanford.edu/CVC/
4http://verify.stanford.edu/SVC/
5http://verify.stanford.edu/CVCL/

54

http://www.icansolve.com/
http://www-2.cs.cmu.edu/~uclid/
http://verify.stanford.edu/CVC/
http://verify.stanford.edu/SVC/
http://verify.stanford.edu/CVCL/

This can be transformed into two satisfiability problems that can be solved using a SAT solver or a solver
such as ICS, provided the formulas belong to the theory that these tools can decide.

This induction rule can be generalized to induction at depthk (k-induction) for anyk ∈ N. The
k-induction rule is as follows:

• Base case:
I (x0) ∧ T(x0, x1) ∧ . . . ∧ T(xk−2, xk−1)⇒ P(x0) ∧ . . . ∧ P(xk−1)

• Induction step:

P(x0) ∧ T(x0, x1) ∧ . . . ∧ T(xk−2, xk−1) ∧ P(xk−1) ∧ T(xk−1, xk)⇒ P(xk)

Again, the validity of both formulas can be determined using ICS or similar solvers. The previous rule is
the special case ofk-induction wherek = 1.

Both sal-bmc andsal-inf-bmc support the proof of safety properties viak-induction. It is also
possible to provide auxiliary lemmas to thek-induction rules. Such lemmas must themselves be safety
properties of the form�Q. Assuming one has shown that such a lemma is satisfied by a systemM, then
�Q can be used as an auxiliary invariant in thek-induction proof of�P. This amounts to modifying the
k-induction rule as follows:

• Base case: [
I (x0) ∧ T(x0, x1) ∧ . . . ∧ T(xk−2, xk−1)∧

Q(x0) ∧ . . . ∧ Q(xk−1)
]
⇒ P(x0) ∧ . . . ∧ P(xk−1)

• Induction step: [
P(x0) ∧ T(x0, x1) ∧ . . . ∧ T(xk−2, xk−1) ∧ P(xk−1)∧

T(xk−1, xk) ∧ Q(x0) ∧ . . . ∧ Q(xk)
]
⇒ P(xk)

It is sometimes useful to apply thek-induction rule withk = 0, to show that an invariant�Q implies
another invariant�P. Whenk = 0, and using�Q as a lemma, the base of the induction rule reduces to
true and the inductive step becomesQ(x0)⇒ P(x0). Hence, induction at depthk = 0 amounts to proving
that�Q is a stronger invariant than�P, by showing that the formulaQ(x0)⇒ P(x0) is valid.

55

Appendix B

The Train-Gate-Controller in SAL

tgc: CONTEXT =

BEGIN

TIME: TYPE = REAL;
ACTION: TYPE = {approach, in, out, exit, lower, down, raise, up};
TransitionType : TYPE = {regular, elapse};

% alternatively state transition step / elapse step

next_trans_type(t: TransitionType): TransitionType =
IF t = regular THEN elapse ELSE regular ENDIF;

%----------------
% Synchronizer
%----------------

transition_module: MODULE =
BEGIN
OUTPUT
delta: TIME,
action: ACTION,
trans: TransitionType

TRANSITION
delta’ IN { x : TIME | x >= 0 };
action’ IN {approach, in, out, exit, lower, down, raise, up};
trans’ = next_trans_type(trans)

END;

%---------
% Train
%---------

T_STATE: TYPE = {t0,t1,t2,t3};

train : MODULE =
BEGIN
INPUT
delta: TIME,
action: ACTION,

56

trans: TransitionType
LOCAL
t_state: T_STATE,
x: TIME

INITIALIZATION
t_state = t0;
x = 0

TRANSITION
[t0_t1:
trans’ = regular AND t_state = t0 AND action’ = approach -->
t_state’ = t1;
x’ = 0

[] t1_t2:
trans’ = regular AND t_state = t1 AND action’ = in AND x > 2 -->
t_state’ = t2

[] t2_t3:
trans’ = regular AND t_state = t2 AND action’ = out -->
t_state’ = t3

[] t3_t0:
trans’ = regular AND t_state = t3 AND action’ = exit -->
t_state’ = t0

[] delay_train:
trans’ = elapse AND
(t_state = t1 => x + delta’ <= 5) AND
(t_state = t2 => x + delta’ <= 5) AND
(t_state = t3 => x + delta’ <= 5) -->
x’ = x + delta’

[] skip_train:
trans’ /= elapse AND
NOT (action’ = approach OR action’ = in OR

action’ = out OR action’ = exit) --> x’ = x
]

END;

%--------
% Gate
%--------

G_STATE: TYPE = {g0, g1, g2, g3};

gate: MODULE =
BEGIN
INPUT
delta: TIME,
action: ACTION,
trans: TransitionType

LOCAL
g_state: G_STATE,
y: TIME

INITIALIZATION
g_state = g0;
y = 0

TRANSITION
[g0_g1:
trans’ = regular AND g_state = g0 AND action’ = lower -->
g_state’ = g1;
y’ = 0

[] g1_g2:
trans’ = regular AND g_state = g1 AND action’ = down -->

57

g_state’ = g2
[] g2_g3:
trans’ = regular AND g_state = g2 AND action’ = raise -->
g_state’ = g3;
y’ = 0

[] g3_g0:
trans’ = regular AND g_state = g3 AND action’ = up AND y >= 1 -->
g_state’ = g0

[] delay_gate:
trans’ = elapse AND
(g_state = g1 => y + delta’ <= 1) AND
(g_state = g3 => y + delta’ <= 2) -->
y’ = y + delta’

[] skip_gate:
trans’ /= elapse AND
NOT (action’ = lower OR action’ = down OR

action’ = raise OR action’ = up) --> y’ = y
]

END;

%--------------
% Controller
%--------------

C_STATE: TYPE = {c0, c1, c2, c3};

controller : MODULE =
BEGIN
INPUT
delta: TIME,
action: ACTION,
trans: TransitionType

LOCAL
c_state: C_STATE,
z: TIME

INITIALIZATION
c_state = c0;
z = 0

TRANSITION
[c0_c1:
trans’ = regular AND c_state = c0 AND action’ = approach -->
c_state’ = c1;
z’ = 0

[] c1_c2:
trans’ = regular AND c_state = c1 AND z = 1 AND action’ = lower -->
c_state’ = c2

[] c2_c3:
trans’ = regular AND c_state = c2 AND action’ = exit -->
c_state’ = c3;
z’ = 0

[] c3_c0:
trans’ = regular AND c_state = c3 AND action’ = raise -->
c_state’ = c0

[] delay_controller:
trans’ = elapse AND
(c_state = c1 => z + delta’ <= 1) AND
(c_state = c3 => z + delta’ <= 1) -->
z’ = z + delta’

[] skip_controller:

58

trans’ /= elapse AND
NOT (action’ = approach OR action’ = lower

OR action’ = exit OR action’ = raise) --> z’ = z
]

END;

%--
% Full system: synchronous composition
%--

system: MODULE =
transition_module || train || gate || controller;

%-------------
% Properties
%-------------

safe: LEMMA system |- G(t_state = t2 => g_state = g2);

END

59

Appendix C

The Train-Gate-Controller with
Timeouts

tgc_with_timeout: CONTEXT =

BEGIN
SIGNAL: TYPE = { approach, exit, lower, raise };
TIME: TYPE = REAL;
N: NATURAL = 3;
INDEX: TYPE = [1..N];
TIMEOUT_ARRAY: TYPE = ARRAY INDEX OF TIME;

%-----------------------
% Minimum of an array
%-----------------------

recur_min(x: TIMEOUT_ARRAY, min_sofar: TIME, idx: [0 .. N]): TIME =
IF idx = 0 THEN min_sofar
ELSE recur_min(x, min(min_sofar, x[idx]), idx-1)

ENDIF;

min(x: TIMEOUT_ARRAY): TIME = recur_min(x, x[N], N-1);

%---
% Clock module: makes time elapse up to the next timeout
%---

clock: MODULE =
BEGIN
INPUT time_out: TIMEOUT_ARRAY
GLOBAL flag1, flag2: BOOLEAN
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses: time < min(time_out) AND (NOT flag1) AND (NOT flag2)

--> time’ = min(time_out)]
END;

%---------
% Train

60

%---------

T_STATE: TYPE = { t0, t1, t2, t3 };

train: MODULE =

BEGIN
INPUT
time: TIME

OUTPUT
timeout: TIME,
msg1: SIGNAL

GLOBAL flag1: BOOLEAN
LOCAL
t_state: T_STATE

INITIALIZATION
t_state = t0;
timeout IN { x: TIME | time < x };
flag1 = FALSE

TRANSITION
[t0_t1:
t_state = t0 AND time = timeout -->
t_state’ = t1;
msg1’ = approach;
flag1’ = TRUE;
timeout’ IN { x: TIME | time + 2 < x AND x <= time + 5 }

[] t1_t2:
t_state = t1 AND time = timeout -->
t_state’ = t2;
timeout’ IN { x: TIME | time < x AND x <= time + 5 }

[] t2_t3:
t_state = t2 AND time = timeout -->
t_state’ = t3;
timeout’ IN { x: TIME | time < x AND x <= time + 5 }

[] t3_t0:
t_state = t3 AND time = timeout -->
t_state’ = t0;
msg1’ = exit;
flag1’ = TRUE;
timeout’ IN { x: TIME | time < x }

]
END;

%---------
% GATE
%---------

G_STATE: TYPE = { g0, g1, g2, g3 };

gate: MODULE =

BEGIN
INPUT
time: TIME,
msg2: SIGNAL

OUTPUT
timeout: TIME

GLOBAL flag2: BOOLEAN
LOCAL
g_state: G_STATE

61

INITIALIZATION
g_state = g0;
timeout IN { x: TIME | time < x }

TRANSITION
[g0_g1:
g_state = g0 AND msg2 = lower AND flag2 = TRUE -->
g_state’ = g1;
flag2’ = FALSE;
timeout’ IN { x: TIME | time < x AND x <= time + 1 }

[] g1_g2:
g_state = g1 AND time = timeout -->
g_state’ = g2;
timeout’ IN { x: TIME | time < x }

[] g2_g3:
g_state = g2 AND msg2 = raise AND flag2 = TRUE -->
g_state’ = g3;
flag2’ = FALSE;
timeout’ IN { x: TIME | time + 1 <= x AND x <= time + 2 }

[] g3_g0:
g_state = g3 AND time = timeout -->
g_state’ = g0;
timeout’ IN { x: TIME | time < x }

]
END;

%-------------
% Controller
%-------------

C_STATE: TYPE = { c0, c1, c2, c3 };

controller : MODULE =

BEGIN
INPUT
time: TIME,
msg1: SIGNAL

OUTPUT
timeout: TIME,
msg2: SIGNAL

GLOBAL flag1, flag2: BOOLEAN
LOCAL
c_state: C_STATE

INITIALIZATION
c_state = c0;
timeout IN { x: TIME | time < x };
flag2 = FALSE

TRANSITION
[c0_c1:
c_state = c0 AND msg1 = approach AND flag1 = TRUE -->
c_state’ = c1;
flag1’ = FALSE;
timeout’ = time + 1

[] c1_c2:
c_state = c1 AND time = timeout -->
c_state’ = c2;
msg2’ = lower;
flag2’ = TRUE;
timeout’ IN { x: TIME | time < x }

[] c2_c3:

62

c_state = c2 AND msg1 = exit AND flag1 = TRUE -->
c_state’ = c3;
flag1’ = FALSE;
timeout’ IN { x: TIME | time < x AND x <= time + 1 }

[] c3_c0:
c_state = c3 AND time = timeout -->
c_state’ = c0;
msg2’ = raise;
flag2’ = TRUE;
timeout’ IN { x: TIME | time < x }

]
END;

%--
% Asynchronous composition: all processes together
% time_out[i] = timeout variable of train (i=1),
% gate (i=1), controller (i=3)
%--

tgc: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY
(RENAME timeout TO time_out[1] IN train)
[]
(RENAME timeout TO time_out[2] IN gate)
[]
(RENAME timeout TO time_out[3] IN controller);

system: MODULE = clock [] tgc;

%-----------
% properties
%-----------

time_aux1: LEMMA system |- G(FORALL (i:INDEX): time <= time_out[i]);

time_aux2: LEMMA system |- G(t_state = t2 => time_out[1] - time <= 5);

time_aux3: LEMMA
system |- G(t_state = t1 AND g_state = g1 => time_out[1] > time_out[2]);

safe: LEMMA system |- G(t_state = t2 => g_state = g2);

nosafe: LEMMA system |- G(t_state = t2 => g_state = g3);

END

63

Appendix D

Fischer’s Mutual Exclusion Protocol

fischer: CONTEXT =

BEGIN
N: NATURAL = 2;
IDENTITY: TYPE = [1 .. N];
LOCK_VALUE: TYPE = [0 .. N];
TIME: TYPE = REAL;
delta1: TIME = 2;
delta2: TIME = 4;
TIMEOUT_ARRAY: TYPE = ARRAY IDENTITY OF TIME;

%-----------------------
% Minimum of an array
%-----------------------

recur_min(x: TIMEOUT_ARRAY, min_sofar: TIME, idx: [0 .. N]): TIME =
IF idx = 0 THEN min_sofar
ELSE recur_min(x, min(min_sofar, x[idx]), idx-1)

ENDIF;

min(x: TIMEOUT_ARRAY): TIME = recur_min(x, x[N], N-1);

%---
% Clock module: makes time elapse up to the next timeout
%---

clock: MODULE =
BEGIN
INPUT time_out: TIMEOUT_ARRAY
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses: time < min(time_out) --> time’ = min(time_out)]

END;

%--------------
% Process[i]
%--------------

PC: TYPE = { sleeping, waiting, trying, critical };

64

process[i: IDENTITY]: MODULE =
BEGIN
INPUT time: TIME
GLOBAL lock: LOCK_VALUE
OUTPUT timeout: TIME
LOCAL pc: PC

INITIALIZATION
pc = sleeping;
timeout IN { x: TIME | time < x };
lock = 0

TRANSITION
[waking_up:
pc = sleeping AND time = timeout AND lock = 0 -->

pc’ = waiting;
timeout’ IN { x: TIME | time < x AND x <= time + delta1 }

[] try_again_later:
pc = sleeping AND time = timeout AND lock /= 0 -->

timeout’ IN { x: TIME | time < x }
[] setting_lock:
pc = waiting AND time = timeout -->

pc’ = trying;
lock’ = i;
timeout’ IN { x: TIME | time + delta2 <= x }

[] entering_cs:
pc = trying AND time = timeout AND lock = i -->

pc’ = critical;
timeout’ IN { x: TIME | time < x }

[] lock_changed:
pc = trying AND time = timeout AND lock /= i -->

pc’ = sleeping;
timeout’ IN { x: TIME | time < x }

[] exiting_cs:
pc = critical AND time = timeout -->

pc’ = sleeping;
lock’ = 0;
timeout’ IN { x: TIME | time < x }

]
END;

%--
% Asynchronous composition: all processes together
% time_out[i] = timeout variable of process[i]
%--

processes: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY
([] (i: IDENTITY): (RENAME timeout TO time_out[i] IN process[i]));

system: MODULE = clock [] processes;

%--------------
% Properties
%--------------

time_aux1: LEMMA
system |- G(FORALL (i: IDENTITY): time <= time_out[i]);

time_aux2: LEMMA

65

system |- G(FORALL (i: IDENTITY):
pc[i] = waiting => time_out[i] - time <= delta1);

time_aux3: LEMMA
system |- G(FORALL (i, j: IDENTITY):

lock = i AND pc[j] = waiting => time_out[i] > time_out[j]);

logical_aux1: LEMMA
system |- G(FORALL (i, j: IDENTITY):

pc[i] = critical => lock = i AND pc[j] /= waiting);

mutex: THEOREM
system |- G(FORALL (i: IDENTITY): pc[i] = critical => lock = i);

mutual_exclusion: THEOREM
system |- G(FORALL (i, j: IDENTITY):

i /= j AND pc[i] = critical => pc[j] /= critical);

END

66

Appendix E

Fischer’s Protocol: Revised
Specifications

fischer2: CONTEXT =

BEGIN

N: NATURAL = 2;

IDENTITY: TYPE = [1 .. N];

LOCK_VALUE: TYPE = [0 .. N];

TIME: TYPE = REAL;

delta1: {x: REAL | 0 < x};

delta2: {x : REAL | delta1 < x};

TIMEOUT_ARRAY: TYPE = ARRAY IDENTITY OF TIME;

%-----------------------
% Minimum of an array
%-----------------------

is_min(x: TIMEOUT_ARRAY, t: TIME): bool =
(FORALL (i: IDENTITY): t <= x[i]) AND (EXISTS (i: IDENTITY): t = x[i]);

%---
% Clock module: makes time elapse up to the next timeout
%---

clock: MODULE =
BEGIN
INPUT time_out: TIMEOUT_ARRAY
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses:

67

(FORALL (i: IDENTITY): time < time_out[i]) -->
time’ IN { t: TIME | is_min(time_out, t) }

]
END;

%--------------
% Process[i]
%--------------

PC: TYPE = { sleeping, waiting, trying, critical };

process[i: IDENTITY]: MODULE =
BEGIN
INPUT time: TIME
GLOBAL lock: LOCK_VALUE
OUTPUT timeout: TIME
LOCAL pc: PC

INITIALIZATION
pc = sleeping;
timeout IN { x: TIME | time < x };
lock = 0

TRANSITION
[waking_up:
pc = sleeping AND time = timeout AND lock = 0 -->

pc’ = waiting;
timeout’ IN { x: TIME | time < x AND x <= time + delta1 }

[] try_again_later:
pc = sleeping AND time = timeout AND lock /= 0 -->

timeout’ IN { x: TIME | time < x }
[] setting_lock:
pc = waiting AND time = timeout -->

pc’ = trying;
lock’ = i;
timeout’ IN { x: TIME | time + delta2 <= x }

[] entering_cs:
pc = trying AND time = timeout AND lock = i -->

pc’ = critical;
timeout’ IN { x: TIME | time < x }

[] lock_changed:
pc = trying AND time = timeout AND lock /= i -->

pc’ = sleeping;
timeout’ IN { x: TIME | time < x }

[] exiting_cs:
pc = critical AND time = timeout -->

pc’ = sleeping;
lock’ = 0;
timeout’ IN { x: TIME | time < x }

]
END;

%--
% Asynchronous composition: all processes together
% time_out[i] = timeout variable of process[i]
%--

processes: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY
([] (i: IDENTITY): (RENAME timeout TO time_out[i] IN process[i]));

68

system: MODULE = clock [] processes;

%--------------
% Properties
%--------------

time_aux0: LEMMA
system |- G(time >= 0 AND FORALL (i: IDENTITY): time_out[i] > 0);

time_aux1: LEMMA
system |- G(FORALL (i: IDENTITY): time <= time_out[i]);

time_aux2: LEMMA
system |- G(FORALL (i: IDENTITY):

pc[i] = waiting => time_out[i] - time <= delta1);

time_aux3: LEMMA
system |- G(FORALL (i, j: IDENTITY):

lock = i AND pc[j] = waiting => time_out[i] > time_out[j]);

logical_aux1: LEMMA
system |- G(FORALL (i, j: IDENTITY):

pc[i] = critical => lock = i AND pc[j] /= waiting);

mutex: THEOREM
system |- G(FORALL (i: IDENTITY): pc[i] = critical => lock = i);

mutual_exclusion: THEOREM
system |- G(FORALL (i, j: IDENTITY):

i /= j AND pc[i] = critical => pc[j] /= critical);

END

69

Appendix F

Simplified TTA Startup

%
% Simplified TTA startup protocol
% - Does not model failures
% - Assumes a simple reliable hub
% - Includes timing
%

simple_startup2: CONTEXT =

BEGIN

N: NATURAL = 10;

% Ugly type definition to work around ICS’s limitations
% (incompleteness when dealing with integers)

IDENTITY: TYPE = { x: [1 .. N] | x=1 OR x=2 OR x=3 OR x=4 OR x=5 OR
x=6 OR x=7 OR x=8 OR x=9 OR x=10 };

TIME: TYPE = REAL;

TIMEOUT_ARRAY: TYPE = ARRAY IDENTITY OF TIME;

%---
% Delays, assuming all slots have the same length
%---

slot_time: TIME = 3;

round_time: TIME = slot_time * N;

% propagation delay (must be smaller than half the slot time)

propagation: { x : TIME | 0 < x AND x < slot_time/2 };

% maximal time in init state

max_init_time: TIME = 30;

70

% timeouts in listen and coldstart states

tau_startup(i: IDENTITY): TIME = slot_time * (i - 1);

tau_listen(i: IDENTITY): TIME = 2 * round_time + tau_startup(i);

% tau_listen(i: IDENTITY): TIME = 2 * round_time;

tau_coldstart(i: IDENTITY): TIME = round_time + tau_startup(i);

%--
% Hub/communication channel model
%--

message: TYPE = { cs_frame, i_frame };

calendar: TYPE =
[# flag: ARRAY IDENTITY OF bool, % which nodes have to receive the message
content: message, % message
origin: IDENTITY, % sender
send: TIME, % transmission time (useful for proofs)
delivery: TIME % reception time (the same for all recipients)

#];

%---------------------------
% Operations on calendars
%---------------------------

%---
% empty calendar: content, origin, and delivery are irrelevant
%---

empty_cal: calendar = (# flag := [[i: IDENTITY] false],
content := i_frame,
origin := 1,
send := 0,
delivery := 0 #);

empty?(cal: calendar): bool = FORALL (i: IDENTITY): NOT cal.flag[i];

%--
% Check for pending events and messages
%--

event_pending?(cal: calendar, i: IDENTITY): bool = cal.flag[i];

i_frame_pending?(cal: calendar, i: IDENTITY): bool =
cal.flag[i] AND cal.content = i_frame;

cs_frame_pending?(cal: calendar, i: IDENTITY): bool =
cal.flag[i] AND cal.content = cs_frame;

cs_frame?(cal: calendar): bool =
NOT empty?(cal) AND cal.content = cs_frame;

i_frame?(cal: calendar): bool =

71

NOT empty?(cal) AND cal.content = i_frame;

%---
% occurrence time and origin of the pending events
% both are meaningful only if the calendar is not empty
%---

event_time(cal: calendar, i: IDENTITY): TIME = cal.delivery;

frame_origin(cal: calendar, i: IDENTITY): IDENTITY = cal.origin;

%-----------------------------
% remove event received by i
%-----------------------------

consume_event(cal: calendar, i: IDENTITY): calendar =
cal WITH .flag[i] := false;

%---
% broadcast a message from i to all nodes except i
% - t is the transmission time
% if there is already a message m0 being sent then
% a collision occurs and is resolved as follows:
% - m0 remains the transmitted messages
% - node i will not receive m0
% - message m is dropped
%--

bcast(cal: calendar, m: message, i: IDENTITY, t: TIME): calendar =
IF empty?(cal) THEN

(# flag := [[j: IDENTITY] j /= i],
content := m,
origin := i,
send := t,
delivery := t + propagation #)

ELSE cal WITH .flag[i] := false
ENDIF;

%---
% time of the next event in the calendar
% only meaningful if the calendar is not empty
%---

first_event(cal: calendar): TIME = cal.delivery;

%---
% Clock module
% - input: timeout of each node + calendar
% - if the calendar is empty, the clock module
% advances time up to the smallest timeout
% - if a message is in the bus, time advances
% to the smallest timeout or to the bus delivery
% time, whichever is smaller
%---

72

time_can_advance(cal: calendar, time_out: TIMEOUT_ARRAY, t: TIME): BOOLEAN =
IF empty?(cal) THEN

(FORALL (i: IDENTITY): t < time_out[i])
ELSE

(FORALL (i: IDENTITY): t < time_out[i]) AND t < first_event(cal)
ENDIF;

is_next_event(cal: calendar, time_out: TIMEOUT_ARRAY, t: TIME): BOOLEAN =
IF empty?(cal) THEN

(FORALL (i: IDENTITY): t <= time_out[i])
AND (EXISTS (i: IDENTITY): t = time_out[i])

ELSE
(FORALL (i: IDENTITY): t <= time_out[i])

AND t <= first_event(cal)
AND (t = first_event(cal) OR (EXISTS (i: IDENTITY): t = time_out[i]))

ENDIF;

clock: MODULE =
BEGIN
INPUT time_out: TIMEOUT_ARRAY
INPUT cal: calendar
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses:
time_can_advance(cal, time_out, time) -->

time’ IN { t: TIME | is_next_event(cal, time_out, t) }]
END;

%------------------------
% Next slot after slot i
%------------------------

inc(i: IDENTITY): IDENTITY = IF i=N THEN 1 ELSE i+1 ENDIF;

%---
% Number of slots between slot i and next slot j
% slot_delay(i, i + 1) = 0 if i<N
% slot_delay(N, 1) = 0
% slot_delay(i, i) = N-1
%---

slot_delay(i, j: IDENTITY): [0 .. N-1] =
IF i < j THEN j - i - 1 ELSE N - i + j - 1 ENDIF;

%-----------------------------------
% States of a node during startup
%-----------------------------------

73

PC: TYPE = { init, listen, coldstart, active };

%-------------------
% Node[i] process
%-------------------

node[i: IDENTITY]: MODULE =
BEGIN
INPUT time: TIME
OUTPUT timeout: TIME
OUTPUT slot: IDENTITY % slot and pc need to be output
OUTPUT pc: PC % to be read by the abstraction module
GLOBAL cal: calendar

INITIALIZATION
pc = init;
timeout IN { x: TIME | time < x AND x < max_init_time};
cal = empty_cal;

TRANSITION
[init_to_listen:
pc = init AND time = timeout -->
pc’ = listen;
timeout’ = time + tau_listen(i)

% reception of a frame in the init state ==> drop it
[] frame_in_init:
pc = init AND event_pending?(cal, i) AND time = event_time(cal, i) -->
cal’ = consume_event(cal, i)

% end of listen phase: send cs frame, move to coldstart state
% bcast function takes care of collisions
[] listen_to_coldstart:
pc = listen AND time = timeout -->
pc’ = coldstart;
timeout’ = time + tau_coldstart(i);
cal’ = bcast(cal, cs_frame, i, time)

% reception of a cs_frame in the listen state:
% move to coldstart and set timeout
[] cs_frame_in_listen:
pc = listen AND cs_frame_pending?(cal, i) AND time = event_time(cal, i) -->
pc’ = coldstart;
timeout’ = time + tau_coldstart(i) - propagation;
cal’ = consume_event(cal, i)

% for reception of an i_frame in the listen state: see below

% reception of a cs_frame in the coldstart state:
% synchronize on the sender and move to active state
[] cs_frame_in_coldstart:
pc = coldstart AND cs_frame_pending?(cal, i) AND time = event_time(cal, i) -->
pc’ = active;
timeout’ = time + slot_time - propagation;
slot’ = frame_origin(cal, i);
cal’ = consume_event(cal, i)

% end of coldstart phase (timeout tau_coldstart(i) is reached)
% broadcast a cs_frame and loop back to coldstart state
% --> TO DO: check if it’s OK to go directly to active from here
[] coldstart_to_coldstart:

74

pc = coldstart AND time = timeout -->
% pc’ = coldstart;
timeout’ = time + tau_coldstart(i);
cal’ = bcast(cal, cs_frame, i, time)

% reception of an i_frame in listen or coldstart state: synchronize and move
% to the active state
[] i_frame_processed:
(pc = listen OR pc = coldstart) AND i_frame_pending?(cal, i) AND

time = event_time(cal, i) -->
pc’ = active;
timeout’ = time + slot_time - propagation;
slot’ = frame_origin(cal, i);
cal’ = consume_event(cal, i)

% active state: end of current slot, new slot /= i
[] passive_slot:
pc = active AND time = timeout AND inc(slot) /= i -->
timeout’ = time + slot_time;
slot’ = inc(slot)

% active state: end of current slot, new slot = i
% broadcast an i_frame
[] active_slot:
pc = active AND time = timeout AND inc(slot) = i -->
timeout’ = time + slot_time;
slot’ = inc(slot);
cal’ = bcast(cal, i_frame, i, time)

% reception of an i_frame
% in active state: just consume the event. No action
[] i_frame_ignored:
pc = active AND i_frame_pending?(cal, i) AND time = event_time(cal, i) -->

cal’ = consume_event(cal, i)

]
END;

%--
% Asynchronous composition: all processes together
% time_out[i] = timeout variable of process[i]
%--

nodes: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY,

pc: ARRAY IDENTITY OF PC,
slot: ARRAY IDENTITY OF IDENTITY

([] (i: IDENTITY): (RENAME timeout TO time_out[i],
pc TO pc[i], slot TO slot[i] IN node[i]));

tta: MODULE = clock [] nodes;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ABSTRACTION AND MONITORS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75

%---
% Abstraction module: define the abstract state variables
%---

abstractor: MODULE =
BEGIN
INPUT
time: TIME,
cal: calendar,
time_out: TIMEOUT_ARRAY,
pc: ARRAY IDENTITY OF PC,
slot: ARRAY IDENTITY OF IDENTITY

OUTPUT
A1, A2, A3, A4, A5, A6: BOOLEAN

DEFINITION
A1 = empty?(cal) AND (FORALL (i: IDENTITY): pc[i] = init OR pc[i] = listen);

A2 = cs_frame?(cal) AND pc[cal.origin] = coldstart
AND (FORALL (i: IDENTITY):

pc[i] = init OR pc[i] = listen OR pc[i] = coldstart)
AND (FORALL (i: IDENTITY): pc[i] = coldstart =>

NOT event_pending?(cal, i)
AND time_out[i] - cal.send >= tau_coldstart(i)
AND time_out[i] - time <= tau_coldstart(i))

AND (FORALL (i: IDENTITY): pc[i] = listen =>
event_pending?(cal, i)
OR time_out[i] >= cal.send + tau_listen(i));

A3 = empty?(cal)
AND (EXISTS (i: IDENTITY): pc[i] = coldstart)
AND (FORALL (i: IDENTITY):

pc[i] = init OR pc[i] = listen OR pc[i] = coldstart)
AND (FORALL (i: IDENTITY):

pc[i] = coldstart => time_out[i] - time <= tau_coldstart(i))
AND (FORALL (i, j: IDENTITY): pc[i] = coldstart AND pc[j] = coldstart

AND i < j => time_out[j] - time_out[i] > propagation)
AND (FORALL (i, j: IDENTITY): pc[i] = coldstart AND pc[j] = listen =>

time_out[j] - time_out[i] > propagation);

A4 = cs_frame?(cal)
AND pc[cal.origin] = coldstart
AND time_out[cal.origin] = cal.send + tau_coldstart(cal.origin)
AND NOT event_pending?(cal, cal.origin)
AND (FORALL (i: IDENTITY): pc[i] = coldstart AND i /= cal.origin =>

(event_pending?(cal, i) AND event_time(cal, i) < time_out[i])
OR (time_out[i] - cal.send >= tau_coldstart(i) AND

time_out[i] - time <= tau_coldstart(i)))
AND (FORALL (i: IDENTITY): pc[i] = listen =>

(event_pending?(cal, i) AND event_time(cal, i) < time_out[i])
OR time_out[i] >= cal.send + tau_listen(i))

AND (FORALL (i: IDENTITY): pc[i] = active =>
slot[i] = cal.origin AND time_out[i] = cal.send + slot_time);

A5 = empty?(cal)
AND (EXISTS (i: IDENTITY): pc[i] = active)
AND (FORALL (i: IDENTITY):

pc[i] = active => time_out[i] <= time + slot_time)
AND (FORALL (i, j: IDENTITY): pc[i] = active AND pc[j] = active =>

(time < time_out[i] AND time < time_out[j] =>

76

slot[i] = slot[j] AND time_out[i] = time_out[j])
AND (time = time_out[i] AND time = time_out[j] => slot[i] = slot[j])
AND (time < time_out[i] AND time = time_out[j] =>

slot[i] = inc(slot[j]) AND time_out[i] = time_out[j] + slot_time))
AND (FORALL (i, j: IDENTITY):

pc[i] = active AND (pc[j] = listen OR pc[j] = coldstart) =>
time_out[j] > time_out[i] +

slot_delay(slot[i], i) * slot_time + propagation);

A6 = i_frame?(cal)
AND pc[cal.origin] = active AND slot[cal.origin] = cal.origin
AND time_out[cal.origin] = cal.send + slot_time
AND (FORALL (i: IDENTITY): pc[i] = active AND time < time_out[i] =>

slot[i] = cal.origin AND time_out[i] = time_out[cal.origin])
AND (FORALL (i: IDENTITY): pc[i] = active AND time = time_out[i] =>

inc(slot[i]) = cal.origin AND
time_out[cal.origin] = time_out[i] + slot_time)

AND (FORALL (i: IDENTITY): pc[i] = listen =>
(event_pending?(cal, i) AND event_time(cal, i) < time_out[i])

OR (time_out[i] >= cal.send + tau_listen(i)))
AND (FORALL (i: IDENTITY): pc[i] = coldstart =>

event_pending?(cal, i) AND event_time(cal, i) < time_out[i]);

END;

%------------
% Monitors
%------------

abstract_state: TYPE = {a1, a2, a3, a4, a5, a6, bad };

monitor: MODULE =
BEGIN
INPUT A1, A2, A3, A4, A5, A6: BOOLEAN
LOCAL state: abstract_state

INITIALIZATION
state = a1

TRANSITION
[state = a1 -->

state’ = IF A1’ THEN a1 ELSIF A2’ THEN a2 ELSE bad ENDIF

[] state = a2 -->
state’ = IF A2’ THEN a2 ELSIF A3’ THEN a3 ELSE bad ENDIF

[] state = a3 -->
state’ = IF A3’ THEN a3 ELSIF A4’ THEN a4 ELSE bad ENDIF

[] state = a4 -->
state’ = IF A4’ THEN a4 ELSIF A3’ THEN a3 ELSIF A5’ THEN a5 ELSE bad ENDIF

[] state = a5 -->
state’ = IF A5’ THEN a5 ELSIF A6’ THEN a6 ELSE bad ENDIF

[] state = a6 -->
state’ = IF A6’ THEN a6 ELSIF A5’ THEN a5 ELSE bad ENDIF

[] ELSE --> state’ = bad
]

END;

77

%--------------
% Properties
%--------------

system: MODULE = tta || abstractor || monitor;

%
% time_aux0 to time_aux2 are provable by induction at depth 1
% time_aux3 is provable by induction at depth 4, or by induction
% at depth 1 using time_aux0 as a lemma
%

time_aux0: LEMMA
system |- G(time >= 0);

time_aux1: LEMMA
system |- G(FORALL (i: IDENTITY): time <= time_out[i]);

time_aux2: LEMMA
system |- G(empty?(cal) OR (cal.send <= time AND time <= first_event(cal)));

time_aux3: LEMMA
system |- G(FORALL (i: IDENTITY): time_out[i] > 0);

%
% delivery_delay: all by induction at depth 1
%

delivery_delay: LEMMA
system |- G(empty?(cal) OR first_event(cal) <= cal.send + propagation);

delivery_delay1: LEMMA
system |-
G(FORALL (i: IDENTITY):

event_pending?(cal, i) => event_time(cal, i) = cal.send + propagation);

delivery_delay2: LEMMA
system |-
G(FORALL (i: IDENTITY):

i_frame_pending?(cal, i) => event_time(cal, i) <= cal.send + propagation);

delivery_delay3: LEMMA
system |-
G(FORALL (i: IDENTITY):

cs_frame_pending?(cal, i) => event_time(cal, i) <= cal.send + propagation);

%
% a sender does not receive its own frame: by induction at depth 1
%

calendar_aux1: LEMMA
system |- G(NOT event_pending?(cal, cal.origin));

%----------------------

78

% Abstraction lemmas
%----------------------

abstract_init: LEMMA system |- A1;

abstract_a1: LEMMA system |- G(state = a1 => A1);
abstract_a2: LEMMA system |- G(state = a2 => A2);
abstract_a3: LEMMA system |- G(state = a3 => A3);
abstract_a4: LEMMA system |- G(state = a4 => A4);
abstract_a5: LEMMA system |- G(state = a5 => A5);
abstract_a6: LEMMA system |- G(state = a6 => A6);

abstract_invar: LEMMA system |- G(state /= bad);

%
% Safety property
%

synchro: THEOREM
system |- G(FORALL (i, j: IDENTITY):

pc[i] = active AND pc[j] = active AND
time < time_out[i] AND time < time_out[j] =>

time_out[i] = time_out[j] AND slot[i] = slot[j]);

END

79

	Introduction
	Timed Automata in SAL
	Timed Automata
	Translation to SAL
	Synchronizer
	Base Modules
	Full System

	Example Verifications
	Discussion

	Timeout Automata
	Definition
	Fischer's Mutual Exclusion Protocol
	SAL Model
	Analysis
	Performance
	Variant Specifications

	The Train-Gate-Controller Revisited

	Calendar Automata
	The TTA Startup Protocol
	A Simplified Startup Protocol in SAL
	Calendar
	Nodes
	Full Model

	Protocol Verification
	Correctness Property
	Proof by Induction
	Proof via Abstraction
	Results

	Conclusion
	An Overview of SAL
	Specification Language
	Analysis Tools

	The Train-Gate-Controller in SAL
	The Train-Gate-Controller with Timeouts
	Fischer's Mutual Exclusion Protocol
	Fischer's Protocol: Revised Specifications
	Simplified TTA Startup

