
MODEL-BASED ANALYSIS OF TIMED-TRIGGERED ETHERNET

Bruno Dutertre, SRI International, Menlo Park, CA
Arvind Easwaran, Brendan Hall, Honeywell International, Minneapolis, MN

Wilfried Steiner, TTTech Computertechnik AG, Vienna, Austria

Abstract
Timed-Triggered Ethernet (TTEthernet) is a

communication infrastructure that enables the use of
Ethernet networks in real-time, distributed
applications. The core of TTEthernet is a set of fault-
tolerant protocols for clock synchronization, startup,
and clique detection and resolution. We present
recent work on model-based analysis of the
TTEthernet startup and synchronization protocols.

We first use automated test-generation tools to
drive high-coverage testing of prototype TTEthernet
hardware, based on a state-machine model of the
TTEthernet protocols. With almost no human
guidance, this technique enables us to achieve
MC/DC coverage of the startup protocol under valid
fault scenarios.

We then focus on the TTEthernet clock-
synchronization protocol. We develop correctness
proofs of key properties of this protocol using the
PVS interactive theorem prover [7]. As a result of
this formalization, we have identified a suboptimal
design choice in the clock-compression function
defined in the TTEthernet draft standard [14]. We
propose an alternative definition and, using model-
checking tools, we show that the new function
achieves better clock precision than the original.

These results demonstrate effective use of
modeling and formal techniques in proof and test of a
fault-tolerant network infrastructure relevant to
avionics and other embedded systems.

Timed-Triggered Ethernet
TTEthernet [12,14] is a networking standard

compatible with IEEE 802.3 switched Ethernet. It is
designed to support data flows of mixed criticality on
a single network. For traffic of the highest criticality,

TTEthernet provides a timed-triggered
communication service with strong guarantees of low
jitter and bounded latency. This is achieved by
maintaining a global time base across the network
and by following a global communication schedule
that prevents contention. TTEthernet also provides a
rate-constrained communication service for traffic of
intermediate criticality. For this traffic class, the
worst-case communication latency can be computed
offline, but it may be much higher than for timed-
triggered traffic because rate-constrained messages
from different sources may queue up in the network
switches. Finally, traffic of the lowest criticality is
transmitted using the standard, best-effort Ethernet
approach, with no guarantees on transmission delays
or message reception.

Figure 1. Example TTEthernet Network

Network Topology
 A TTEthernet network consists of end systems

and switches as depicted in Figure 1. The end
systems are connected to switches by bidirectional
communication links. Switches may be connected to
each other in multi-hop network configurations. For
fault tolerance, the network must be organized in
disjoint redundant communication channels. Each
channel consists of one or more switches that connect
the end systems. Distinct switches must belong to

distinct channels so that a switch failure impacts only
one channel.

Fault Models
TTEthernet can be configured for two different

levels of fault tolerance. In a single-failure
configuration, the network can tolerate the failure of
a single component, which may be either a switch or
an end system. In a dual-failure configuration, the
network can tolerate two component failures. The
faulty devices may be two switches, two end systems,
or one switch and one end system.

In both configurations, the switches are assumed
to have an inconsistent-omission failure mode. In the
worst case, a faulty switch may drop or fail to receive
an arbitrary number of messages on one or several of
its ports, but it may not produce invalid messages.
The failures may be asymmetric: some devices
connected to a faulty switch may receive data while
others do not.

The fault model for end systems depends on the
configuration. In a single-failure configuration, a
faulty end system may be Byzantine, that is, it may
fail in an arbitrary manner. Under this assumption,
the failure of an end system may have asymmetric
manifestation or cause a “babbling” behavior. In a
dual-failure configuration, the behavior of faulty end
system is more restricted. It is assumed to be
inconsistent omission.

TTEthernet Protocols
A major goal of TTEthernet is to ensure that all

nodes in a network establish and maintain the
common time base that is necessary for timed-
triggered communication. During normal operation,
all nodes must be closely synchronized and follow a
common communication schedule that is computed
offline. The common time base is a prerequisite to
ensuring that timed-triggered traffic is deterministic
and to providing guarantees of low jitter and fixed
latency. Synchronization must be established and
maintained despite the possible failure of switches
and end systems.

To achieve these goals, TTEthernet includes a
startup protocol that establishes synchronization after
power up or restarts, a clock-synchronization

protocol that maintains synchronization by
periodically correcting possible clock drifts, and a
clique-detection and resolution service to recover
from network-wide transient upsets. In all these
protocols, each device is assigned one of the
following roles:

• Synchronization Masters (SM)

• Compression Masters (CMs)

• Synchronization Clients (SC)

SMs are responsible for starting up the network
and for maintaining the synchronized time base. They
initiate the startup protocol and, once the network is
synchronized, they periodically trigger clock
synchronization. All protocols start by the
transmission of special Ethernet messages called
protocol control frames (PCF) from one or more SMs
to the CMs. The compression masters receive PCFs
from the SMs. They filter, combine, and relay these
PCFs to all nodes in the network. SCs have a passive
role during startup and clock synchronization. They
listen for communication and synchronize with the
rest of the network on reception of PCFs that pass
protocol-specific validity checks.

In typical networks, the SMs are end systems
and the CMs are switches, although the standard
allow other configurations [14]. In any case, the fault
assumptions are as described previously for end
systems and switches. In a single-failure
configuration, the protocols are designed to tolerate
either the Byzantine failure of an SM or the
inconsistent-omission failure of a CM. In a dual-
failure configuration, the protocols can tolerate the
inconsistent-omission failure of at most two
components. There are no significant assumptions on
the failure of SCs since they are passive devices. In a
multi-hop topology, the protocol still requires enough
non-faulty components to ensure that PCFs can be
routed through the network (i.e., that a sufficient
number of independent channels is operational).

Existing TTEthernet Formalizations
Formal methods have been an integral part in the

design of TTEthernet. In particular, the startup
protocol was developed using SRI International’s
Symbolic Analysis Laboratory (SAL). SAL is a
toolset for the analysis of state-transition systems

using model checking [6]. The heart of SAL is a
language for specifying concurrent systems in a
compositional way. SAL specifications can be
analyzed using several model-checkers for finite and
infinite-state systems.

Following the approach pioneered in [13], the
startup protocol was developed and validated using
the SAL tool chain. Formalizing the protocol
definition in a form suitable for analysis using SAL
made it possible to detect and address behavioral
ambiguities early in the life cycle. It also resulted in
the detection and removal of edge-case
scenarios [12]. Early modeling, combined with
feedback in the form of simulation and model-
checking counterexamples, enabled the design team
to develop an early intuition about the complex
interactions between protocol components. This
intuition was invaluable when the first protocol
hardware implementations were debugged in the
development laboratory. Other TTEthernet
components, including several aspects of the clock-
synchronization protocol, have also been formalized
and verified using SAL [10,11].

This paper builds on these existing
formalizations. First, we examine the use of SAL
models to generate system-level test vectors for a
representative TTEthernet network. We then report
on formal verification of TTEthernet’s compression
function, a critical building block in the clock-
synchronization service.

Model-Based Test Generation
TTEthernet prototype hardware has been

subjected to traditional verification in the form of
testing and simulation. The switches and end systems
were treated as separate entities. Each component
was individually verified using directed requirement-
driven test campaigns, together with random testing
based on System Verilog. These verification
activities did not target the integrated system
behavior of all TTEthernet components.

To explore the integrated system behavior, a
network integration laboratory (NIL) was developed.
It includes a test bed of more than 25 end systems
and 17 switches, instrumented for fault injection. The
NIL-based testing emphasized high-level system

properties and did not target protocol branch
coverage.

High-coverage testing of the TTEthernet startup
protocol was seen as a necessary complement to the
existing test results. First, we wanted to mitigate
some of the risks associated with separate testing of
switches and end systems, which may miss subtle
interactions among the distributed components.
Second, we wanted to validate the protocol
soundness by presenting evidence that, under the core
fault hypotheses, all the protocol logic is required and
that no extraneous logic is present. We now describe
the model-based method used for achieving high-
coverage of TTEthernet startup.

SAL Model
We used a SAL model of the TTEthernet startup

protocol that builds upon the model presented in [12].
This original SAL specification was modified and
extended to a larger network that comprises six SMs
and six CMs arranged as shown in Figure 2. Three
redundant channels connect two sets of three
synchronization masters, and each channel consists of
two compression masters.

Figure 2. Test Network Configuration

In SAL, the SMs and CMs are modeled as finite
state machines that encode the protocol states and
actions defined in the TTEthernet standard. Timeouts
and other timing constraints are modeled using a
discrete time abstraction: time is represented by a
finite interval. A small fragment of the SAL
definition of a synchronization master is shown in
Figure 3. The specification defines a protocol
transition, from a state called SM_INTEGRATE to
the state called SM_WAIT_4_CYCLE_START_CS.
This transition is taken when the SM receives a cold-

start acknowledgement frame in state
SM_INTEGRATE. Details on the interpretation of
these states and messages are given in the TTEthernet
standard [14]. The complete SAL specification is
available on NASA’s DASH link website
https://c3.nasa.gov/dashlink/resources/593/

Figure 3: SAL Model Fragment

As shown in the figure, state transitions are
specified in SAL using a guarded command notation
of the form

The guard is a Boolean condition that defines
when the transition is enabled (i.e., when it may be
taken), and the variable updates define the effect of
this transition of the system’s state.

In addition to encoding the protocol rules, the
SAL model is equipped with Boolean flags that
correspond to the fault-injection capabilities of the
hardware test bed. For example, Boolean flag
sm_sleep_timeout	
 in	
 Figure	
 3	
 indicates	
 that	
 the	

SM	
 has	
 been	
 forced	
 into	
 a	
 sleep	
 state	
 by	
 the	

testing	
 environment.	
 When	
 this	
 flag	
 is	
 true,	
 the	

SAL	
 model	
 does	
 not	
 respond	
 to	
 any	
 stimulus	
 from	

the	
 network;	
 the	
 transition	
 is	
 disabled.	
 In	
 the	
 SAL	

model,	
 variable	
 sm_sleep_timeout	
 is	

unconstrained.	
 It	
 can	
 be	
 set	
 non-­‐deterministically	

to	
 true	
 or	
 false	
 at	
 every	
 protocol	
 step.	

	
 The	
 variable trap_2 also	
 plays	
 a	
 special	
 role.	

It	
 is	
 initially	
 false;	
 it	
 is	
 set	
 to	
 true	
 when	
 the	

transition	
 in	
 Figure	
 3	
 is	
 taken;	
 and	
 it	
 is	
 left	

unchanged	
 by	
 all	
 other	
 transitions	
 in	
 the	
 SAL	

model.	
 In	
 other	
 words,	
 trap_2	
 indicates	
 whether	

the	
 transition	
 from	
 SM_INTEGRATE	
 to	

SM_WAIT_4_CYCLE_CS	
 has	
 ever	
 been	
 executed.	

The	
 full	
 SAL	
 model	
 is	
 the	
 synchronous	

composition	
 of	
 modules	
 describing	
 the	

synchronization	
 and	
 compression	
 masters,	

together	
 with	
 a	
 module	
 that	
 models	
 the	

connections	
 between	
 SMs	
 and	
 CMs.	
 At	
 each	
 step,	

the	
 connection	
 module	
 selects	
 the	
 messages	
 to	
 be	

delivered.	
 The	
 network	
 topology	
 is	
 encoded	
 into	

connectivity	
 constraints.	
 For	
 example,	
 there	
 is	
 no	

direct	
 link	
 in	
 Figure	
 2	
 between	
 CM1	
 and	
 CM4,	
 so	

the	
 connection	
 module	
 never	
 delivers	
 to	
 CM4	
 any	

message	
 sent	
 by	
 CM1	
 and	
 vice	
 versa.	
 	
 Other	

constraints	
 in	
 the	
 connection	
 module	
 encode	
 the	

fault	
 model.	
 For	
 example,	
 if	
 CM1	
 is	
 faulty	
 then	
 it	

may	
 fail	
 to	
 transmit	
 to	
 some	
 of	
 its	
 neighbors.	
 This	

is	
 encoded	
 in	
 the	
 SAL	
 model	
 by	
 non-­‐
deterministically	
 selecting	
 a	
 subset	
 of	
 CM1’s	

neighbors	
 to	
 which	
 the	
 messages	
 from	
 CM1	
 are	

delivered.	
 This	
 set	
 of	
 neighbors	
 can	
 change	

arbitrarily	
 at	
 each	
 protocol	
 step.	

Test-Generation Tools
Analysis of the TTEthernet startup model relies

on SAL’s automated test-generation tool called sal-
atg, which is described in	
 details	
 in	
 [4].	
 This	
 tool	

attempts	
 to	
 find	
 an	
 input	
 sequence	
 for	
 a	
 SAL	

model	
 that	
 will	
 cause	
 the	
 system	
 under	
 test	
 to	

exhibit	
 behaviors	
 of	
 interest,	
 the	
 test	
 goals.	
 The	

tool	
 generates	
 test	
 sequences	
 from	
 a	
 SAL	
 system	

that	
 has	
 been	
 augmented	
 with	
 trap	
 variables	
 that	

describe	
 the	
 test	
 goals.	
 These	
 variables	
 are	

initially	
 false	
 and	
 are	
 set	
 true	
 when	
 a	
 specific	
 test	

goal	
 has	
 been	
 satisfied.	
 Variable	
 trap_2	
 in	
 Figure	
 3	

is	
 an	
 example	
 of	
 such	
 trap	
 variables.	
 If	
 trap_2	
 is	

given	
 as	
 one	
 of	
 the	
 test	
 goals	
 to	
 sal-atg,	
 the	
 tool	

will	
 search	
 for	
 a	
 protocol	
 execution	
 that	
 sets	

trap_2	
 true,	
 that	
 is,	
 for	
 an	
 execution	
 in	
 which	
 the	

transition	
 of	
 Figure	
 3	
 is	
 taken	
 (at	
 least	
 once).	

Sal-atg is highly flexible, and it can use a
combination of model-checking techniques to
produce sequences that satisfy the test goals. In our
analysis of TTEthernet startup, we relied exclusively
on the bounded model checking capabilities of sal-
atg. Bounded model checking was introduced in [1].
It is based on converting the search for execution
traces that satisfies certain properties (in our case,
meet the test goals) into an equivalent Boolean
satisfiability problem.

Bounded-model checking has become a very
efficient analysis technique since the emergence of
powerful Boolean SAT solver. In our analysis of
TTEthernet, we used the state-of-the-art solver
plingeling [2] as a backend solver to the sal-atg
tool. Plingeling is a multi-threaded SAT solver that
can solve very large problems containing millions of
Boolean variables and clauses.

Model Validation
The SAL model we used in this work extended

the original model from [12] in several ways. It
included new features of the TTEthernet startup
protocol that were not present in the original model,
and it considered a larger network configuration.
Because the differences were substantial, we had first
to validate our revised model. We first checked that a
critical property of TTEthernet startup protocol that
holds in the original model was still satisfied after the
modifications. This property is an upper bound on the
time it takes for the network to initially synchronize.
By using the SAL model-checking tools, we showed
that this property was still satisfied in the extended
model. This result confirmed our expectation that the
worst-case startup time is less than 60 protocol steps,
and showed that the extended model behaved
consistently with the original model.

For additional validation, we explored the SAL
model to show that its executions were consistent
with the designers’ understanding of the protocol. For
this purpose, we examined several interesting
scenarios that the TTEthernet designers knew could
be observed during startup. Using sal-atg, we
showed that these scenarios could also happen in the
SAL model. This success increased our confidence in
the correctness of the model. The exact scenarios
investigated and the results from sal-atg can be
found at https://c3.nasa.gov/dashlink/resources/593/.

Coverage-Based Test Generation
The remainder of the analysis aimed to generate

high-coverage test vectors that exercise all the startup
protocol logic. More specifically, our goal was to
achieve MC/DC coverage of the startup protocol,
under fault scenarios consistent with TTEthernet’s
fault model. We allowed for as many as two faulty
CMs to be present within a three-channel system. We

considered both the single-failure and dual-failure
hypotheses.

In each test scenario, sal-atg constructs an
execution sequence in which all non-deterministic
choices present in the SAL model are resolved. Sal-
atg decides when each device is powered on or off
(by setting variables such as sm_sleep_timeout to
true or false) and which messages from faulty
components are received or dropped. To reproduce
these test cases on actual hardware, we had to restrict
the fault model to permanent communication failures.
That is, connection failures were held consistent
throughout the entire test scenario. This decision
simplified the execution of tests on the hardware and
did not affect the coverage results. On the other hand,
the test generation could dynamically power on the
SMs or put them to sleep at any time, and could delay
power on of the non-faulty CMs. This level of control
is aligned with the capabilities of the TTEthernet
hardware validation test bed.

Figure 4. Trap Variables for MC/DC Coverage

The first step of MC/DC test coverage was to
instrument the SAL model. We added trap variables
to every transition of the SM and CM state machines
(as shown in Figure 3). Furthermore, when the guard
of a transition involved a logical OR, additional trap
variables were introduced to record the independent
impact of each condition in the guard, as illustrated in
Figure 4. The two trap variables shown in the figure
capture the two possible ways in which the guard can
be true: either both A and B are true (trap_3a), or A
and C are true (trap_3b). To achieve MC/DC
coverage, we aim to generate tests that independently
set both trap variables to true.

Once the SAL model was instrumented, we ran
sal-atg with different test goals and for two variants
of the model that encoded the two possible fault
hypotheses (either single or dual failures). The
different test goals were selected to focus on MC/DC
coverage of either the SM state machine or the CM
state machine. We also investigated MC/DC

coverage of another SAL module that models an
optional priority scheme defined by the TTEthernet
standard. In all these different experiments, using
sal-atg was straightforward. We just gave the trap
variables of interest as test goals.

Test coverage can be considered at the system
level and from the perspective of a single SM or CM.
At the system level, MC/CD coverage requires us to
exercise each protocol action in one of the network’s
SM or CM; different actions may be covered by
different device. In practice, it is more useful to
achieve high coverage from the perspective of a
single device, as this simplifies hardware
instrumentation and testing. We have performed two
series of test-generation experiments, aiming to
achieve both system-level and component-level
coverage. The results presented next correspond to
component-level coverage.

Results
The performance of sal-atg in conjunction with

the plingeling SAT solver was impressive. For all
the coverage models, the tests generated by sal-atg
achieved full coverage of all reachable state
transitions. For each fault hypotheses, the SM
coverage runs completed in approximately two days.
Test generation runs for the CM coverage and for the
priority module completed is about a day or less. In
all cases, the SAT solver runtime dominates.

We encountered memory problems when we
tried to run sal-atg with a set of 54 trap variables for
MC/DC coverage of the SM state machine. We
solved this problem by splitting the set into five
smaller subsets and running sal-atg on each subset
independently.

Table 1 summarizes the test-generation results
and runtimes for coverage of the CM and SM state
machines, and for the two fault hypotheses
considered by TTEthernet. The second column shows
the number of test goals discharged by sal-atg
compared to the number of test goals given as input.
For example, in the CM/single fault run, sal-atg

generated tests that covered 24 out of the 31 test
goals given as input.1

Table 1. Test-Generation Results

Experiment Test goals
discharged

Run time

SM/single fault 49/54 74 h 5 min

SM/two faults 50/54 74 h 40 min

CM/single fault 24/31 17 h 7 min

CM/two faults 17/19 28 h 20 min

In all cases, sal-atg generates test sequences
that discharge almost all the test goals given. Further
inspection showed that the test goals missed by sal-
atg are not reachable at all in the network
configuration that we studied. Hence, sal-atg
discharged all the test goals that could be reached in
this model.

The runtimes are of the orders of a day or two,
which is quite good considering the size of the SAL
models, and the complexity of the TTEthernet startup
protocol. No doubt achieving the same coverage
with hand-generated tests would take a lot more time
and effort. During the test-generation effort, we
found that using a state-of-the-art SAT solver such as
plingeling, which can take advantage of multicore
machines, had a significant impact on runtime. Using
plingeling instead of the default SAT solver that
comes with sal-atg reduced the runtimes by a factor
of four to five. All experiments were run on a
standard, multicore desktop computer running
Linux 2.6.

Analysis of TTEthernet’s Compression
Function

The startup protocol brings the network from an
initial unsynchronized state to the synchronized state
necessary for timed-triggered operation. To maintain

1 In TTEthernet, the CM state machine is more complex in the
single-fault hypotheses than in the two-fault model. This explains
why the CM/single fault run has more test goals than the CM/two
faults run.

synchronization, the network must periodically run a
clock-synchronization protocol to correct clock drift.
This protocol is intended to maintain a given
network-wide clock precision, even in the presence
of faulty nodes. In addition to the test-generation
work presented previously, we have developed a
formal model of the clock synchronization protocol,
with the aim to verify its correctness.

Clock Synchronization Overview
In a TTEthernet network, all timed-triggered

communication follows a global, periodic schedule.
This communication schedule consists of a cluster
cycle divided in a finite number of integration cycles
of equal duration. The TTEthernet synchronization
protocol is executed periodically, at the beginning of
each integration cycle.

The SMs trigger the protocol execution by
sending their local clock values to the CMs, within
so-called integration PCFs. Each CM collects the
integration frames it receives and records the
reception times, as measured by the CM’s local
clock. Integration frames are labeled with the
integration cycle in which they originated. A CM
groups the integration frames based on the integration
cycle they contain and on the time when they were
received (see [14] for details). For each group of
integration frames, the CM computes a fault-tolerant
average of the received values by applying the
TTEthernet compression function. The CM applies
validity checks to verify that the compression value
comes from a sufficient number of SMs and is not
too far from its local clock. If the compression value
passes these validity checks, the CM uses it to correct
its local clock. In addition, the CM broadcasts the
compression results to the network. At this point,
both SMs and SCs receive compression values from
one or more CMs. They apply local validity checks to
filter out bad compression values then they use
another averaging function to compute a correction
for their local clock.

Formalization and Proofs
Establishing the correctness of a fault-tolerant

clock-synchronization protocol is a difficult and
error-prone exercise, which can be helped by the use
of formal verification tools such as theorem provers.
Such tools enable users to formalize protocol model

and develop detailed and rigorous proofs that the
protocols work properly. Several clock-
synchronization protocols from the literature have
been verified using the PVS theorem prover, and its
predecessor EHDM [5,8,9]. In some cases, the
formalization uncovered subtle imprecision and flaws
in published hand proofs.

In the case of TTEthernet, we have developed
SAL models of some aspects of the clock
synchronization protocol, and established correctness
properties using bounded model checking [10,11].
However, the SAL models developed for this purpose
abstracted away some of the protocol mechanisms,
and the formalization considered only a limited set of
small instances of TTEthernet (with as many as six
SMs and two CMs). We wanted to extend these
results to the general case of networks with an
arbitrary number of SMs and CMs. As part of this
effort, we have focused on the TTEthernet
compression function, which is crucial to the
correctness of the clock-synchronization protocol.
We now summarize the main results of this
formalization. The complete PVS developments are
available on NASA’s DASHLink server at
https://c3.nasa.gov/dashlink/resources/601/.

Figure 5. The Compression Function in PVS

PVS Formalization
The core of the TTEthernet clock correction

protocol is function compress shown in Figure 5.
This function takes a finite vector v of clock values
as input and computes an average of v’s components.
The vector v must be sorted in increasing order. The

actual averaging function applied depends on the size
of the vector. For example, if v contains three, four,
of five elements, then compress returns the median
of these elements. The parameter K shown in
Figure 5 is the maximal number of faulty SMs to
tolerate (i.e., K is one in a single-failure
configuration, and K is two in a dual-failure
configuration), and function avg computes the
average of two numbers.

A CM applies this compress function to a set
of integration PCFs it receives from SMs. This
requires first sorting the PCFs in increasing order of
reception time, and computing clock differences. The
details of the full procedure are not show in the figure
but are available in the full PVS specification.

Figure 6. Main Property of the Compression
Function

The key property that we have proved using
PVS is shown in Figure 6. In this PVS fragment, C1
and C2 denote two sets of integration frames
received by two distinct compression masters, and I
denotes the set of non-faulty synchronization masters.
The constant precision is the clock precision that is
assumed to hold before the clock synchronization
protocol is executed, and constant eps denotes the
imprecision in communication latency. Essentially,
the convergence property of Figure 6 expresses that
applying the compression function reduces the worst-
case distance between the local clocks of two non-
faulty CMs. Before clock correction, two CM clocks
may differ by as much as the precision. After clock
correction the difference is no more than half the
precision plus a small error term. This property
explains why the clock compression function

compensates for clock drift. The property holds under
various constraints on the number of good SMs, and
the cardinalities of C1 and C2, in relation to K, the
maximal number of faulty SMs.

An Issue With the Compression Function
A surprising result of the PVS developments

summarized previously is that the key convergence
property in Figure 6 does not hold when C1 or C2
contain exactly five PCFs. This points to an oversight
in the definition of the compress function. When
applied to a vector of five elements, compress
returns the median. But, in a scenario with four good
SMs and one Byzantine-faulty SM, the latter can
essentially determine the median. If the four good
values are

€

c0 ≤ c1 ≤ c2 ≤ c3, then the Byzantine SM
can force the median to be

€

c1 by producing a faulty
value smaller than

€

c0 , or it can force the median to
be

€

c2 by producing a value larger than

€

c3 . Thus, an
asymmetric fault can cause some CMs to synchronize
with

€

c1 and others to synchronize with

€

c2 . In the
worst case, the difference between these two values is
precision + eps, so the clock skew may increase.
The same result is possible without Byzantine
failures, if two out of six SMs have inconsistent-
omission failures.

These failure scenarios show that the CMs may
not be synchronized as closely as one would expect.
However, this reduced precision does not lead to a
complete loss of network synchronization. The SMs
and SCs apply another averaging function to the
compressed clock values they receive from CMs.
These additional mechanisms do not allow the errors
to accumulate, since, as shown in [10], the SMs are
synchronized with each other. The whole network
will then remain synchronized, even in the
pathological cases identified previously, but with
some degradation in the clock precision achieved.
We have not investigated this issue very deeply since
there is a simple fix to the compression function.

A Revised Compression Function
We propose the following revised definition for

the compression function:

With this new definition, the compression of a vector
v of five clock readings is the average of the second
and fourth value, instead of the median of the five
values. With this revision, one can show that the
convergence property (Figure 6) now holds even
when the input sets C1 and C2 contain five
integration frames.

Validation of the Revised Function
By using another tool in the SAL system, we can

now compare the two definitions of the clock
compression function. We build a simplified SAL
model of the synchronization protocol, and we
compare the worst-case clock drift between different
network components. The SAL model generalizes a
previous formalization presented in [2], which
focused on bounding the clock drift between SMs.

Figure 7. SAL Model for Analysis of the
Compression Function

The SAL model we develop is structured as
shown in Figure 7. It consists of independent
processes that represent the CMs and SMs, and an
interconnect module that specifies how the output
from each process is received by other processes.
Faults are modeled in the interconnect module. If a
source process is non-faulty, then its output is
received unchanged by all recipients. Otherwise, the

recipients may see different input depending on the
source’s fault. For example, if the source has an
inconsistent-omission fault, then some recipients
receive the data as sent while others receive nothing.
This SAL model is described in detail in [3] and is
available at
https://c3.nasa.gov/dashlink/resources/601/.

Unlike the SAL models discussed previously,
the model we used for analyzing the compression
function is not finite state, since the clock of each
component is represented by a real-value variable.
Analysis of such SAL models can still be performed
using SAL’s bounded model checker for infinite-state
systems called sal-inf-bmc. Using this model
checker, we can prove the clock-precision bounds
shown in Figures 8 and 9.

Figure 8. Clock Precision for the Original
Compression Function

The results of Figure 8 correspond to a baseline
SAL model that uses the original compression
function. This model includes five synchronization
masters and two compression masters, with the
assumption that one synchronization master is
Byzantine faulty. Figure 8 shows six properties,
organized in three groups of two lemmas. The first
lemma in each pair was proved with sal-inf-bmc. It
establishes an upper bound on the difference between
the clocks of two components. The second lemma in
each pair is false. Counterexamples can be found
using sal-inf-bmc, which shows that the bound given
by the first lemma is precise. All bounds are

expressed as multiples of max_drift, which denotes
the maximal drift that a clock can experience in one
integration cycle. For example, the difference
between the clocks of two compression masters can
be equal to four times the maximal drift.

Figure 9 shows the same results for a SAL
model that uses the revised compression function.
Again, this SAL model includes five SMs and two
CMs, and assumes that one of the SMs is Byzantine.
As can be seen in Figure 9, the clock precision is
improved. In particular, the maximal difference
between the clocks of two CMs is now three times
max_drift instead of four times max_drift.

Figure 9. Clock Precision for the Revised
Compression Function

These results were obtained for a simplified
model of the TTEthernet synchronization protocol.
However, they establish convincingly that the revised
compression function is better than the original, by
improving the synchronization quality. We have
reported the results of our analysis to the TTEthernet
designers, and the revised compression function has
now been fully implemented in the published
TTEthernet standard SAE AS6802.

Conclusion
Formal method tools based on model-checking,

SAT solving, and other technology can be effective
in model-based design and analysis of industrial
protocols such as TTEthernet. We have demonstrated

the power of these tools during protocol design,
testing, and verification. Key results include the
ability of modern model-checking technology to
generate high-coverage test vectors for a complex
real-time protocol. This success is due in large part to
the ability of bounded-model checkers to leverage the
impressive performance of recent SAT solvers. We
have also demonstrated how a deeper protocol
analysis using theorem proving led to the discovery
of a suboptimal design in TTEthernet’s compression
function. The fix we proposed was validated using
another form of bounded model checking that enables
analysis of infinite-state real-time systems, and it has
been incorporated into the released TTEthernet
standard.

In future work, we are planning to use the SAL-
generated test vectors to test the hardware
implementation of TTEthernet. The test-generation
experiments have also identified improvements to the
sal-atg tool, such as the ability to generate tests from
a specified set of initial states, rather than form the
fixed initial conditions specified in the SAL model.
We are also planning to complete a full formal
verification of the TTEthernet protocol suite, to
complete the current verification results that have
each focused on a different aspect of TTEthernet.

Acknowledgements
The first three authors were supported by NASA

contract NNL10AB32T. The first author was also
partially supported by NSF Grant CSR-0917398. The
content is solely the responsibility of the authors and
does not necessarily represent the official views of
NASA or NSF.

References
[1] Biere, Armin, Alessandro Cimatti, Edmund
Clarke, Yunshan Zhu, 1999, Symbolic Model
Checking without BDDs, Tools and Algorithms for
the Construction and Analysis of Systems
(TACAS’99), LNCS 1579, Springer-Verlag, pp. 193–
207.

[2] Biere, Armin, 2011, Lingeling and Friends at the
SAT Competition 2011, Technical Report 11/1, FMV
Reports Series, Institute for Formal Models and
Verification, Johannes Kepler University, Linz,
Austria.

[3] Dutertre, Bruno, Natarajan Shankar, Sam Owre,
2012, Integrated Formal Analysis of Timed-
Triggered Ethernet, NASA Contractor Report, CR-
2012-217554, NASA.

[4] Hamon, Grégoire, Leonardo de Moura, John
Rushby, 2004, Generating Efficient Test Sets with a
Model Checker, 2nd International Conference on
Software Engineering and Formal Methods, IEEE
Computer Society, pp. 261–270.

[5] Miner, Paul, 1993, Verification of Fault-Tolerant
Clock Synchronization Services, Technical
Paper 3349, NASA Langley Research Center.

[6] de Moura, Leonardo, et al., 2004, SAL 2,
Computer-Aided Verification (CAV 2004), LNCS
3114, Springer-Verlag, pp. 496–500.

[7] Owre, Sam, John Rushby, Natarajan Shankar,
Friedrich von Henke, 1995, Formal Verification for
Fault-Tolerant Architectures: Prolegomena to the
Design of PVS, IEEE Transactions on Software
Engineering, vol. 21, number 2, pp. 107–125.

[8] Rushby, John, Friedrich von Henke, 1989, Formal
Verification of the Interactive Convergence Clock
Synchronization Algorithm, Technical Report SRI-
CSL-89-3R, Computer Science Laboratory, SRI
International.

[9] Shankar, Natarajan, 1991, Mechanical
Verification of a Schematic Byzantine Clock

Synchronization Algorithm, Technical Report CR-
4386, NASA.

[10] Steiner, Wilfried, Bruno Dutertre, 2011,
Automated Formal Verification of the TTEthernet
Synchronization Quality, NASA Formal Methods
Conference (NFM 2011), LNCS 6617, Springer-
Verlag, pp. 373–390.

[11] Steiner, Wilfried, Bruno Dutertre, 2010, SMT-
Based Formal Verification of a TTEthernet
Synchronization Function, Formal Methods for
Industrial Critical Systems (FMICS 2010), LNCS
6371, Springer-Verlag, pp. 146–164.

[12] Steiner, Wilfried, 2009, TTEthernet Executable
Formal Specification, CoMMiCS Project
Deliverable.

[13] Steiner, Wilfried, John Rushby, Maria Sorea,
Holger Pfeifer, 2004, Model Checking a Fault-
Tolerant Startup Algorithm: From Design
Exploration To Exhaustive Fault Simulation, Proc.
2004 International Conference on Dependable
Systems and Networks (DSN’04), IEEE, pp. 189–
198.

[14] Timed-Triggered Ethernet. SAE Aerospace
Standard AS 6802, v1.1.2, 2011. Draft.

31st Digital Avionics Systems Conference

October 14-18, 2012

