
Modeling and Verification of a Fault-Tolerant Real-Time
Startup Protocol Using Calendar Automata

To be presented at FORMATS/FTRTFT’04, Grenoble 2004

c©Springer-Verlag

Bruno Dutertre1 and Maria Sorea2

1 System Design Laboratory, SRI International, Menlo Park, CA, USA
bruno@sdl.sri.com

2 Abteilung Künstliche Intelligenz, Universität Ulm, Ulm, Germany
sorea@informatik.uni-ulm.de

Abstract. We discuss the modeling and verification of real-time systems using
the SAL model checker. A new modeling framework based on event calendars
enables dense timed systems to be described without relying on continuously
varying clocks. We present verification techniques that rely on induction and ab-
straction, and show how these techniques are efficiently supported by the SAL
symbolic model-checking tools. The modeling and verification method is applied
to the fault-tolerant real-time startup protocol used in the Timed Triggered Archi-
tecture.

1 Introduction

SAL (Symbolic Analysis Laboratory) is a framework for the specification and analysis
of concurrent systems. It consists of the SAL language [1], which provides notations
for specifying state machines and their properties, and the SAL system [2] that provides
model checkers and other tools for analyzing properties of state machine specifications
written in SAL. These tools include a bounded model checker for infinite-state systems
that relies on decision procedures for a combination of linear arithmetic, uninterpreted
functions, and propositional logic. This tool enables the analysis of systems that mix
real-valued and discrete state variables and can then apply to real-time systems with a
dense time model.

SAL is a generalist tool, intended for the modeling and verification of discrete tran-
sition systems, and not for systems with continuous dynamics. As a consequence, exist-
ing models such as timed automata, which employ continuous clocks, do not fit the SAL
framework very well. A first contribution of this paper is the definition of a new class
of timed transition systems that use dense time but do not require continuously varying
state variables, and are then better suited to SAL. The inspiration for these models is
the concept ofevent calendarsthat has been used for decades in computer simulation
of discrete event systems. Unlike clocks, which measure delays since the occurrence of
past events, a calendar stores information about future events and the time at which they
are scheduled to occur. This provides a simple mechanism for modeling time progress:
time always advance to the next event in the calendar, that is, to the time where the next



2 Bruno Dutertre and Maria Sorea

discrete transition is enabled. This solves the main difficulty encountered when encod-
ing timed automata via transition systems, namely — ensuring maximal time progress.

The paper shows then how the SAL infinite-state bounded-model checker — which
is primarily intended for refutation and counterexample finding — can be used as a veri-
fication tool and applied to timed models. A simple technique is to use a bounded model
checker to perform proof by induction. We extend this technique by applying bounded
model checking (BMC) to proof by abstraction. More precisely, we use BMC for au-
tomatically proving that an abstraction is correct. This provides efficient automation to
support a proof method based on disjunctive invariants proposed by Rushby [3].

The modeling approach and the verification methods have been applied to the fault-
tolerant real-time startup protocol used by the Timed Triggered Architecture (TTA) [4].
We first illustrate the techniques on a simplified version of the startup algorithm, where
timing and transmission delays are modeled but where faults are not considered. We
then discuss the verification of a more complex version of the protocol in which both
timing and node failures are modeled.

Compared to existing approaches, the framework we present lies between fully au-
tomated model checking and manual verification using interactive theorem proving.
Several special-purpose model checkers (e.g., [5–8]) exist for timed automata and have
been applied to nontrivial examples. However, these tools apply only to automata with
finite control and, in practice, to relatively small systems. This limitation makes it dif-
ficult to apply these tools to fault-tolerant systems, as modeling faults typically leads
to automata with a very large number of discrete states. Other real-time formalisms
(e.g., [9, 10]) may be more expressive and general, but they have had limited tool sup-
port. In such frameworks, proofs are done by hand or, in some cases, with interactive
theorem provers (e.g., [11, 12]). The modeling and verification method we discuss is ap-
plicable to a larger class of systems than timed automata, including some systems with
infinite control, but it remains efficiently supported by a model-checking tool. Proofs
are not completely automatic, as the user must provide auxiliary lemmas or candidate
abstractions. However, the correctness of these lemmas or abstractions is checked au-
tomatically by the bounded model checker, much more efficiently than can be done
using an interactive theorem prover. The method is not only efficient at reasoning about
timed systems, but, as the startup example illustrates, it also copes with the discrete
complexity introduced by faults.

2 Timed Systems in SAL

2.1 An Overview of SAL

SAL is a framework for the specification and analysis of traditional state-transition sys-
tems of the form〈S, I ,→〉, whereS is a state space,I ⊆ S is the set of initial states, and
→ is a transition relation onS. Each stateσ of S is a mapping that assigns a value of an
appropriate type to each of the system’s state variables. The core of SAL is a language
for the modular specification of such systems. The relatively abstract and high-level
specification language provides many of the types and constructs found in PVS, includ-
ing infinite types such as the reals, the integers, and recursive data types, and therefore



Modeling and Verification of a Real-Time Startup Protocol 3

allows for specifying systems and their properties in a convenient and succinct manner.
The main construct in SAL is themodule. A module contains the specification of a state
machine and can be composed with other modules synchronously or asynchronously.

Several analysis tools are part of the current SAL environment [2]. These include
two symbolic model checkers, a SAT-based bounded model checker for finite sys-
tems, and a bounded model checker for infinite systems. This model checker, called
sal-inf-bmc, searches for counterexamples to a given property by encoding tran-
sition relation and initialization into logical formulas in the theory supported by the
ICS solver. ICS is a decision procedure and satisfiability solver for a combination of
quantifier-free theories that include linear arithmetic over the reals and the integers,
equalities with uninterpreted function symbols, propositional logic, and others [13, 14].
sal-inf-bmc can also use other solvers, if they can decide the appropriate theories.

Although bounded model checking is primarily a refutation method, the symbolic
techniques it employs can be extended to proof by induction as discussed in [15].
sal-inf-bmc can be used to prove that a systemM = 〈S, I ,→〉 satisfies a formula
�P, usingk-induction, which consists of the two following stages:

– Base case:Show that all the states reachable fromI in no more thank − 1 steps
satisfyP.

– Induction step:For all trajectoriesσ0→ . . .→ σk of lengthk, show that

σ0 |= P ∧ . . . ∧ σk−1 |= P ⇒ σk |= P.

The usual induction rule is just the special case wherek = 1. sal-inf-bmc also sup-
ports k-induction with auxiliary invariants as lemmas. This allows one to prove�P
under the assumption that a lemma�Q is satisfied.

Thek-induction rule can be more successful as a proof technique than standard in-
duction, as it is a form of automated invariant strengthening. Proving the invariance
of P by k-induction is equivalent to proving the invariance ofP ∧ ©P ∧ . . . ∧ ©k−1P
by one-step induction. For a sufficiently largek, this stronger property is more likely
to be inductive than the originalP. However, there are transition systemsM for which
k-induction cannot do better than standard induction. For example, if the transition rela-
tion is reflexive, then it is easy to show that if�P is not provable by standard induction,
it is not provable either byk-induction with anyk > 1.

2.2 Clock-based Models

A first step in applying SAL to timed systems is to find a convenient description of such
systems as state machines. One may be tempted to start from an existing formalism
— such as timed automata [16] or related models (e.g., [17, 18]) — whose semantics
is typically defined by means of transition systems. Encoding such models in SAL is
possible and leads to what may be calledclock-basedmodels. A clock-based systemM
is built from a setC of real-valued state variables (the clocks) and a setA of discrete
variables, withA andC disjoint. A stateσ ofM is a mapping fromA∪C to appropriate
domains; in all initial stateσ, we haveσ(c) = 0 for every clockc ∈ C; and the transition
relation consists of two types of transitions:



4 Bruno Dutertre and Maria Sorea

– Time progress:σ → σ′ where, for someδ ≥ 0 and all clockc we haveσ′(c) =
σ(c) + δ, and, for every discrete variablea, we haveσ′(a) = σ(a).

– Discrete transitions:σ→ σ′ whereσ′(c) = σ(c) orσ′(c) = 0 for all clockc.

We have experimented with clock-based models when translating and analyzing timed
automata in SAL [19, 20] but we encountered several difficulties. First, the clocks vary
continuously with time. This means thatδ can be arbitrarily small in a time-progress
transition. As a consequence, it is difficult to ensure progress. The transition system
has infinite trajectories in which no discrete transition ever occurs and time remains
bounded. These undesirable trajectories cannot be easily excluded and they make it
difficult to analyze liveness properties. Idle steps are possible (i.e., time-progress tran-
sitions with δ = 0), which makesk-induction useless, except fork = 1. Preserving
modularity is another issue, as the SAL composition operators do not match the prod-
uct of timed automata.

These issues can be solved to some extent, and the analysis of timed automata in
SAL is possible using various encoding tricks. A better approach is to avoid continuous
clocks and develop timed models that are better suited to SAL. For this purpose, we
propose a modeling method inspired fromevent calendars, a concept that has been
used for decades in simulation of discrete event systems.

2.3 Timeout-based Models

In discrete event simulation, a calendar (also called event list) is a data structure that
stores future events and the times at which these events are scheduled to occur. Unlike
a clock, which measures the time elapsed since its last reset, a calendar contains infor-
mation about the future. By following this principle, we can model real-time systems
as standard transition systems with no continuous dynamics. The general idea is to rely
on state variables to store the time at which future discrete transitions will be taken.

A first class of models we consider are transition systems with timeouts. Their state
variables include a variablet that stores the current time and a finite setT of time-
outs. The variablet and the timeouts are all real-valued. The initial states and transition
relation satisfy the following requirements:

– In any initial stateσ, we haveσ(t) ≤ σ(x) for all x ∈ T.
– If σ is a state such thatσ(t) < σ(x) for all x ∈ T then the only transition enabled in
σ is atime progress transition. It increasest to min(σ(T)) = min{σ(x) | x ∈ T} and
leaves all other state variables unchanged.

– Discrete transitionsσ → σ′ are enabled in states such thatσ(t) = σ(x) for some
x ∈ T and satisfy the following conditions
• σ′(t) = σ(t)
• for all y ∈ T we haveσ′(y) = σ(y) orσ′(y) > σ′(t)
• there isx ∈ T such thatσ(x) = σ(t) andσ′(x) > σ′(t).

In all reachable states, a timeoutx never stores a value in the past, that is, the inequality
σ(t) ≤ σ(x) is an invariant of the system. A discrete transition can be taken whenever
the timet reaches the value of one timeoutx. Such a transition must increase at least
one suchx to a time in the future, and if it updates other timeouts thanx their new value



Modeling and Verification of a Real-Time Startup Protocol 5

must also be in the future. Whenever the condition∀x ∈ T : σ(t) < σ(x) holds, no
discrete transition is enabled and time advances to the value of the next timeout, that
is, to min(σ(T)). Conversely, time cannot progress as long as a discrete transition is
enabled.

Discrete transitions are instantaneous since they leavet unchanged. Several dis-
crete transitions may be enabled in the same state, in which case one is selected non-
deterministically. Several discrete transitions may also need to be performed in se-
quence beforet can advance, but the constraints on timeout updates prevent infinite
zero-delay sequences of discrete transitions.

In typical applications, the timeouts control the execution ofn real-time processes
p1, . . . , pn. A timeout xi stores the time at which the next action frompi must occur,
and this action updatesxi to a new time, strictly larger than the current timet, where
pi will perform another transition. For example, we have used timeout-based modeling
for specifying and verifying Fischer’s mutual exclusion algorithm [19]. Instances of
Fischer’s protocol with as many as 53 processes can be verified using this method.

2.4 Calendar-based Models

Timeouts are convenient for applications like Fischer’s protocol, where processes com-
municate via shared variables that they read or write independently. Processpi has full
control of its local timeout, which determines whenpi performs its transitions. Other
processes have no access topi ’s timeout and their actions cannot impactpi until it
“wakes up”. To model interaction via message passing, we addevent calendarsto our
transition systems.

A calendar is a finite set (or multiset) of the formC = {〈e1, t1〉, . . . , 〈en, tn〉}, where
eachei is an event andti is the time when eventei is scheduled to occur. Alltis are real
numbers. We denote by min(C) the smallest number among{t1, . . . , tn} (with min(C) =
+∞ if C is empty). Given a realu, we denote by Evu(C) the subset ofC that contains
all events scheduled at timeu:

Evu(C) = {〈ei , ti〉 | ti = u ∧ 〈ei , ti〉 ∈ C}

As before, the state variables of a calendar-based systemM include a real-valued vari-
ablet that denotes the current time and a finite setT of timeouts. In addition, one state
variablec stores a calendar. These variables control when discrete and time-progress
transitions are enabled, according to the following rules:

– In all initial stateσ, we haveσ(t) ≤ min(σ(T)) andσ(t) ≤ min(σ(c)).
– In a stateσ, time can advance if and only ifσ(t) < min(σ(T)) andσ(t) < min(σ(c)).

A time progress transition updatest to the smallest of min(σ(T)) and min(σ(c)), and
leaves all other state variables unchanged.

– Discrete transitions can be enabled in a stateσ providedσ(t) = min(σ(T)) or
σ(t) = min(σ(c)), and they must satisfy the following requirements:
• σ(t) = σ′(t)
• for all y ∈ T we haveσ′(y) = σ(y) orσ′(y) > σ′(t)
• if σ(t) = min(σ(c)) then Evσ′(t)(σ′(c)) ⊆ Evσ(t)(σ(c))



6 Bruno Dutertre and Maria Sorea

.. Node .. Guardian

  Time

 TDMA round n

N1N4 N2 N3 N4 N1 N2... ...

Cluster CommunicationCluster

N4

N2

N3

N1

Fig. 1.TTA Cluster and TDMA Schedule.

• we have Evσ′(t)(σ′(c)) ⊂ Evσ(t)(σ(c)), or there isx ∈ T such thatσ(x) = σ(t)
andσ′(x) > σ′(t).

These constraints ensure thatσ(t) ≤ min(σ(T)) andσ(t) ≤ min(σ(c)) are invariants:
timeout values and the occurrence time of any event in the calendar are never in the past.
Discrete transitions are enabled when the current time reaches the value of a timeout
or the occurrence time of a scheduled event. The constraints on timeout are the same
as before. In addition, a discrete transition may add events to the calendar, provided
these new events are all in the future. To prevent instantaneous loops, every discrete
transition must either consume an event that occurs at the current time or update a
timeout as discussed previously.

Calendars are useful for modeling communication channels that introduce trans-
mission delays. An event in the calendar represents a message being transmitted and
the occurrence time is the time when the message will be received. The action of send-
ing a messagem to a processpi is modeled by adding the event “pi receivesm” to the
calendar, which is scheduled to occur at some future time. Message reception is mod-
eled by transitions enabled when such event occurs, and whose effects include removing
the event from the calendar. From this point of view, a calendar can be seen as a set of
messages that have been sent but have not been received yet, with each message labeled
by its reception time.

The main benefit of timeouts and calendars is the simple mechanism they provide
for controlling how far time can advance. Time progress is deterministic. There are
no states in which both time-progress and discrete transitions are enabled, and any
state in which time progress is enabled has a unique successor: time is advanced to
the point where the next discrete transition is enabled. This semantics ensures max-
imal time progress without missing any discrete transitions. A calendar-based model
never makes two time-progress transitions in succession and there are no idle steps. All
variables of the systems evolve in discrete steps, and there is no need to approximate
continuous dynamics by allowing arbitrarily small time steps.

3 The TTA Startup Protocol

The remainder of this paper describes an application of the preceding modeling prin-
ciples to the TTA fault-tolerant startup protocol [21]. TTA implements a fault-tolerant



Modeling and Verification of a Real-Time Startup Protocol 7

1.1 2.1

2.2
3.2

3.1INIT LISTEN START
COLD−

ACTIVE

Fig. 2.State-machine of the TTA Node Startup Algorithm

logical bus intended for safety-critical applications such as avionics or automotive con-
trol functions. In normal operation,N computers or nodes share a TTA bus using a
time-division multiple-access (TDMA) discipline based on a cyclic schedule. The goal
of the startup algorithm is to bring the system from the power-up state, in which the
N computers are unsynchronized, to the normal operation mode in which all comput-
ers are synchronized and follow the same TDMA schedule. A TTA system or “cluster”
with four nodes and the associated TDMA schedule are depicted in Fig. 1. The clus-
ter has a star topology, with a central hub or guardian forwarding messages from one
node to the other nodes. The guardian also provides protection against node failures. It
prevents faulty nodes from sending messages on the bus outside their allocated TDMA
slot and, during startup, it arbitrates message collisions. A full TTA system relies on
two redundant hubs and can tolerate the failure of one of them [21].

The startup algorithm executed by the nodes is described schematically in Fig. 2.
When a nodei is powered on, it performs some internal initializations in the state,
and then it transitions to the state and listens for messages on the bus. If the other
nodes are already synchronized, they each send ani-frameduring their TDMA slot. If
nodei receives such a frame while in the state, it can immediately synchronize
with the other nodes and moves to the state (transition 2.2). After a delayτlisten

i ,
if i has not received any message, it sends acs-frame(coldstart frame) to initiate the
startup process and moves to the state (transition 2.1). Nodei also enters
 if it receives a cs-frame from another node while in the state. In-
, nodei waits for messages from other nodes. Ifi receives either an i-frame or a
cs-frame, then it synchronizes with the sender and enters the state. Otherwise,
if no frame is received within a delayτcoldstart

i , theni sends a cs-frame and loops back
to  (transition 3.1). The state represents normal operation. Every node
in this state periodically sends an i-frame, during its assigned TDMA slot. The goal of
the protocol is to ensure that all nodes in the state are actually synchronized and
have a consistent view of where they are in the TDMA cycle.

The correctness of the protocol depends on the relative values of the delaysτlisten
i

andτcoldstart
i . These timeouts are defined as follows:

τlisten
i = 2τround+ τ

startup
i

τcoldstart
i = τround+ τ

startup
i



8 Bruno Dutertre and Maria Sorea

whereτround is the round duration andτstartup
i is the start ofi’s slot in a TDMA cycle.

Nodes are indexed from 1 toN. We then haveτstartup
i = (i − 1).τ andτround= N.τ where

τ is the length of each slot (this length is constant and all nodes have TDMA slots of
equal length).

4 A Simplified Startup Protocol in SAL

We now consider the SAL specification of a simplified version of the startup protocol,
where nodes are assumed to be reliable. Under this assumption, the hub has a limited
role. It forwards messages and arbitrates collisions, but does not have any fault masking
function. Since the hub has reduced functionality, it is not represented by an active SAL
module but by a shared calendar.

4.1 Calendar

In TTA, there is never more than one frame in transit between the hub and any node. To
model the hub, it is then sufficient to consider a bounded calendar that contains at most
one event per node. To simplify the model, we also assume that the transmission delays
are the same for all the nodes. As a consequence, a frame forwarded by the hub reaches
all the nodes (except the sender) at the same time. All events in the calendar have
then the same occurrence time and correspond to the same frame. These simplifications
allow us to specify the calendar as shown in Fig. 3.

IDENTITY: TYPE = [1 .. N];
TIME: TYPE = REAL;
message: TYPE = { cs_frame, i_frame };

calendar: TYPE = [#
flag: ARRAY IDENTITY OF bool,
content: message,
origin: IDENTITY,
send, delivery: TIME

#];

empty?(cal: calendar): bool = FORALL (i: IDENTITY): NOT cal.flag[i];
...
i_frame_pending?(cal: calendar, i: IDENTITY): bool =
cal.flag[i] AND cal.content = i_frame;

...
bcast(cal: calendar, m: message, i: IDENTITY, t: TIME): calendar =
IF empty?(cal) THEN
(# flag := [[j: IDENTITY] j /= i],
content := m,
origin := i,
send := t,
delivery := t + propagation #)

ELSE cal WITH .flag[i] := false
ENDIF;

consume_event(cal: calendar, i: IDENTITY): calendar =
cal WITH .flag[i] := false;

Fig. 3.Calendar Encoding for the Simplified Startup Protocol



Modeling and Verification of a Real-Time Startup Protocol 9

A calendar stores a frame being transmitted (content), the identity of the sender
(origin), and the time when the frame was sent (send) and when it will be delivered
(delivery). The boolean arrayflag represents the set of nodes that are scheduled to
receive the frame. Example operations for querying and updating calendars are shown in
Fig. 3. Functionbcast is the most important. It models the operation “nodei broadcasts
framem at timet” and shows how collisions are resolved by the hub. If the calendar is
empty wheni attempts to broadcast, then framem is stored and scheduled for delivery
at timet+propagation, and all nodes excepti are scheduled to receivem. If the calendar
is not empty, then the frame fromi collides with a framem′ from another node, namely,
the one currently stored in the calendar. The collision is resolved by giving priority
to m′ and droppingi’s frame. In addition, nodei is removed from the set of nodes
scheduled to receivem′ because channels between hub and nodes are half-duplex: since
i is transmitting a framem, it cannot receivem′.

4.2 Nodes

Figure 4 shows fragments of a node’s specification in SAL. Thenode module is pa-
rameterized by a node identityi. It reads the currenttime via an input state variable,
has access to the global calendarcal that is shared by all the nodes, and exports three
output variables corresponding to its localtimeout, its current statepc, and its view
of the current TDMAslot. The transitions specify the startup algorithm as discussed
previously using SAL’s guarded command language. The figure shows two examples of
transitions:listen_to_coldstart is enabled when time reachesnode[i]’s timeout
while the node is in the state. The node enters the state, sets its timeout
to ensure that it will wake up after a delayτcoldstart

i , and broadcasts a cs-frame. The other
transition models the reception of a cs-frame whilenode[i] is in the state.
Nodei synchronizes with the frame’s sender: it sets its timeout to the start of the next
slot, compensating for the propagation delay, and sets itsslot index to the identity of
the cs-frame sender.

4.3 Full Model

The complete startup model is the asynchronous composition ofN nodes and a clock
module that manages thetime variable. The clock’s input includes the shared calendar
and the timeout variable from each node. The module makes time advances when no
discrete transition from the nodes is enabled, as discussed in Sect. 2.4.

Sincetime cannot advance beyond the calendar’s delivery time, pending messages
are all received. For example, transitioncs_frame_in_coldstart of Fig. 4 is enabled
whentime is equal to the frame reception timeevent_time(cal, i). Let σ be a
system state where this transition is enabled. Since the delivery times are the same
for all nodes, the same transition is likely to be enabled for other nodes, too. Let’s
then assume thatcs_frame_in_coldstart is also enabled for nodej in stateσ. In
general, enabling a transition does not guarantee that it will be taken. However, the
model preventstime from advancing as long as the frame destined fori or the frame
destined forj is pending. This forces transitioncs_frame_in_coldstart to be taken
in both nodei and nodej. Since nodes are composed asynchronously, the transitions of



10 Bruno Dutertre and Maria Sorea

PC: TYPE = { init, listen, coldstart, active };

node[i: IDENTITY]: MODULE =
BEGIN
INPUT time: TIME
OUTPUT timeout: TIME, slot: IDENTITY, pc: PC
GLOBAL cal: calendar

INITIALIZATION
pc = init;
timeout IN { x: TIME | time < x AND x < max_init_time};
...

TRANSITION
...
[] listen_to_coldstart:
pc = listen AND time = timeout -->
pc’ = coldstart;
timeout’ = time + tau_coldstart(i);
cal’ = bcast(cal, cs_frame, i, time)

...
[] cs_frame_in_coldstart:
pc = coldstart AND cs_frame_pending?(cal, i) AND time = event_time(cal, i) -->
pc’ = active;
timeout’ = time + slot_time - propagation;
slot’ = frame_origin(cal, i);
cal’ = consume_event(cal, i)

...

Fig. 4.Node Specification

nodei and j will be taken one after the other from stateσ, in a nondeterministic order.
For the same reason, transitions that are enabled on a condition of the formtime =
timeout are all eventually taken. Timeouts are never missed.

5 Protocol Verification

5.1 Correctness Property

The goal of the startup protocol is to ensure that all the nodes that are in the state
are synchronized (safety) and that all nodes eventually reach the state (liveness).
We focus on the safety property. Our goal is to show that the startup model satisfies the
following LTL formula with linear arithmetic constraints:

synchro: THEOREM
system |-
G(FORALL (i, j: IDENTITY): pc[i] = active AND pc[j] = active AND
time < time_out[i] AND time < time_out[j] =>
time_out[i] = time_out[j] AND slot[i] = slot[j])

This says that any two nodes in state have the same view of the TDMA schedule:
they agree on the current slot index and their respective timeouts are set to the same
value, which is the start of the next slot. Because nodes are composed asynchronously,
agreement betweeni and j is not guaranteed at the boundary between two successive
slots, whentime = time_out[i] or time = time_out[j] holds.

5.2 Proof by Induction

A direct approach to proving the above property is thek-induction method supported
by sal-inf-bmc. A first attempt withk = 1 immediately shows that the property is not



Modeling and Verification of a Real-Time Startup Protocol 11

inductive. Increasingk does not seem to help. The smallest possible TTA system has
two nodes, and the corresponding SAL model has 13 state variables (5 real variables,
6 boolean variables, and 2 bounded integer variables).1 On this minimal TTA model,
k-induction at depth up tok = 20 still fails to prove the synchronization property.

However, as long as the number of nodes remains small, we can prove the property
usingk-induction and a few auxiliary lemmas:

time_aux1: LEMMA
system |- G(FORALL (i: IDENTITY): time <= time_out[i]);

time_aux2: LEMMA
system |- G(empty?(cal) OR

(cal.send <= time AND time <= cal.delivery));

delivery_delay1: LEMMA
system |- G(FORALL (i: IDENTITY):

event_pending?(cal, i) =>
event_time(cal, i) = cal.send + propagation);

The first two lemmas are invariants that hold for any calendar-based model, the other is
an obvious relation between the transmit and reception time of messages. These lemmas
are all inductive; they can be proved automatically bysal-inf-bmc usingk-induction
at depth 1.

For N = 2, we can then show that the synchronization property holds with the
following command:

sal-inf-bmc -v 3 -d 8 -i -l time_aux1 -l time_aux2
-l delivery_delay1 simple_startup4 synchro

...
proved.
total execution time: 258.71 secs

This instructssal-inf-bmc to perform a proof byk-induction at depth 8 using the
three lemmas. WithN = 3, an inductive proof at depth 14 with the same lemmas fails;
the execution time is of the order of 2 hours. With higher depths,sal-inf-bmc runs
out of memory, or the user runs out of patience.

5.3 Proof via Abstraction

The previous verification uses only induction and is straightforward, but it has a major
limitation: it works only forN = 2. The last step in the proof is not scalable, as the
induction depth required increases with the number of nodes. To analyze the protocol
with a larger number of nodes, we need a less expensive proof method. Since all we can
do is proof by induction, our strategy is to strengthen the invariant. We are looking for
an invariantφ that implies propertysynchro, and can be proved withsal-inf-bmc
using induction at depth 1.

To obtain an appropriateφ, we use the method proposed by Rushby [3]. Given a
transition systemM = 〈S, I ,→〉, this method amounts to constructing an abstraction

1 The variableslot of each process stores an integer in the interval [1,N].



12 Bruno Dutertre and Maria Sorea

ofM (or verification diagram [22]) based onn state predicatesA1(σ), . . . ,An(σ). The
abstraction is a transition systemM0 = 〈S0, I0,→0〉 with state spaceS0 = {a1, . . . ,an}.
The abstract states are in a one-to-one correspondence with then predicates. Then, the
systemM0 is a correct abstraction ofM if two properties are satisfied:

– For all stateσ of I , there is an abstract stateai of I0 such thatAi(σ) is satisfied.
– For every abstract stateai , the following formula holds:

∀σ ∈ S, σ′ ∈ S : Ai(σ) ∧ σ→ σ′ ⇒ A j1(σ
′) ∨ . . . A jk(σ

′),

wherea j1, . . . ,a jk are the successors ofai inM0.

Less formally, the abstract system makes statements aboutM of the form “if Ai is true
in the current state, then the next state will satisfyA j1 or . . . orA jk”. It also states that
some of the predicatesA1, . . . ,An are true in all the initial states ofM. If the abstraction
is correct, then clearly the disjunctionA1 ∨ . . . ∨ An is an inductive invariant ofM.

This form of abstraction has two interests for our purposes. First, it is often rela-
tively easy for the user to find adequate predicatesA1, . . . ,An by “tracing” the execu-
tion ofM. Second, it is possible to prove that a candidate abstraction is correct using
sal-inf-bmc. We illustrate this approach on the simplified startup algorithm.

Discovering the abstraction:By examining how the startup protocol works, one can
decompose its execution into successive phases, as shown below:

A1 A2 A3 A4 A5 A5 A6A6

time0

No active nodes At least one active node

cs−frame cs−frame i−frame i−frame

In the first phase, A1, all nodes are either in the or  states and no frame is sent.
Phase A2 starts when one node enters and broadcasts a cs-frame, and ends
when that frame is transmitted. Collisions may occur in phase A2 as several nodes may
broadcast a cs-frame at approximately the same time. In phase A3, at least one node is
in the  state, and all nodes are waiting. In A4 a second cs-frame is sent. By
definition of the delaysτcoldstart

i , no collision can occur in A4. After A4, all the nodes
that have received the second cs-frame become active. This leads to phase A5, in which
at least one node is active. Phase A6 corresponds to the transmission of an i-frame by
an active node. After A6, the system returns to phase A5, and so forth.

The six phases A1 to A6 form the basis of our abstraction. For example, the abstrac-
tion predicateA2 is defined in SAL as a boolean state variable as follows:

A2 = cs_frame?(cal) AND pc[cal.origin] = coldstart
AND (FORALL (i: IDENTITY):

pc[i] = init OR pc[i] = listen OR pc[i] = coldstart)
AND (FORALL (i: IDENTITY): pc[i] = coldstart =>

NOT event_pending?(cal, i)



Modeling and Verification of a Real-Time Startup Protocol 13

A1 A2 A3 A4 A5 A6

Fig. 5.Verification Diagram for the Simplified Startup

AND time_out[i] - cal.send >= tau_coldstart(i)
AND time_out[i] - time <= tau_coldstart(i))

AND (FORALL (i: IDENTITY): pc[i] = listen =>
event_pending?(cal, i)
OR time_out[i] >= cal.send + tau_listen(i));

Figure 5 shows the abstract system derived from A1 to A6. The transitions specify
which phases may succeed each other. Every abstract state is also its own successor but
we omit self loops from the diagram for clarity.

Proving that the abstraction is correct:Several methods can be used for proving in
SAL that the diagram of Fig. 5 is a correct abstraction of the startup model. The most
efficient technique is to build a monitor module that corresponds to the candidate ab-
straction extended with an error state. The monitor is defined in such a way that the
error state is reached whenever the startup model performs a transition that, according
to the abstraction, should not occur. For example, the monitor includes the following
guarded command which specifies the allowed successors of abstract statea2:

state = a2 -->
state’ = IF A2’ THEN a2 ELSIF A3’ THEN a3 ELSE bad ENDIF

wherebad is the error state. This corresponds to the diagram of Fig. 5:a2 anda3 are
the only two successors ofa2 in the diagram. The abstraction is correct if and only
if the error state is not reachable, that is, if the propertystate /= bad is invariant.
Furthermore, if the abstraction is correct, this invariant is inductive and can be proved
automatically withsal-inf-bmc usingk-induction at depth 1. This requires the same
auxiliary lemmas as previously and an additional lemma per abstract state.

To summarize, our proof of the startup protocol is constructed as follows:

– An abstractormodule defines the boolean variablesA1 to A6 from the state vari-
ables of the concretettamodule.

– A monitor module whose input variables areA1 to A6 specifies the allowed tran-
sitions between abstract states.

– We then construct the synchronous composition of thetta, abstractor, and
monitormodules.

– We show that this composition satisfies the invariant propertyG(state /= bad),
by induction usingsal-inf-bmc.

– Finally, usingsal-inf-bmc again, we show that the previous invariant implies the
correctness propertysynchro.



14 Bruno Dutertre and Maria Sorea

Simplified Startup Fault-Tolerant Startup
N lemmasabstract.synchro total lemmas abstract.synchro total
2 34.85 4.91 3.97 43.73 166.82 31.19 10.60 208.61
3 55.38 14.13 7.02 76.53 234.53 71.44 25.38 331.35
4 87.56 31.56 10.76 129.88 324.94 154.50 67.45 546.89
5 111.23 117.89 17.86 246.98 432.71 456.42 168.751057.88
6 154.92 334.31 26.53 515.76 547.51 731.60 346.351625.46
7 197.62 642.72 33.41 873.75 739.17 1143.48 648.492531.14
8 255.071400.34 45.081700.49 921.85 1653.101100.383675.33
9 316.362892.85 56.843266.05 1213.51 3917.371524.916655.79

10 378.894923.45 84.795387.13 1478.82 4943.183353.979775.97

Table 1.Verification Times

5.4 Results

Table 1 shows the runtime ofsal-inf-bmc when proving the correctness of the sim-
plified TTA startup protocol, for different numbers of nodes. The runtimes are given in
seconds and were measured on a Dell PC with a Pentium 4 CPU (2 GHz) and 1 Gbyte
of RAM. The numbers are grouped in three categories: proof of all auxiliary lemmas,
proof of the abstraction, and proof of the synchronization property. For small numbers
of nodes (less than 5), proving the lemmas is the dominant computation cost, not be-
cause the lemmas are expensive to prove but because there are several of them. For
larger numbers of nodes, checking the abstraction dominates.

Using the same modeling and abstraction method, we have also formalized a more
complex version of the startup algorithm. This version includes an active hub that is
assumed to be reliable, but nodes may be faulty. The verification was done under the
assumption that a single node is Byzantine faulty, and may attempt to broadcast arbi-
trary frames at any time. With a TTA cluster of 10 nodes, the model contains 99 state
variables, of which 23 variables are real-valued. The simplified protocol is roughly half
that size. For a cluster of 10 nodes, it contains 52 state variables, of which 12 are reals.2

Other noticeable results were discovered during the proofs. In particular, the frame
propagation delay must be less than half the duration of a slot for the startup protocol to
work. This constraint had apparently not been noticed earlier. Our analysis also showed
that the constantsτlisten

i do not need to be distinct for the protocol to work, as long as
they are all at least equal to two round times.

6 Conclusion

We have presented a novel approach to modeling real-time systems based on calendars
and timeouts. This approach enables one to specify dense-timed models as standard
state-transition systems with no continuous dynamics. As a result, it is possible to ver-
ify these timed models using general-purpose tools such as provided by SAL. We have

2 The full specifications are available athttp://www.sdl.sri.com/users/bruno/sal/.



Modeling and Verification of a Real-Time Startup Protocol 15

illustrated how the SAL infinite-state bounded model checker can be used as a theo-
rem prover to efficiently verify timed models. Two main proof techniques were used:
proof byk-induction and a method based on abstraction and verification diagrams. By
decomposing complex proofs in relatively manageable steps, these techniques enable
us to verify a nontrivial example of fault-tolerant real-time protocol, namely, the TTA
startup algorithm, with as many as ten nodes.

This analysis extends previous work by Steiner, Rushby, Sorea, and Pfeifer [21]
who have verified using model checking a discrete-time version of the same algorithm.
They modeled a full TTA cluster with redundant hubs, and their analysis showed that
the startup protocol can tolerate a faulty node or a faulty hub. This analysis went be-
yond previous experiments in model-checking fault-tolerant algorithms such as [23]
and [24] by vastly increasing the number of scenarios considered. It achieved sufficient
performance to support design exploration as well as verification.

Lönn and Pettersson [25] consider startup algorithms for TDMA systems similar
to TTA, and verify one of them using UPPAAL [26]. Their model is restricted to four
nodes and does not deal with faults. Lönn and Pettersson note that extending the anal-
ysis to more than four nodes will be very difficult, as the verification of a four-node
system was close to exhausting the 2 Gbyte memory of their computer, and because of
the exponential blowup of model checking timed automata when the number of clocks
increases.

The model and verification techniques presented in this paper can be extended in
several directions, including applications to more complex versions of the TTA startup
algorithm with redundant hubs, and verification of liveness properties. Other extensions
include theoretical studies of the calendar-automata model and comparison with timed
automata.

References

1. Bensalem, S., Ganesh, V., Lakhnech, Y., Muñoz, C., Owre, S., Rueß, H., Rushby, J., Rusu,
V., Saïdi, H., Shankar, N., Singerman, E., Tiwari, A.: An overview of SAL. In: Fifth NASA
Langley Formal Methods Workshop, NASA Langley Research Center (2000) 187–196

2. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: Tool
presentation: SAL 2. In: Computer-Aided Verification (CAV 2004), Springer-Verlag (2004)

3. Rushby, J.: Verification diagrams revisited: Disjunctive invariants for easy verification. In:
Computer-Aided Verification (CAV 2000). Volume 1855 of Lecture Notes in Computer Sci-
ence, Springer-Verlag (2000) 508–520

4. Steiner, W., Paulitsch, M.: The transition from asynchronous to synchronous system opera-
tion: An approach for distributed fault- tolerant systems. The 22nd International Conference
on Distributed Computing Systems (ICDCS 2002) (2002)

5. Larsen, K.G., Pettersson, P., Yi, W.: U: Status and developments. In: Computer-Aided
Verification (CAV’97). Volume 1254 in Lecture Notes in Computer Science, Springer–Verlag
(1997) 456–459

6. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-
checking tool for real-time systems. In: Computer Aided Verification (CAV’98). Volume
1427 of Lecture Notes in Computer Science, Springer-Verlag (1998) 546–550

7. Wang, F.: Efficient verification of timed automata with BDD-like data-structures. In: 4th
International Conference on Verification, Model Checking, and Abstract Interpretation. Vol-
ume 2575 of Lecture Notes in Computer Science, Springer-Verlag (2003) 189–205



16 Bruno Dutertre and Maria Sorea

8. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-based verification of real-time
systems. In: Computer-Aided Verification (CAV 2003), Volume 2725 of Lecture Notes in
Computer Science, Springer-Verlag (2003) 122–125

9. Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: A mathematical
framework for modeling and analyzing real-time systems. In: Real-Time Systems Sympo-
sium (RTSS’03). IEEE Computer Society (2003) 166–177

10. Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems.
Springer-Verlag (2004)

11. Skakkebæk, J.U., Shankar, N.: Towards a duration calculus proof assistant in PVS. In:
Formal Techniques in Real-time and Fault-Tolerant Systems, Volume 863 of Lecture Notes
in Computer Science, Springer-Verlag, (1994)

12. Archer, M., Heitmeyer, C.: Mechanical verification of timed automata: A case study. Tech-
nical Report NRL/MR/5546-98-8180, Naval Research Laboratory, Washington, DC (1998)

13. Filliâtre, J.C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated canonizer and solver. In:
Computer-Aided Verification (CAV 2001), Volume 2102 of Lecture Notes in Computer Sci-
ence, Springer-Verlag (2001) 246–249

14. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Fifth International
Symposium on the Theory and Applications of Satisfiability Testing, (2002)

15. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From refuta-
tion to verification. In: Computer-Aided Verification (CAV 2003). Volume 2725 of LNCS.,
Springer-Verlag (2003) 14–26

16. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science126(1994)
183–235

17. Henzinger, T.A., Manna, Z., Pnueli, A.: Temporal proof methodologies for timed transition
systems. Information and Computation112(1994) 273–337

18. Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based systems. In:
REX Workshop. Real-Time: Theory and Practice. Volume 600 of Lecture Notes in Computer
Science, Springer-Verlag (1991) 397–446

19. Dutertre, B., Sorea, M.: Timed systems in SAL. Technical report, SRI-SDL-04-03, SRI
International, Menlo Park, CA (2004)

20. Sorea, M.: Bounded model checking for timed automata. Electronic Notes in Theoretical
Computer Science68 (2002) http://www.elsevier.com/locate/entcs/volume68.
html

21. Steiner, W., Rushby, J., Sorea, M., Pfeifer, H.: Model checking a fault-tolerant startup algo-
rithm: From design exploration to exhaustive fault simulation. DSN 2004 (2004)

22. Manna, Z., Pnueli, A.: Temporal verification diagrams. In: International Symposium on
Theoretical Aspects of Computer Software (TACS’94). Volume 789 of Lecture Notes in
Computer Science, Springer-Verlag (1994) 726–765

23. Yokogawa, T., Tsuchiya, T., Kikuno, T.: Automatic verification of fault tolerance using
model checking. In: 2001 Pacific Rim International Symposium on Dependable Computing,
Seoul, Korea (2001)

24. Bernardeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems. Software
Testing, Verification and Reliability12 (2002) 251–275

25. Lönn, H., Pettersson, P.: Formal verification of a TDMA protocol start-up mechanism. In:
Pacific Rim International Symposium on Fault-Tolerant Systems (PRFTS ’97), IEEE Com-
puter Society (1997) 235–242

26. Larsen, K.G., Pettersson, P., Yi, W.: U in a nutshell. Int. Journal on Software Tools for
Technology Transfer1 (1997) 134–152


