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Abstract. This paper presents the formalization of some elements of

mathematical analysis using the PVS veri�cation system. Our main mo-

tivation was to extend the existing PVS libraries and provide means of

modelling and reasoning about hybrid systems. The paper focuses on

several important aspects of PVS including recent extensions of the type

system and discusses their merits and e�ectiveness. We conclude by a

brief comparison with similar developments using other theorem provers.

1 Introduction

PVS is a speci�cation and veri�cation system whose ambition is to make formal

proofs practical and applicable to large and complex problems. The system is

based on a variant of higher order logic which includes complex typing mech-

anisms such as predicate subtypes or dependent types. It o�ers an expressive

speci�cation language coupled with a theorem prover designed for e�cient in-

teractive proof construction.

In previous work we have applied PVS to the requirements analysis of a

substantially complex control system [2]. This was part of the SafeFM project

which aims to promote the practical use of formal methods for high integrity

systems. We used PVS to formalise the functional requirements of the SafeFM

case study and to verify several safety critical properties.

The main problem we had with PVS was the limited number of pre-de�ned

notions and pre-proved theorems; a non-negligible part of the work was spent in

writing general purpose \background knowledge" theories. In general, we found

that PVS provides only the most elementary notions and that some e�ort must

be directed towards constructing re-usable libraries extending the pre-de�ned

bases. This has been recognised by others and the new version of the system

(PVS2 [15, 1]) comes with a largely expanded prelude of primitive theories and

with better support for libraries.

Our experiment with the SafeFM case study showed that elements of math-

ematical analysis could be extremely useful for modelling hybrid systems. The

case study is a control application including both discrete and analogue elements
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and the modelling involves continuous functions of time which represent phys-

ical variables. Reasoning about such variables can be considerably simpli�ed if

standard notions and results of analysis are available. This paper presents the

development of a PVS library introducing such notions. The library de�nes con-

vergence of sequences, limits of functions, continuity, and di�erentiation, and

contains various lemmas and theorems for manipulating these notions.

Applications to hybrid systems were our prime motivation for developing such

a library but integrating mathematical analysis to theorem proving can have

other interests. Harrison [8] cites applications in areas such as 
oating point

veri�cation [9] or the combination of theorem provers and computer algebra

systems [10].

The work presented in this paper is an example of use of PVS in a slightly

uncommon domain, di�erent from the traditional computer related applications.

It was not obvious from the start whether PVS was a practical tool for doing

\ordinary mathematics". Writing the library showed us that PVS could cope

without much di�culty with the form of speci�cations and reasoning encountered

in traditional mathematical analysis. In particular, the rich PVS type system was

convenient for de�ning limits, continuity, and derivatives in a fairly natural way,

very close to conventional mathematical practice. The library also makes use of

some of the most recent features of PVS such as judgements and conversions.

All the proofs were performed using only the pre-de�ned set of proof com-

mands, without any attempt to de�ne new rules or proof strategies, the equiv-

alents of HOL tactics and tacticals [7]. The high level commands available were

powerful enough to handle automatically a large proportion of the proofs.

The remainder of this paper gives a brief introduction to PVS focusing on

the aspects most relevant to the library development and presents the main

components of the library. Section 4 discusses the qualities and limits of PVS

for the application considered and gives a comparison with similar work.

2 An Overview of PVS

PVS is an environment for the construction and veri�cation of formal speci�-

cations. The system provides an expressive speci�cation language, a powerful

interactive proof checker, and various other tools for managing and analysing

speci�cations. PVS has been applied to large and complex examples in domains

such as hardware [14], fault-tolerant protocols [15], or real-time systems [11].

The PVS logic is largely similar to classic higher order logic but with several

extensions. The PVS type system is richer than Church's theory of simple types

and supports subtyping and dependent types. PVS also includes mechanisms for

writing parametric speci�cations. These features are essential and are described

in greater detail in the following sections. We also outline the main characteristics

of the PVS proof checker which in
uenced the formulation of certain aspects of

the speci�cations. A more complete descriptions of the language and prover can

be found in [1, 17, 18] and a more formal presentation of the PVS logic is available

in [16].

2



2.1 Type System

Simple Types. PVS includes primitive types such as the booleans or the reals,

and classic constructors for forming functions and tuples types. For example,

{ [real, real -> bool] is the type of functions from pairs of reals to the

booleans,

{ [nat, nat, nat] is the type of triples of natural numbers.

There are also other constructions for record types and built-in support for

abstract data types [1, 17].

Subtypes. Given an arbitrary function p of type [t -> bool], one can de�ne

the subtype of t consisting of all the elements which satisfy p. This type is

denoted by fx:t | p(x)g or equivalently (p). More generally, subtypes can be

constructed using arbitrary boolean expressions. For example,

nzreal : TYPE = {x : real | x /= 0}

declares the type nzreal whose elements are the non-null reals.

Subtypes can also be declared as follows

s : TYPE FROM t;

this de�nes s as an uninterpreted subtype of t. With this declaration PVS au-

tomatically associates a predicate s pred:[t -> bool] characteristic of s: the

two expressions s and (s pred) denote the same subtype of t.

By default, PVS does not assume that types are non-empty but the user can

assert that types are inhabited as follows:

s : NONEMPTY_TYPE FROM t.

This is sound as long as t itself is not empty.

Dependent Types. Function, tuple, or record types can be dependent: the

type of some components may depend on the value of other components. For

example, the function A below

A(x:real , (z : {y:real | y<x})) : real = 1 / (x - z)

has dependent type [x:real, fy:real | y<xg -> real].

Type Checking. Since arbitrary predicates can occur in type expressions, type

checking is undecidable; the user may be asked to prove that speci�cations are

well typed. In general, type correctness of an expression reduces to a �nite num-

ber of proof obligations known as Type Correctness Conditions (TCCs) gener-

ated automatically by the system.

For example, the division operator has type [real, nzreal -> real] and

type checking the de�nition of A above will produce the following TCC:
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A_TCC1: OBLIGATION (FORALL (x, z: {y | y < x}): (x - z) /= 0).

Similarly, type checking an expression such as A(2, 1) requires to show that the

arguments to A are of the right type. TCCs may be generated in various other

situations, for example to ensure that recursive de�nitions are sound or to check

that types are non empty when constants are declared [1, 17].

PVS treats the boolean operators and the if then else construction in a

special way. Ordinary functions are strict: for an expression f(t

1

; : : : ; t

n

) to type

check, all the terms t

1

; : : : ; t

n

must be type-correct. The boolean operators are

not strict; de�nitions such as the following are type-correct:

a(x : real) : bool = x /= 0 AND 1/x > 2

The order of the arguments is important; the de�nition below

d(x : real) : bool = 1/x > 2 AND x /= 0

gives an unprovable TCC: FORALL (x : real): x /= 0.

2.2 Theories and Parameters

PVS speci�cations are organised in theories. A theory can contain type de�ni-

tions, variable or constant declarations, axioms, and theorems. The primitive

elements of PVS are introduced in the prelude, a collection of pre-de�ned the-

ories. The following example is a fragment of a theory de�ning sets, extracted

from the prelude.

sets [T:TYPE]: THEORY

BEGIN

set: TYPE = [T -> bool]

x, y : VAR T

a, b, c : VAR set

member(x, a): bool = a(x)

empty?(a): bool = (FORALL x : NOT member(x, a))

...

END sets

The theory has one parameter T; it de�nes the type set (sets are represented

by their boolean characteristic function) and the usual set-theoretic operations.

Other theories can import sets and use the type set, the function empty? and

any other type, constant, axiom, or theorem from sets

2

. The variables x, y,

a, b, c are local to sets and are not exported.

2

Prelude theories such as sets are implicitly imported; user-de�ned theories require

an explicit IMPORTING clause.
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One may import a speci�c instance of sets by providing actual parameters;

this takes the following form

IMPORTING sets[real].

In this case, the identi�er set refers unambiguously to the type [real -> bool],

member to a function of type [real, [real->bool] -> bool], etc.

It is also possible to import theories without actual parameters and use names

such as set[real], set[nat], member[bool] to refer to entities from di�erent

instances of sets. A more interesting possibility is to let PVS determine auto-

matically the parameters. This provides a form of polymorphism as illustrated

below:

F(A, B : set[real]) : set[[(A) -> (B)]] = {f : [(A) -> (B)] | true}

empty_function : PROPOSITION

empty?(B) AND not empty?(A) IMPLIES empty?(F(A, B))

Since set[real] is [real->bool], the two types (A) and (B) are subtypes of

real. The function F has dependent type: F(A,B) is the set of all functions of

type [(A) -> (B)]. In the proposition, the function empty? is polymorphic and

PVS computes the parameter instantiation for the three occurrences according

to the type of the arguments.

In the sets example, the parameter T is somewhat similar to a HOL type

variable. Theories can also be parameterised by constants, and the user can

impose conditions on the parameters. In the latter case, PVS may generate

TCCs to check that actual parameters { either given in importing clauses or

inferred by the type checker { satisfy the required conditions.

The constraints on parameters can be expressed using dependent types, for

example, as follows:

intervals [a : real, b : {x : real| a <= x} ] : THEORY

BEGIN

J : NONEMPTY_TYPE = { x : real | a <= x AND x <= b}.

More complex conditions can be expressed as assumptions:

theo [T : TYPE FROM real] : THEORY

BEGIN

ASSUMING

two_elements : ASSUMPTION EXISTS (x, y : T) : x /= y.

2.3 Judgements and Conversions

Judgements have been introduced in PVS to solve a practical problem: the large

number of TCCs that may be caused by subtyping. The following example,

inspired by the PVS2 �nite sets library [12], is typical of a very common situation:

{ finite set is a subtype of set,

{ union has type [set, set -> set],
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{ card has type [finite set -> nat].

Assuming A and B are two constants of type finite set, the following expression

card(union(A, B))

generates a TCC: union(A, B) has type set; since card requires a finite set

argument, PVS asks the user to show that union(A, B) is in fact �nite. Similar

TCCs will appear every time union is applied to �nite sets in a context where

a result of type finite set is expected.

A judgement allows one to suppress all these TCCs by indicating to the type

checker that the union of �nite sets is a �nite set:

JUDGEMENT union HAS_TYPE [finite_set, finite_set -> finite_set].

A proof obligation will be generated to verify that this judgement is valid, but

it needs to be proved only once. Every time union is applied to �nite sets, the

type checker will recognise that the result is �nite.

There is a di�erent form of judgement to specify sub-type relations and PVS2

provides another extension to the type system: conversions. A conversion is a

function of type [t1 -> t2] that the type checker may apply automatically to

a term of type t1 in a context where a term of type t2 is expected.

For example, the prelude de�nes a conversion extend which transforms a

term of type set[S] to a term of type set[T] when S is a subtype of T

3

. Such

a conversion could be speci�ed as follows:

extend(E : set[S]) : set[T] = {x : T | S_pred(x) AND E(x)}

CONVERSION extend

This allows, for example, to mix sets of reals and sets of natural numbers as in

the following declarations:

A : set[real]

B : set[nat]

C : set[real] = union(A, B).

The last expression is automatically transformed to union(A, extend(B)) by

the type checker.

2.4 The PVS Prover

The PVS prover is based on sequent calculus and proofs are constructed inter-

actively by developing a proof tree in a classic goal oriented fashion. A main

characteristic of PVS is the high level of the proof commands available and

the powerful decision procedures built in the prover. These procedures combine

equational reasoning and linear arithmetic and include various rules (e.g. beta

conversion) for simplifying expressions. It is possible to program proof strategies

similar to HOL tactics and tacticals [7].

3

The type set[S] de�ned as [S -> bool] is not a subtype of set[T].
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The rewriting capabilities of PVS play an essential role in the analysis library.

In their simplest form, rewrite rules are formulas of the form l = r where the

free variables on the right-hand side of the equality occur free in the left-hand

side. The prover can rewrite with such a formula by �nding a term l' that

matches l and replacing it by the corresponding substitution instance r' of r.

Other forms of formulas are accepted as rewrite rules (see [18]); examples

taken from the prelude are given below:

div_cancel3: LEMMA x/n0z = y IFF x = y * n0z

union_subset2: LEMMA subset?(a, b) IMPLIES union(a, b) = b

surj_inv: LEMMA injective?(f) IMPLIES surjective?(inverse(f)).

In the �rst rule, boolean equivalence is used instead of equality. The second

lemma is a conditional rewrite rule; when it is applied, a subgoal may be gen-

erated for proving that the premise holds. The last lemma is also a conditional

rule, treated by the prover like the equivalent formula

injective?(f) IMPLIES surjective?(inverse(f)) = true.

Rewrite rules can be applied selectively by the user or can be installed as auto-

matic rewrite rules. This gives a means of extending the set of built-in simpli�-

cation rules. Once installed, the automatic rewritings can be activated explicitly

but they are also used implicitly by many high level commands in combination

with the decision procedures.

3 Main Elements of the Library

3.1 Low Level Theories

In PVS, the reals are built-in and constitute a primitive type. The other numeri-

cal types are de�ned as subtypes of real. The prelude contains an axiomatization

of the reals which give the usual �eld and ordering axioms and a completeness

axiom: every non-empty set of reals which is bounded from above has a least

upper bound .

In addition to this axiomatization, a large set of rewrite rules are available

in the prelude, useful for manipulating non-linear expressions that the decision

procedures do not handle. The prelude also de�nes common functions such as

absolute value, exponentiation, or the minimum or maximum of two numbers.

All these form a large basis of pre-de�ned theories for the manipulation of

reals but it was necessary to extend these basic theories in several ways. The

extensions include new lemmas about the absolute value and new properties of

the reals, new functions such as the least upper bound or greatest lower bound

of sets, and general operations and predicates on real-valued functions.

The de�nition of least upper bound (sup) illustrates a construction very

common in the library. First, a subtype of set[real] de�nes the sets where sup

makes sense, then the function is de�ned using Hilbert's epsilon operator:
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U : VAR { S : (nonempty?[real]) | above_bounded(S) }

sup(U) : real = epsilon(lambda x : least_upper_bound?(x, U))

Thus sup is only de�ned for non-empty sets, bounded from above. As a conse-

quence, the following equivalence holds:

sup_def : LEMMA sup(U) = x IFF least_upper_bound?(x, U).

PVS supports overloading; the low level theories de�ne operations +, -, * on

real-valued functions as follows:

real_fun_ops[T : TYPE] : THEORY

BEGIN

f1, f2 : VAR [T -> real]

+(f1,f2): [T -> real] = lambda (x : T) : f1(x) + f2(x);

...

Due to the parametric de�nition, + is polymorphic and applies to sequences

(functions of type [nat->real]), functions of type [real->real], etc.

3.2 Limits of Sequences

The theories of sequences are fundamental elements of the library. They de�ne

convergence and limits of sequences of reals and other standard notions such

as Cauchy sequences or points of accumulations [13]. They also contain impor-

tant results which are essential for developing the continuity theories. These

include standard properties such as the uniqueness of the limit, the convergence

of increasing or decreasing bounded sequences, the Bolzano-Weierstrass theo-

rem: every bounded sequence has a point of accumulation, and the completeness

of the reals: every Cauchy sequence is convergent. All the proofs are classic and

translate without much di�culty to PVS. The completeness theorem follows

from Bolzano-Weierstrass which is proved using a well known property: every

sequence of reals contains a monotone sub-sequence.

PVS allows the function limit to be de�ned and used in a fairly standard

way. The speci�cation is similar to the de�nition of sup

4

:

convergence(u, l) : bool =

FORALL epsilon : EXISTS n : FORALL i :

i >= n IMPLIES abs(u(i) - l) <= epsilon

convergent(u) : bool = EXISTS l : convergence(u, l)

limit(v : (convergent)) : real = epsilon(lambda l : convergence(v, l)).

The theories contain a collection of propositions { usable as conditional rewrite

rules { for combining convergent sequences:

4

The identi�er epsilon is overloaded. The �rst occurrence denotes a variable of type

posreal while the second is Hilbert's operator.
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limit_sum : PROPOSITION

convergence(s1, l1) AND convergence(s2, l2)

IMPLIES convergence(s1 + s2, l1 + l2)

limit_diff : PROPOSITION

convergence(s1, l1) AND convergence(s2, l2)

IMPLIES convergence(s1 - s2, l1 - l2).

Installing these propositions as automatic rewrite rules makes trivial the proof

of theorems such as the following:

test1 : LEMMA

convergence(s1, l1) AND convergence(s2, l2) AND l2/=0

IMPLIES convergence(s1 * (1/s2) - s2, l1 * (1/l2) - l2).

However, rules of the above form do not apply in the following situation:

test2 : LEMMA

convergence(s1, l) AND convergence(s2, l)

IMPLIES convergence(s1 - s2, 0).

This proposition is an immediate consequence of limit diff but the latter can-

not be used as a rewrite rule; it does not match convergence(s1 - s2, 0).

It is possible to do better using limit and convergent. First, we specify

closure properties and judgements:

convergent_diff : PROPOSITION

convergent(s1) AND convergent(s2) IMPLIES convergent(s1 - s2)

convergent_prod : PROPOSITION

convergent(s1) AND convergent(s2) IMPLIES convergent(s1 * s2)

...

JUDGEMENT +, -, * HAS_TYPE [(convergent), (convergent) -> (convergent)]

...

then the following propositions provide more convenient rewrite rules:

v1, v2 : VAR (convergent)

lim_diff : PROPOSITION limit(v1 - v2) = limit(v1) - limit(v2)

lim_prod : PROPOSITION limit(v1 * v2) = limit(v1) * limit(v2)

...

Combined together all these rules are 
exible enough to perform automatically

a large class of simple limit computations. The two examples below are similar

to test2 and can be proved by automatic rewriting:

test3 : LEMMA limit(v1) = limit(v2) IMPLIES limit(v1 - v2) = 0

test4 : LEMMA convergent(s1) AND convergent(s2)

AND limit(s1) - 1 = limit(s2) * limit(s2)

IMPLIES limit(s1 - s2 * s2) = 1
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The �rst case is straightforward. The other requires slightly more work from the

prover: the rules lim diff and lim prod apply but there is also a TCC to check

that s2 * s2 is of type (convergent); this TCC is itself rewritten and reduced

to true by convergent prod.

Both lemmas are proved by a single command:

(GRIND :DEFS NIL :THEORIES ("convergence_ops")

:EXCLUDE "abs_convergence").

This installs rewrite rules contained in theory convergence ops then applies

these rules and the decision procedures. The other parameters prevent the ex-

pansion of the de�nitions of limit and convergent and exclude a rewrite rule

which would otherwise provoke in�nite rewritings.

The original test2 can be proved by exactly the same command with just

an extra rule in convergence ops:

limit_equiv : LEMMA

convergence(s, l) IFF convergent(s) AND limit(s) = l.

3.3 Limits of Functions

The second main group of theories is concerned with pointwise limits of numeric

functions. With the conventions used in [13], a limit is denoted:

lim

x!a

x2E

f(x)

where E is a set in a metric space

5

, f a real-valued function de�ned on E, and

a a point adherent to E.

A similar PVS formulation is possible using dependent types but it presents

certain inconveniences. If f is de�ned on a larger domain than E then

lim

x!a

x2E

f(x)

still makes sense; we just have informally replaced f by its restriction to E.

In PVS, function restrictions are not so easy; one can either introduce them

explicitly (e.g. lambda (x:(E)):f(x)) or rely on automatic conversions. This

tends to clutter speci�cations or make proofs less elegant.

For a simpler formulation, one could drop E and assume that x varies over

the domain of f . This is less general and E is convenient for considering distinct

limits of f at the same point a (for example on the left or on the right a).

After several attempts, we found the following de�nition su�ciently general

and convenient.

convergence_functions [T : TYPE FROM real] : THEORY

...

convergence(f, E, a, l) : bool = adh(E)(a) AND

FORALL epsilon : EXISTS delta :

FORALL x : E(x) /\ abs(x - a) < delta => abs(f(x) - l) < epsilon

5

In our case, the metric space is IR.
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with f of type [T->real], E a set of reals, and a and l two reals. The variable

x is of type T and adh(E)(a) holds i� a is adherent to fx:T | E(x)g.

This generic de�nition of convergence allows us to prove only once standard

results: the limit is unique, the limit of a sum is the sum of the limits, etc. All

these specialise easily to di�erent types of functions by parameter instantiation.

The argument E gives an extra level of 
exibility; for example, the expression

convergence(f, {x|x<0}, 0, -1)

corresponds to the limit of f on the left of 0.

In the de�nition of convergence, the variable x may be equal to the ad-

herence point a; this follows the convention of [13]. However, a is automatically

excluded if it is not in the domain T of f or if it is not in the set E.

A separate theory develops the most common case of limits where E is the set

of all reals, that is, where x can vary over the whole domain of f. This specialised

theory de�nes a function lim as follows:

convergence(f, a, l) : bool = convergence(f, fullset[real], a, l)

convergent(f, a) : bool = EXISTS l : convergence(f, a, l)

lim(f, (x0 : {a | convergent(f, a)})) : real =

epsilon(LAMBDA l : convergence(f, x0, l)).

Because of the dependent type, lim(f, a) is de�ned only if f is convergent at a.

This function makes possible the speci�cation of powerful rewrite rules, similar

to those associated with the limit of sequences.

3.4 Continuity and Di�erentiation

Continuity of a function f :[T -> real] is de�ned easily:

continuous(f, x0) : bool = convergence(f, x0, f(x0))

continuous(f) : bool = FORALL x0 : continuous(f, x0).

Once again, the de�nition is parametric on a subtype T of the reals. Di�erenti-

ation uses the Newton quotient NQ de�ned by:

A(x) : set[nzreal] = { u:nzreal | T_pred(x + u) }

NQ(f, x)(h : (A(x))) : real = (f(x + h) - f(x)) / h.

Dependent types and the predicate T pred are essential here: NQ(f, x)(h) is

only de�ned if h is non null and x+h is in the domain of f. Then f has a derivative

at x i� NQ(f, x) has a limit at 0:

derivable(f, x) : bool = convergent(NQ(f, x), 0)

deriv(f, (x0 : {x | derivable(f, x)})) : real = lim(NQ(f, x0), 0)
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This requires NQ(f, x) to be de�ned for h arbitrarily close to 0. In order to

ensure that condition, we need assumptions on the parameter T:

connected_domain : ASSUMPTION

FORALL (x, y : T), (z : real) : x <= z AND z <= y IMPLIES T_pred(z)

not_one_element : ASSUMPTION

FORALL (x : T) : EXISTS (y : T) : x /= y

These two conditions ensure that T represents a possibly in�nite real interval,

not reduced to a single point.

The general properties of limits of functions are used to derive rewrite rules

for proving continuity and computing derivatives. It is also convenient to in-

troduce new types for continuous and derivable functions with adequate judge-

ments. For our initial objective { reasoning about hybrid systems { the most

important results are theorems which describe the behaviour of continuous or

derivable functions on a closed interval:

{ if f is continuous on [a; b] then it is bounded and has a maximum and a

minimum on [a; b];

{ for any y between f(a) and f(b) there is a point x in [a; b] such that y = f(x)

(the intermediate value theorem).

These theorems and many similar properties such as the mean value theorem

are included in the library.

3.5 An Example Proof

The proof of the mean value theorem is representative in its size and complexity

of many proofs in the library. The theorem and a lemma are given below:

mean_value_aux : LEMMA

derivable(f) AND a < b AND f(a) = f(b) IMPLIES

EXISTS c : a < c AND c < b AND deriv(f, c) = 0

mean_value : THEOREM

derivable(f) AND a < b IMPLIES

EXISTS c : a < c AND c < b AND deriv(f, c) * (b-a) = f(b)-f(a).

The whole proof is the following:

(SKOSIMP)

(NAME-REPLACE "C" "b!1 - a!1" :HIDE? NIL)

(NAME-REPLACE "B" "f!1(b!1) - f!1(a!1)" :HIDE? NIL)

(ASSERT)

(AUTO-REWRITE-THEORY "derivatives[T]" :EXCLUDE ("derivable" "deriv"))

(USE "mean_value_aux" ("f" "f!1 - (B/C) * (I[T] - const_fun[T](a!1))"))

(GROUND)

(("1"

(SKOSIMP)
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(INST?)

(EXPAND "derivable")

(INST - "c!1")

(ASSERT)

(ASSERT)

(USE "div_cancel2")

(ASSERT))

("2" (DELETE -3 2) (GRIND) (USE "div_cancel2") (ASSERT))).

The proof applies lemma mean value aux to the function f � (B=C)� (I[T ]�a)

where B = f(b) � f(a), C = b � a, and I[T ] is the identity function. We have

to show that the premises of the lemma hold and that, for the real c whose

existence is asserted by mean value aux, we have f

0

(c) �C = B. All this is done

using rewrite rules from theory derivatives[T], lemma div cancel2 from the

prelude, and the decision procedures.

4 Discussion and Related Work

The work presented in this paper represents a relatively large application of PVS.

The library consists of around 3000 lines of speci�cations (including comments

and blank lines) organised in 30 theories, and contains 519 theorems (includ-

ing 156 TCCs). The amount of e�ort involved can be estimated at around 6

man-months. Most of the proofs are of a similar complexity as the proof of

mean value; there are a few larger proofs (up to 78 proof steps) but many

propositions are proved in just one or two commands. Type checking the whole

library and running all the proofs takes about 45 min (real time) on a Sparc 5

workstation with 64Mb of central memory.

The development gave us the opportunity to explore some of the most ad-

vanced features of PVS. The library relies extensively on the facilities o�ered by

the rich type system: overloading of operators, subtypes, and dependent types.

These are very comfortable for writing concise speci�cations, in a form very close

to standard mathematical notations. The possibility to parameterise theories is

at least as important; several of the notions developed could be speci�ed without

subtypes or dependent types but parameters are essential for re-usability and

generality.

Type judgements are very e�ective in reducing the amount of e�ort spent

on proof obligations. There are still some limitations: for example an expression

such as lim(f1+f2,a) produces a TCC to check that f1+f2 is convergent at a.

It would be convenient to be able to indicate to the type checker that f

1

+ f

2

is

convergent at a when both f

1

and f

2

are. In their present form, judgements do

not give this possibility.

Unlike judgements, conversions did not appear extremely useful; very few are

used in the library. The following one extends a real to a constant functions:

const_fun(a) : [T -> real] = LAMBDA (x : T) : a

CONVERSION const_fun.
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We expected this conversion to make possible expressions such as

limit(s + 1) = limit(s) + 1,

with the �rst occurrence of 1 converted to a constant sequence. Unfortunately,

this does not work; PVS applies a conversion but not the one we expected: s+1

is transformed to LAMBDA (x:nat):s(x)+1. The rewrite rules do not match this

lambda expression.

In general, automatic conversions can have unexpected e�ects. For example

if A and B are of type set[real] and set[nat] respectively, then the \identity"

union(A, B) = union(B, A) does not hold. The conversions inserted by PVS

are not the same on both sides of the equality:

union(A, extend(B)) = extend(union(B, restrict(A))).

Because the user has no control on where conversions are introduced, other than

making them explicit, they can only be used safely in very restricted situations.

Despite this last criticism, we think that PVS is a very powerful and practical

tool. Its main qualities are the expressiveness of its speci�cation language and

type system, and the power and simplicity of use of its interactive prover. The

library showed that relatively complex notions could be formalised easily and

that proofs which sometimes rely on elaborate arguments could be performed

without di�culty.

As far as we are aware, analysis is not a very common domain of application

for mechanical theorem provers. The work the most closely related is due to

Harrison who developed a large fragment of analysis in HOL [8]. There is also

an extensive formalization of analysis and calculus in IMPS [4, 6]. Our own con-

struction is modest in comparison: the HOL library for reals covers notions such

as power series and transcendental functions and IMPS provides rich theories

for metric and normed spaces.

There are important di�erences between the three systems in the way the

reals are de�ned. In HOL, the positive rationals are �rst constructed from the

natural numbers then the reals are constructed from the rationals using Dedekind

cuts [8]. This corresponds to the HOL philosophy of having a small implementa-

tion of a basic logical kernel that users can extend in a safe way. IMPS adopts an

axiomatic approach to mathematics [3] and the reals are speci�ed as a complete

ordered �eld. The emphasis of PVS is more on practicality issues and usability:

the reals are axiomatized but a lot of knowledge is also embedded in the decision

procedures.

Di�erent approaches are used in the three systems for developing analysis.

Both HOL and IMPS

6

de�ne several notions with a general and abstract per-

spective [8, 5]. For example, convergence is de�ned in HOL using convergence

nets instead of having two separate notions, one for sequences and one for func-

tions. Economy is the main motivation; convergence nets avoids having to prove

several theorems twice. IMPS is a system for doing mathematics and as such it

6

Many thanks to the reviewers who signalled to us the IMPS work.

14



includes theories for abstract metric spaces or normed vector spaces which are

of interest to mathematicians.

Our goal was more pragmatic and although abstract notions can be intro-

duced in PVS we preferred a more direct approach. Furthermore, being too gen-

eral may be counter-productive. On an abstract type such as convergence nets,

the PVS decision procedures do not apply and proofs may get rapidly tedious

and intricate. It is better to keep separate notions of convergence even if some of

the theorems seem duplicated. With decision procedures, the proofs are not that

di�cult anyway, and the \hardest" parts which often involve manipulations of

non-linear real expressions can be isolated in re-usable lemmas.

The three systems are di�erent in the way speci�cations and theorems are

introduced. They all allow interactive backwards proof construction (HOL also

supports forward proofs) but the form of interactions are di�erent. In PVS,

the user �rst states theorems and then tries to prove them. High level proof

commands are available and are su�cient for doing large proofs. In HOL and

in IMPS, theorems are constructed with a functional language and the user

is encouraged to de�ne new functions for doing proofs. This gives HOL and

IMPS some meta-theoretical possibilities not available in PVS, at least not to

the ordinary user. For example, the HOL real library contains ML functions to

build theorems from an equivalence relation R on a type � and a list of theorems

about representatives of the equivalence classes of R. The use of ML also makes

HOL easier to interface with external tools as described in [10].

PVS and IMPS seem to provide much better support than HOL for mod-

ularity. IMPS uses a sophisticated technique based on theory interpretation.

Although not as general, the PVS mechanism of parametric theories and param-

eter assumptions is extremely useful. The PVS de�nitions of limits, continuity,

and derivability are parametric. This gives a superior level of generality and


exibility than the same notions from the HOL library which only applies to

functions from IR to IR.

5 Conclusion

This paper has presented an example of applying mechanical theorem proving to

ordinary mathematics. The main result from this work is that PVS is a powerful

and practical tool for this purpose. Due to the rich type system, speci�cations

can be written in a very natural way. The PVS theorem prover is e�cient for

doing proofs which require more elaborate forms of reasoning than encountered

in traditional computer-related areas. The proofs rely extensively on the decision

procedures supplemented with user-de�ned rewrite rules but do not require any

extension to the pre-existing proof commands.

The library covers the most fundamental elements of analysis and there are

a lot of possibilities of extensions. The priority might be to include power series

and de�ne the common trigonometric functions, the exponential and logarithmic

functions as done in HOL [8]. However, in its present state we hope the library

is rich enough to provide adequate support for reasoning about hybrid systems.
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