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Abstract. This paper presents an application of PVS to the veri�cation

of security protocols. The objective is to provide mechanical support for

a veri�cation method described in [14]. The PVS formalization consists

of a semantic embedding of CSP and of a collection of theorems and

proof rules for reasoning about authentication properties. We present an

application to the Needham-Schroeder public key protocol.

1 Introduction

Authentication protocols are used in insecure networks by principals who want

to get assurance about their correspondent's identity. Designing such protocols

is notoriously error-prone and attacks can often exploit weaknesses or subtle


aws. Validating authentication protocols requires a rigorous analysis and several

formal approaches have been advocated for this purpose [3, 16, 12, 9].

In [14], Schneider presents such a method based on CSP [7]. The approach

relies on a general network model which includes legitimate protocol participants,

the users, and an intruder, the enemy. Both the users and the enemy are speci�ed

as CSP processes and authentication properties are expressed as constraints on

the sequences of messages the whole network can produce.

The veri�cation strategy uses rank functions, that is, functions which assign

an integer value to messages. A key theorem shows that authentication properties

can be veri�ed by �nding a rank function which satis�es appropriate conditions.

These depend on the nature of the encryption mechanism used, on the de�nition

of the users, and on the property to be veri�ed. An important bene�t of the

technique is to decompose an authentication property { a global property of a

network { into local properties of the protocol participants.

This paper shows how the PVS theorem prover [5] can provide e�ective me-

chanical support to the above method. Using a semantics embedding of CSP, we

specify the general network model in PVS and derive the important theorems

about authentication and rank functions. We then de�ne specialised PVS rewrite

rules and proof commands to facilitate the veri�cations. With these rules and
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commands, the proofs of authentication are very systematic and require only lit-

tle manual guidance. This allows the user to concentrate on the most important

aspects of the analysis: �nding rank functions.

In the remainder of this paper, we give a brief introduction to CSP and an

overview of the modelling and analysis approach. We then describe the formal-

ization of the network model and of the veri�cation method in PVS. We give a

simple example of application to the Needham Schroeder public key protocol[10].

Finally, we discuss and compare our developments with other mechanisations of

CSP and with other veri�cation methods for security protocols.

2 Authentication Protocols in CSP

2.1 CSP Notation

CSP is an abstract language for describing concurrent systems which interact

through message passing [7]. Systems are modelled in terms of the events they

can perform, each event corresponding to a potential communication between a

system and its environment. CSP is a process algebra: systems are constructed

from a set of elementary processes which can be combined using operators such as

pre�xing, choice, or parallel composition.Di�erent semantic models are available;

in this paper only the simplest { the so-called trace semantics { is considered.

We assume that a �xed set � of all possible events is given. A process is

characterised by a set of traces, that is, �nite sequences of elements of �. Each

trace represents a possible sequence of communications one can observe on the

process interface. The set of traces of a process P is pre�x-closed; if one observes

a trace tr then all the pre�xes of tr have been seen before.

The particular dialect we use includes four primitive notions. The syntax of

process expressions is as follows:

P ::= Stop j a! P j �

i2I

P

i

j P

1

�P

2

j P

1

j[A]jP

2

j P

1

jjjP

2

;

where a is an element of �, I a non-empty set, and A a subset of �. These

expressions have the following informal interpretation.

{ Stop is the process which cannot engage in any event (deadlock).

{ a! P is able initially to perform only the event a after which it behaves as

P .

{ �

i2I

P

i

is the choice among an indexed family of processes P

i

. The result-

ing process can behave as any one of the P

i

. When only two processes are

involved, choice is denoted by P

1

�P

2

.

{ P

1

j[A]jP

2

is the parallel composition of P

1

and P

2

with synchronization on

events in A. If one of the processes is willing to engage in an event of A then

it has to wait until the other is ready to perform the same event. On events

which do not belong to A, P

1

and P

2

do not synchronise; they can perform

any such event independently of each other. P

1

jjjP

2

is an abbreviation for

P

1

j[;]jP

2

.
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2.2 A Model for Authentication Protocols

In the analysis of authentication protocols, we consider the general network

architecture shown in Fig. 1. The network consists of a set of user processes and

of an enemy which has full control over the communication medium. The enemy

can block, re-address, duplicate, corrupt, or fake messages but we assume that

it cannot decrypt or encrypt messages without the appropriate keys.

ENEMY

trans.n rec.n. . .rec.2trans.2trans.1 rec.1

USER 1 USER USER2 n. . .

Fig. 1. The network

Each user has a unique identity. Its interface with the medium consists of two

channels, one for transmission and one for reception. Accordingly, communica-

tions are modelled by two types of events. A transmission event is of the form

trans:i:j:m and is interpreted as \user i sends a message m destined for user j".

A reception event is of the form rec:i:j:m and means \i receives a message m,

apparently from user j". The communication channels are private; no user other

than i can produce events of the form trans:i:j:m or rec:i:j:m.

In order to model the capabilities of the enemy, we use a relation ` which

speci�es when new messages may be generated from existing ones: S ` m means

that knowledge of all the messages of the set S is enough to produce the message

m. The relation depends on the particular encryption mechanism used but we

can assume that certain natural conditions are satis�ed, such as,

8S;m m 2 S ) S ` m;

8S; S

0

;m S � S

0

^ S ` m) S

0

` m:

With the preceding notations, the enemy is speci�ed as follows:

ENEMY(S) = (�

i;j;m

trans:i:j:m! ENEMY(S [ fmg))

� (�

i;j;(mjS`m)

rec:i:j:m! ENEMY(S)):

This describes the behaviour of an enemy which has knowledge of a set of mes-

sages S. Such a process can either allow a user to transmit a message m after

which it behaves as ENEMY(S [ fmg) or generate a new message from the set
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S and send it to an arbitrary destinator. The enemy's behaviour at the start of

a protocol is modelled by the process ENEMY(INIT) where INIT represents the

information initially available to the enemy.

The user description depends entirely on the protocol being modelled and

consists of a family of processes USER(i). The whole network is the following

composition of users and enemy:

NET = ( jjj

i

USER(i) ) j[trans; rec]jENEMY(INIT):

The users do not communicate directly with each other but the enemy and the

composition of users synchronize on all transmission and reception events.

2.3 Checking Authentication Properties

The speci�cation of various security properties is discussed in [13]. Authenti-

cation involves two disjoint sets of events T and R; a process P satis�es the

property T authenticates R if occurrence of any event of T in a trace of P is

preceded by occurrence of some element of R. This is denoted by

P sat T authenticates R: (1)

Examples in [14] illustrate how this relates concretely to authentication. For-

mally, T authenticates R is an abbreviation for the trace predicate

tr�R = hi ) tr�T = hi; (2)

where � denotes projection

3

and hi is the empty trace. The statement (1) is

interpreted as \all the traces tr of P satisfy predicate (2)", that is, any trace of

P which does not contain events of R does not contain events of T either.

In order to verify authentication properties of a protocol, we have to prove

statements of the form NET sat T authenticates R. It can be seen that this

condition is equivalent to

NET j[R]jStop sat tr�T = hi: (3)

This equivalence is the basis of the proof strategy described in [14]. The idea

is to assign to every message m an integer value �(m) called its rank in such a

way that messages occurring in events of T have non-positive rank while only

messages of positive rank can be produced by NET j[R]j Stop.

LetM be the message space for a given protocol. A rank function is a function

� from M to the integers. Given such a function, we denote by �

+

the set of

messages of positive rank and by M (tr) the set of messages which occur in a

trace tr. From the de�nition of NET and ENEMY, one can derive the following

key theorem [14].

3

tr�R is the maximal subsequence of tr all of whose elements belong to R.
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Theorem1. If the four conditions below are satis�ed,

INIT � �

+

;

8S;m: S � �

+

^ S ` m) �(m) > 0;

T \ �

+

= ;;

8i: USER(i) j[R]jStop sat M (tr�rec) � �

+

)M (tr�trans) � �

+

;

then

NET sat T authenticates R:

With this result, one can verify authentication properties by �nding an appro-

priate rank function. Showing that the four conditions are satis�ed is simpler

than a direct approach because user processes can be considered individually.

3 Embedding CSP in PVS

Our mechanization is based on a semantic embedding of CSP: Traces are repre-

sented by lists of events, processes are pre�x-closed sets of traces, and the CSP

operators are functions on processes which preserve the closure condition. Such

a formalization is classic and similar to Camilleri's HOL embedding of CSP [4].

The main di�erences are the representation of events and processes, and the vari-

ant of CSP considered. In [4], events are considered as atomic symbols and are

represented by strings. Our formalisation is more general and uses parametric

types. Given any type T, trace[T] and process[T] represent traces and pro-

cesses with events of type T. The CSP dialect considered by Camilleri is Hoare's

original de�nition of deterministic processes [7]. In this model, a process has two

components, a set of traces and an alphabet of events representing the interface.

Due to this interface, there are restrictions on certain CSP operators. For our

purpose, it is better to follow [14] and use the CSP variant presented previously.

Our de�nition of processes relies on PVS subtyping; process[T] is a subtype

of set[trace[T]] de�ned as follows:

S: VAR set[trace[T]]

process: TYPE = f S | S(null) AND prefix closed(S) g.

A process is any set of traces which contains the empty trace null and which is

pre�x-closed. All general results about sets or sets of traces apply then immedi-

ately to processes.

The CSP primitives are easily de�ned[6]. It is also convenient to generalise

the two parallel composition operators to arbitrary (non-empty) families of pro-

cesses. This non-standard extension of CSP does not pose any theoretical prob-

lem in the trace model and generalises the results presented in Sec. 2. We can

consider networks with in�nitely many users and all the theorems still hold.

Moreover, the PVS statement and proof of these theorems are much simpler if

in�nite parallel composition is allowed.
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Since PVS has a �xed syntax, we cannot use the standard CSP notations. In-

stead we use existing PVS symbols as indicated in Tab. 1. The operators Choice

and Interleave are polymorphic functions which apply to indexed families of

processes. For example, Choice is of parametric type [[U -> process[T]] ->

process[T]]. PVS has a special syntax for denoting the applications of such

functions to lambda terms; Choice(lambda i: P(i)) can be written Choice!

i: P(i). More complex expressions are also valid:

Choice! i, j: Q(i) // P(i, j)

Choice! i, (j | i < j): i >> (j >> Stop[nat]).

In the two expressions above, PVS infers the correct parameter instantiation

from the types of the variables and processes. In the �rst case, U is instantiated

with a tuple type and in the second case, U is instantiated with the dependent

type [i:nat, fj:nat| i < jg].

Table 1. Syntax of process expressions.

Operation CSP PVS

Stop Stop Stop

Pre�x a! P a >> P

Choice P

1

�P

2

P1 \/ P2

�

i2I

P

i

Choice! i : P(i)

Parallel Composition P

1

j[A]jP

2

Par(A)(P1, P2)

P

1

jjj P

2

P1 // P2

jjj

i2I

P

i

Interleave! i : P(i)

Recursive processes are de�ned as least �xed points of monotonic functions.

Given such a function F of type [[U -> process[T]] -> [U-> process[T]]],

mu(F) denotes the least �xed point of F. This form of the mu operator is necessary

for de�ning recursive processes with parameters. A simpler form is available for

the non-parametric case.

The preceding elements allow us to de�ne CSP processes in PVS. In order to

reason about such processes, we provide various lemmas such as the associativity

of choice and parallel composition [6]. For specifying properties of processes we

imitiate the sat operator. Properties are predicates on traces, that is, sets of

traces, and the satisfaction relation is

|>(P, E): bool = subset?(P, E).

For example, we can translate the statement P sat tr�D = hi to

P |> f tr | proj(tr, D) = null g.

Various rules about satisfaction and induction theorems for reasoning about

�xed points are provided [6].
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4 The Authentication Model in PVS

4.1 Network

It is routine to specify the network. Events are represented by an abstract data

type parameterized by the types of user identities and messages.

event[I, M: TYPE]: DATATYPE

BEGIN

trans(t snd, t rcv: I, t msg: M): trans?

rec(r rcv, r snd: I, r msg: M): rec?

END event

From this speci�cation, PVS generates an axiomatic de�nition of the data type.

The functions trans and rec are constructors; events are either of the form

trans(i, j, m) or rec(i, j, m). Functions such as t snd give access to the

components of events. The two functions trans? and rec? are recognisers of

type [event -> bool] and characterize transmission and reception events, re-

spectively.

The enemy is de�ned using the least �xed point operator. The process de-

pends on two type parameters as above and on a message generation relation.

enemy[Identity, Message: TYPE,

|- : [set[Message], Message -> bool]]: THEORY

BEGIN

...

F(X)(S): process[event] =

(Choice! i, j, m: trans(i, j, m) >> X(add(m, S)))

\/ (Choice! i, j, (m | S |- m): rec(i, j, m) >> X(S))

enemy: [set[Message] -> process[event]] = mu(F)

END enemy.

For such a de�nition to be sound, PVS requires us to show that F is monotonic

by generating a proof obligation (TCC) [11].

Users can be arbitrary processes provided they satisfy the interface con-

straints. The type user process below captures this restriction:

LocalEvents(i): set[event] =

fe | EXISTS m, j: e = trans(i,j,m) OR e = rec(i,j,m)g

user process: TYPE =

[i: Identity -> fP | subset?(sigma(P), LocalEvents(i))g].

The function sigma gives the set of events P can generate. Any user of the above

type is a function of domain Identity and range process[T] such that the set

of events generated by user(i) is included in LocalEvents(i). For de�ning

networks, we use the function

network(baddy, P): process[T] = Par(fullset)(baddy, Interleave(P)),

where baddy is any process and P is of type [Identity -> process[T]]. The

constant fullset is the set of all transmission and reception events.
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4.2 Key Theorems

The main results of Sec. 2 are proved in a theory network which has the same

parameters as enemy and makes the following assumption:

montonic gen: ASSUMPTION

FORALL A, B, m: subset?(A, B) AND (A |- m) IMPLIES (B |- m).

Within the theory, monotonic gen can be used like an axiom, but PVS gener-

ates a TCC to check that the assumption holds when one imports a particular

instance of network.

A �rst lemma follows from the previous assumption and is proved using the

induction rule for least �xed points:

Gen(S): set[Message] = f m | S |- m g

Prop(S): set[trace[event]] =

f tr | subset?(rec msg(tr), Gen(union(S, trans msg(tr)))) g

enemy prop: THEOREM enemy(S) |> Prop(S).

Informally, this means that any message enemy(S) can produce is generated

from the set S and the messages the enemy has intercepted from users.

Now, given a function rho of type [Message->int], we de�ne two trace

predicates:

RankUser(rho): set[trace[event]] =

ftr | pos trans(rho, tr) IMPLIES pos rec(rho, tr) g

RankEnemy(rho): set[trace[event]] =

ftr | pos rec(rho, tr) IMPLIES pos trans(rho, tr) g,

where pos rec(rho, tr) and pos trans(rho, tr) are true if all the reception

or transmission events of tr, respectively, have positive rank by rho. The �rst

half of the main theorem is a corollary of enemy prop:

rank property: COROLLARY positive(rho, INIT)

AND (FORALL S: positive(rho, S) implies positive(rho, Gen(S))

IMPLIES enemy(INIT) |> RankEnemy(rho).

If the two premisses are satis�ed then the enemy cannot generate messages of

non-positive ranks unless it receives such messages from the users.

For convenience, we use a speci�c restriction operator; the process P j[R]jStop

is written P # R in PVS. We then get the following essential property:

main result: LEMMA baddy |> RankEnemy(rho)

AND (FORALL i: user(i) # R |> RankUser(rho))

IMPLIES network(baddy, user) # R |> ftr | positive(rho, tr)g.

In this lemma, the two premisses are symmetric: baddy does not generate mes-

sages of negative rank if the users send messages of positive ranks and user(i)

# R does not send messages of negative ranks if it only receives messages of pos-

itive ranks. By induction, the two conditions imply that no message of positive

rank can ever appear in a trace of network(baddy,user) # R. From this and

lemma rank property we obtain the main theorem:
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authentication by rank: THEOREM

positive(rho, INIT)

AND (FORALL S, m:

positive(rho, S) AND (S |- m) IMPLIES rho(m) > 0)

AND (FORALL i: user(i) # R |> RankUser(rho))

AND non positive(rho, T)

IMPLIES network(enemy(INIT), user) |> auth(T, R).

4.3 Automating the Veri�cations

The previous theorem is the main tool for verifying authentication properties.

When using it, most of the e�ort concentrates on properties of the form user(i)

# R |> RankUser(rho). There are also hidden conditions which arise from the

type of user: we have to prove that user(i) can only generate events which

belong to LocalEvents(i). All these proofs can be partially automated by using

the PVS rewriting facilities and by de�ning speci�c proof strategies.

The interface constraints are of the form subset?(sigma(P), E) where P is

a CSP expression and E is a set of events. We can systematically develop rules

which rewrite the above inclusion in a simpler form according to the top-level

operator of P. There is such a rule for every CSP primitive; a few examples are

given below:

interface pref: LEMMA subset?(sigma(a >> P), E) IFF

E(a) AND subset?(sigma(P), E)

interface choice3: LEMMA subset?(sigma(Choice(P)), E) IFF

FORALL i: subset?(sigma(P(i)), E)

interface stop: LEMMA subset?(sigma(Stop), E)

interface par: LEMMA subset?(sigma(P1), E) AND subset?(sigma(P2), E)

IMPLIES subset?(sigma(Par(A)(P1, P2)), E).

All such lemmas can be installed as automatic rewrite rules which PVS applies

in conjunction with built-in simpli�cation and decision procedures. The �rst

two rules are inconditional rewritings which applies in the left to right direction;

interface stop is also inconditional but matching terms are rewritten to true.

The last rule is conditional: terms matching the right hand side of the implication

reduce to true provided the premisses are also reduced to true by the decision

procedures or by further rewriting.

Lemma interface pref introduces expressions of the form E(a). For user

processes, E is LocalEvents(i) for some �xed i and two more rewrite rules are

necessary:

local transmission: LEMMA LocalEvents(i)(trans(i, j, m))

local reception: LEMMA LocalEvents(i)(rec(i, j, m)).

In practice, automatic rewriting with these two rules and the preceding lemmas

prove almost all interface constraints. The few exceptions are usually due to

�xed points. The presence of quanti�ers in the rules for �xed points interrupts
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the chain of rewrites and little manual intervention is required before rewriting

can proceed.

For properties of the form P # R |> RankUser(rho), rewrite rules can also

largely reduce the proof e�ort. However, rewriting is not su�cient and the rules

must be supplemented with speci�c proof strategies.

In a similar way as above, two sets of rewrite rules are constructed which

apply to expressions of the form P # R or P |> RankUser(rho). For example,

the rules for pre�x and Stop are:

restriction pref: LEMMA

(a >> P) # B = IF B(a) THEN Stop ELSE a >> (P # B) ENDIF

rank user output: LEMMA (trans(i,j,m) >> P) |> RankUser(rho)

IFF rho(m)>0 AND P |> RankUser(rho)

rank user input: LEMMA (rec(i,j,m) >> P) |> RankUser(rho)

IFF (rho(m)>0 IMPLIES P |> RankUser(rho))

restriction stop: LEMMA Stop # B = Stop

rank user stop: LEMMA Stop |> RankUser[rho].

Such lemmas are more complex than the interface rules and automatic rewriting

does not work as well. The �rst three examples illustrate some of the di�culties.

PVS considers restriction pref as a conditional rule which applies only if B(a)

reduces to true or false. This cannot be expected in general since B depends

on the authentication property being checked. The other two lemmas introduce

terms involving rank functions which cannot systematically reduce to true. As

a result, the chains or reductions required to apply conditional rules often fail.

Despite these limitations, some form of automation is still possible. The

proofs of P # R |> RankUser(rho) have a regular pattern and the same se-

quences of proof commands are applied repeatedly. For example, if P is of the

form rec(i,j,m) >> Q then the corresponding PVS proof starts by the following

sequent:

|----

{1} (rec(i,j,m) >> Q) # R |> RankUser(rho).

The natural �rst step is to apply (rewrite "restriction pref"). This yields

|----

{1} IF R(rec(i,j,m)) THEN Stop

ELSE rec(i,j,m) >> (Q # R) ENDIF |> RankUser(rho).

The obvious case split generates two subgoals. The �rst one can be solved im-

mediately using the rewrite rules for Stop and the second is:

|----

{1} rec(i,j,m)>> (Q # R) |> RankUser(rho)

{2} R(rec(i,j,m)).

Lemma rank user input can be applied and further propositional simpli�cation

yields:
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{-1} rho(m)>0

|----

{1} Q # R |> RankUser(rho)

{2} R(rec(i,j,m)).

At this point, the same sequence of proof commands applies if Q is a pre�x

expression which starts by a reception event. More generally, successive goals in

such proofs are of the form

...

|----

{1} P # R |> RankUser(rho)

...

and the syntactic form of P determines a sequence of commands which can be

used systematically.

We exploit this regularity by de�ning speci�c proof strategies. An initialisa-

tion strategy installs automatic rules for Stop together with rank user input

and rank user output. The other strategies correspond to particular CSP op-

erators. For example, the strategy (prefix) applies the following command:

(try (rewrite "restriction pref")

(then* (lift-if) (assert) (prop))

(skip)).

This performs the four steps of the proof sketched previously. The strategy at-

tempts to rewrite the current goal with restriction pref. If this fails, (skip)

leaves the goal unchanged, otherwise, an expression of the form IF R(a) THEN

Stop ELSE a >> (P # R) ENDIF is introduced. Three commands are then ap-

plied successively. In the second step, (assert) activates automatic rewriting.

As a result, the �rst branch of the conditional is reduced to true and the second

branch is rewritten by one of rank user input or rank user output. The e�ect

of (prefix) depends on whether a is a transmission or a reception event and is

described in Fig. 2.

Reception Events: a = rec:i:j:m

�; �(m) > 0 ` P # R sat RankUser(�);R(a); �

� ` (a! P ) # R sat RankUser(�);�

Transmission Events: a = trans:i:j:m

� ` �(m) > 0; R(a); � � ` P # R sat RankUser(�);R(a); �

� ` (a! P ) # R sat RankUser(�);�

Fig. 2. E�ect of the prefix strategy.

With similar strategies for the other CSP primitives, the proofs can be con-

ducted at a fairly abstract level. The details of the PVS mechanics are hidden
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from the user who simply selects the right strategy. When none applies, the

remaining sequents do not contain any process expression and correspond to

simple properties of the rank function which have to be proved by other means.

The structure of the proofs is for a large part independent of the rank function

under investigation. It is easy to experiment with various rank functions and

most of the proofs remain unchanged.

5 Applications

We have experimented the PVS mechanization on two versions of the Need-

ham Schroeder public key protocol [10]. All the properties examined in [14] have

been mechanically veri�ed [6]. In the sequel, we consider the following variant

proposed by Lowe[9]

4

:

A! B : fN

a

; Ag

K

b

B ! A : fN

a

;N

b

; Bg

K

a

A! B : fN

b

g

K

b

:

5.1 Encryption

The �rst step in the analysis is to model public key encryption. We follow [14]

and represent messages by an abstract data type:

message: DATATYPE WITH SUBTYPES key, nonkey

BEGIN

text (x text: Text) : text? : nonkey

nonce (x nonce: Nonce) : nonce? : nonkey

user (x user: Identity) : user? : nonkey

public(x public: Identity) : public? : key

secret(x secret: Identity) : secret? : key

conc (x conc, y conc: message) : conc? : nonkey

code (x code: key, y code: message) : code? : nonkey

END message.

In this data type, the subtypes key and nonkey are similar to extra recognisers.

The �rst �ve constructors de�ne elementary messages of di�erent natures and

the last two correspond to concatenation and encryption.

Asymmetric cryptosystems satisfy the identity ffmg

K

a

g

K

�1

a

= m but the

equivalent PVS assumption

code(secret(i), code(public(i), m)) = m

is not sound; it contradicts the data type axioms. Instead we use a function

crypto which performs message normalisation. We can then de�ne the message

generation relation |- as follows:

4

K

x

and K

�1

x

are x's public and private key; fmg

K

is m encrypted using K.
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Gen(S)(m): INDUCTIVE bool =

S(m)

OR (EXISTS m1, m2: Gen(S)(m1) AND Gen(S)(m2) AND m=conc(m1, m2))

OR (EXISTS m1: Gen(S)(conc(m1, m)) OR Gen(S)(conc(m, m1)))

OR (EXISTS m1, k: Gen(S)(m1) AND Gen(S)(k) AND m=crypto(k, m1));

|-(S, m): bool = Gen(S)(m).

Gen(S) is the set of messages which can be generated from S and is de�ned

inductively. PVS automatically generates two induction axioms for Gen from

which we can show the required monotonicity assumption:

gen monotonic2: COROLLARY

subset?(S1, S2) AND (S1 |- m) IMPLIES (S2 |- m).

5.2 Users and Veri�cations

The modelling allows several variants of the protocol to be analysed, from the

simple case of two participants executing a single run to multiple runs executed

concurrently. In a simple example, the initiator is described by the process below

userA: process[event] =

Choice! i, x:

( trans(a, i, pub(i, conc(Na, user(a)))) >>

( rec(a, i, pub(a, conc3(Na, x, user(i)))) >>

( trans(a, i, pub(i, x)) >> Stop[event]))).

User A non-deterministically initiates a single run with some user i by sending

the message fN

a

; ag encrypted with K

i

. Then A is ready to receive a message

of the form fN

a

; x; ig

K

a

coming from i where x is any nonce. A responds to this

message by sending back fxg

K

i

.

We assume that the responder B behaves as if participating in a run with A:

userB: process[event] =

Choice! y:

( rec(b, a, pub(b, conc(y, user(a)))) >>

( trans(b, a, pub(a, conc(y, Nb, user(b)))) >>

( rec(b, a, pub(b, Nb)) >> Stop[event]))),

and we want to prove that reception of fN

b

g

K

b

by B ensures that B is e�ec-

tively communicating with A. More precisely, we want to prove that the network

satis�es T authenticates R where T and R are as follows:

T: set[event] = f e | e = rec(b, a, pub(b, Nb)) g

R: set[event] = f e | e = trans(a, b, pub(b, Nb)) g.

As shown in [9], this property does not hold for the original Needham-Schroeder

protocol; reception of fN

b

g

K

b

still ensures that A sent the message but to a user

which may be di�erent from B. The property holds for Lowe's variant, provided

the ENEMY does not know N

b

or the secret keys of A and B.

The rank function we use for the property above is de�ned in [14]. It satis�es

the essential property below:

13



rho(pub(i, m)) =

IF i=a AND (EXISTS x: m=conc3(x, Nb, user(b))) THEN 1

ELSE rho(m) ENDIF.

In order to apply the main theorem, the most important part of the veri�cation

is to show the four following lemmas:

interface userA: LEMMA subset?(sigma(userA), LocalEvents(a))

interface userB: LEMMA subset?(sigma(userB), LocalEvents(b))

rank user a: LEMMA userA # R |> RankUser(rho)

rank user b: LEMMA userB # R |> RankUser(rho).

The interface constraints are easily checked. The proof script for interface userA

is given below:

(AUTO-REWRITE "local_transmission" "local_reception"

"interface_pref[event]" "interface_stop[event]")

(EXPAND "userA")

(REWRITE "interface_choice3").

The �rst command installs the automatic rewrite rules presented in Sec. 4.3

and the second expands the de�nition of userA. The third step is a manual

application of the interface rule for unbounded choice. This triggers automatic

rewriting and the goal is solved at once.

The proofs of the rank preservation properties apply the strategies for choice

and pre�x. On the remaining goals, we use the prede�ned strategy (grind)

which expands the de�nitions of rho and R and applies the decision procedures.

This is often enough to solve the goals but sometimes the extensionality axioms

for the message data type are needed (see [6] for details). For example, the proof

script of rank user a is

(INIT-CSP "Identity" "message")

(EXPAND "userA")

(CHOICE3)

(PREFIX)

(("1" (DELETE 2) (GRIND))

("2"

(PREFIX)

(PREFIX)

(DELETE 3 4)

(GRIND)

(CASE "x_user(y_conc(conc(conc(....)))) = b")

(("1" (APPLY (REPEAT (APPLY-EXTENSIONALITY))))

("2" (REPLACE -2) (ASSERT)))))).

The proofs of authentication properties we have performed with PVS are all

similar to the previous example. The most general situations, where concurrent

protocol runs are considered, require much more complex rank functions. But,

even in such cases, the PVS proofs are not substantially harder. The same proof

strategies are used together with (grind) and extensionality rules.
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6 Discussion and Related Work

This paper shows that PVS can provide e�cient support for a non-trivial appli-

cation of CSP. The usefulness of the mechanisation is clear. In our experience,

manual veri�cation of the constraints on rank functions simply does not work.

PVS has found many errors in our own manual proofs of authentication prop-

erties. The proofs we performed generalise the results presented in [9] to more

complex variants of the Needham Schroeder protocol. In recent works, larger

protocols have been veri�ed [2].

The basis of our mechanisation is a semantics embedding of CSP and PVS is

adequate for this purpose. Camilleri [4] and Thayer [17] present similar embed-

dings in HOL and IMPS. Our main contribution compared with these works is

the application to the speci�c problem of authentication and the development

of PVS theories for this purpose.

In the analysis of security protocols, tools exist which support various belief

logics [3, 1]. Closer to our approach are methods based on modelling protocols

as collections of rules for transforming and reducing messages. Tool support in

this area [9, 8] is mostly based on analysis for reachability of an insecure state

which corresponds to the existence of an attack. This usually requires �nitary

models and the inability to �nd an attack does not in itself guarantee correctness

of the full-scale protocol. Our veri�cation approach is then a useful complement

to these state exploration techniques.

Paulson [12] investigates the application of Isabelle/HOL to proving security

properties of protocols by induction. He speci�es protocols in terms of traces

and rules about how traces can be augmented. This is clearly very close to the

CSP trace model but gives no control over when rules may apply. In contrast,

the CSP approach maintains the order of protocol steps and the order in which

proof rules are applied. Paulson has some useful results about proof reuse while

at present we know little about the potential reusability of rank functions.

In future developments we envisage to increase the level of proof automa-

tion. Currently, we provide specialised proof commands but the user still has to

manually select the right rule. This could be automatized; the rule to apply can

be determined from the top-level operator in a CSP process. Another extension

would be to allow a more 
exible modelling of the space of messages. The use of

a PVS data type implies that messages constructed in di�erent ways are di�er-

ent. Algebraic properties (such as the associativity of concatenation or the fact

that public-key and private-key encryption are inverse of each other) cannot be

introduced as equations. The approach of [14] remains valid even in the presence

of more complex equational properties. This can be implemented with PVS but

requires extra developments, such as a quotient construction for data types.

Another important avenue to explore will be the extent to which construction

of rank functions can be assisted by the attempt to provide a PVS proof. Par-

ticular constraints on the rank function arise when instantiating the CSP rules

and could be generated by a \blank" run of the PVS proof: the rank constraints

appear as unresolved leaves in the proof-tree. Collecting the information may

then help us to identify a suitable rank function.
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In conclusion, we have presented a viable mechanical support in PVS for

the veri�cation of security protocols with respect to authentication properties.

There is still much to be done to support veri�cation in the presence of algebraic

properties of cryptographic mechanisms, to improve automation, and to gain

experience by investigating further protocols.
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