
Verification of an Optimized NTT Algorithm

Jorge A. Navas, Bruno Dutertre, and Ian A. Mason

Computer Science Laboratory, SRI International, Menlo Park CA 94025, USA
firstname.lastname@sri.com

Abstract. The Number Theoretic Transform (NTT) is an efficient al-
gorithm for computing products of polynomials with coefficient in finite
fields. It is a common procedure in lattice-based key-exchange and sig-
nature schemes. These new cryptographic algorithms are becoming in-
creasingly important because they are quantum resistant . No quantum
algorithm is known to break these lattice-based algorithms, unlike older
schemes such as RSA or elliptic curve cryptosystems.
Many implementations and optimizations of the NTT have been pro-
posed in the literature. A particular efficient variant is due to Longa
and Naehrig. We have implemented several of these variants, including
an improved version of the Longa and Naehrig algorithm. An important
concern is to show that numerical overflows do not happen in such al-
gorithms. We report on several attempts at automatically verifying the
absence of overflows using static analysis tools. Off-the-shelf tools do not
work on the NTT code. We present a specialized abstract-interpretation
method to solve the problem.

1 Introduction

We present an experiment in verification of an optimized implementation of
the Number Theoretic Transform (NTT). This transform is a key procedure
in lattice-based cryptography, one of the most promising approach to develop-
ing quantum-resistant replacement for today’s public-key cryptography. Current
schemes are based on the hardness of factoring or discrete logarithms and will
be broken if or when quantum computers become practical.

We first give an overview of the NTT and its application to computing prod-
ucts of polynomials. We then discuss several optimizations that attempt to re-
duce the cost of modular operations. A particular efficient method is due to
Longa and Naehrig [29]. We propose to further improve their algorithm, but
correctness of this improvement requires showing that no integer overflow is
possible (when implemented using 32bit integers).

We discuss our attempts at proving that no such overflow occurs by using
different software verification tools and methods. Because the procedures use
combinations of array manipulation, arithmetic, shift, and bit-masking, they are
difficult to prove correct with off-the-shelf tools. We present a specialized abstract
interpretation method that can solve this problem. The method is implemented
in SeaHorn [24] and uses the Crab abstract interpretation library [12]. We also
describe an alternative technique that relies on source-code transformation.

2 The Number Theoretic Transform

Lattice-based cryptography is based on the hardness of problems such as find-
ing a short vector in an integer lattice. Commonly used lattices are defined by
matrices A ∈ Zn×mq where q is a prime number and Zq denotes the ring of
integers modulo q. Efficient implementations use lattices with a special struc-
ture that allows large random matrices to be replaced by random polynomials in
Zq[X]/(Xn+1). One of the most common operations is computing the product of
two such polynomials: given f = a0+. . .+an−1X

n−1 and g = b0+. . .+bn−1X
n−1,

their product is the polynomial h = c0 + . . .+ cn−1X
n−1 defined by

ci =

 ∑
j+k=i

ajbk −
∑

j+k=n+i

ajbk

 mod q. (1)

The Number Theoretic Transform (NTT) is a specialization of the Fast Fourier
Transform for computing such products.

The NTT starts with a number ω that is a primitive n-th root of unity in Zq.
This means that ωn = 1 (mod q) and that ωm 6= 1 (mod q) when 0 < m < n.
Such an ω exists as long as n divides q− 1 (for q prime). Let a = (a0, . . . , an−1)
be a vector of n elements in Zq, and let f = a0 + . . . + an−1X

n−1, then the
forward transform of a, denoted by NTT(a), is the vector ã = (ã0, . . . , ãn−1)
such that

ãi =

n−1∑
j=0

ajω
ji mod q = f(ωi)

The NTT is a bijection from Znq to Znq . Its inverse INTT is given by INTT(ã) =
(b0, . . . , bn−1) where

bi = n−1
n−1∑
j=0

ãjω
−ji mod q = n−1f(ω−i),

and we have INTT(NTT(a)) = a.
The vector c defined by Equation 1 is the negative wrapped convolution of

a and b. A standard method for computing c is shown Figure 1. It requires an
additional parameter ψ such that ψ2 = ω (mod q) (thus, ψ is a 2n-th primitive
root of unity). The procedure first multiplies a and b by powers of ψ to form

vectors â = (a0, a1ψ, . . . , an−1ψ
n−1) and b̂ = (b0, b1ψ, . . . , bn−1ψ

n−1). It then

computes NTT(â) and NTT(b̂), multiplies the results component-wise, applies
the inverse transform, and multiplies the result by powers of ψ−1. This method
is presented by Winkler [39] and it is a basic procedure in many implementations
of lattice-based cryptographic algorithms (e.g. [34,36,29]).

A direct computation of products using Equation 1 has cost O(n2). The main
benefit of the NTT is to reduce this cost to O(n log n), since both NTT and INTT
can be implemented in O(n log n). This reduction is significant in lattice-based

Input: f = a0 + a1X + . . .+ an−1X
n−1

g = b0 + b1X + . . .+ bn−1X
n−1

Output: h = c0 + c1X + . . .+ cn−1X
n−1 such that h = f.g.

Procedure:

â := (a0, a1ψ, . . . , an−1ψ
n−1)

b̂ := (b0, b1ψ, . . . , bn−1ψ
n−1)

ã := NTT(â)

b̃ := NTT(b̂)

c̃ := (ã0b̃0, . . . , ãn−1b̃n−1)
ĉ := INTT(c̃)

c := (ĉ0, ĉ1ψ
−1, . . . , ĉn−1ψ

−(n−1))

Fig. 1. NTT-Based Product of Polynomials in Zq[X]/(Xn + 1).

cryptography because the polynomials are dense and n is relatively large (e.g.,
n = 1024 or n = 512 are commonly used).

In the rest of this paper, we fix the parameters q to 12289, which is the prime
used in existing schemes such as Bliss [19,18] and New Hope [1]. With this choice
of q, NTT with n as large as 2048 are possible, but we are mostly interested in
the case n = 1024, which is used by Bliss and New Hope.

2.1 Basic NTT Implementation

Two possible implementations of the NTT are shown in Figure 2. The two pro-
cedures operate on an array a of n elements, where n is a power of two. Each
function uses an auxiliary array p of pre-computed constants. For both func-
tions, elements of p are powers of ω modulo q (so they can be stored as 16bit
integers). On entry to either function, array a contains a vector of n integers
in the range [0, q). On exit, the array a stores NTT(a) in bit-reversed order :
the i-th coefficient of NTT(a) is stored in a[j] where j is obtained by writ-
ing i in binary and reversing the bits. For example, if n = 26 = 64 and i = 5
then j = bitrev(i) = bitrev(0b000101) = 0b101000 = 40. Implementations of the
inverse NTT are very similar to these two procedures.

Variants of the procedures in Figure 2 take input in bit-reversed order and
produce results in the standard order. Many optimizations of the basic algo-
rithms are possible. A simple one is to omit multiplications by w in lines 15 and
32 when j=0. But the most expensive operation involved in NTT computations
is the reduction modulo q that occurs in the inner loops of both procedures.
On typical Intel/AMD processors, the integer division instructions with 32bit
operands commonly have a latency about 10 times larger than an integer mul-
tiply on the same size [20]. Thus many optimizations focus on removing integer
divisions or replacing them with more efficient arithmetic. Harvey [26] presents
several such optimizations for the inner loops of NTT and INTT. Other opti-
mizations avoid pre-multiplications by powers of ψ and post-multiplications by
powers ψ−1 by adjusting the pre-computed constants in the array p [36,35].

1 #define Q 12289
2
3 void ntt_ct_std2rev(int32_t *a, uint32_t n, const uint16_t *p) {
4 uint32_t j, s, t, u, d;
5 int32_t x, w;
6
7 d = n;
8 for (t = 1; t < n; t <<= 1) {
9 d >>= 1;

10 u = 0;
11 for (j = 0; j < t; j++) {
12 w = p[t + j]; // w_t^bitrev(j)
13 u += 2 * d;
14 for (s = u; s < u + d; s++) {
15 x = a[s + d] * w;
16 a[s + d] = (a[s] - x) % Q;
17 a[s] = (a[s] + x) % Q;
18 }
19 }
20 }
21 }
22
23 void ntt_gs_std2rev(int32_t *a, uint32_t n, const uint16_t *p) {
24 uint32_t j, s, t;
25 int32_t w, x;
26
27 for (t = n >> 1; t > 0; t >>= 1) {
28 for (j = 0; j < t; j++) {
29 w = p[t + j]; // w_t^j
30 for (s = j; s < n; s += t + t) {
31 x = a[s + t];
32 a[s + t] = ((a[s] - x) * w) % Q;
33 a[s] = (a[s] + x) % Q;
34 }
35 }
36 }
37 }

Fig. 2. Two Variant NTT Implementations. The two procedures compute NTT(a) in
place. Parameter n is the size of array a; it must be a power of 2. Both procedures
return the result in array a in “bit-reversed” order. The computations use arrays p of
pre-computed constants, which are all powers of ω. The top procedure follows Cooley-
Tukey [7] and the bottom procedure uses the Gentleman-Sande variant [21].

One should note that compiler optimizations replace integer divisions by
more efficient instruction sequences when the divisor is a known constant. In
our case, q = 12289, and the unsigned 32bit division by q can be removed by
using the equality x mod q = x−bx/qc = x−b2863078533x/245c, which holds
when 0 ≤ x < 232. In this equation, 2863078533 is 245/q suitably rounded. This
optimization is applied by both GCC and Clang when compiling for x86-64. The
resulting machine code uses three instructions but it is much more efficient than
a single DIV instruction. These division tricks are explained in Chapter 10 of
Warren’s Hacker’s Delight [38].

2.2 Longa and Naehrig’s Reduction

Another type of optimization replaces reduction modulo q by a related operation
that is cheaper to compute, such as Montgomery’s reduction [32]. Instead of
computing x mod q, the Montgomery reduction returns y ≡ αx (mod q) for some
fixed constant α (i.e., α is the inverse of 232 modulo q). One can easily correct for
the extra factor α by adjusting the constants in array p. Although this reduction
removes division by q, it is more expensive than the compiler optimization trick
presented previously (Montgomery’s reduction uses two multiplications).

1 // single reduction
2 static int32_t red(int32_t x) {
3 return 3 * (x & 4095) - (x >> 12);
4 }
5
6 // reduction of x * y using 64bit arithmetic
7 static int32_t mul_red(int32_t x, int32_t y) {
8 int64_t z;
9 z = (int64_t) x * y;

10 x = z & 4095;
11 y = z >> 12;
12 return 3 * x - y;
13 }

Fig. 3. Longa-Naehrig reduction for q = 12289 = 3.212 + 1

Longa and Naehrig [29] introduce a different reduction. To support NTT
computations, the prime number q must have primitive 2n-roots of unity where
n is a power of two. This implies that q − 1 is divisible by a power of two: we
have q − 1 = k2m where k is an odd number. In our case q = 12289 so m = 12
and k = 3. Then the Longa-Naehrig reduction of an integer x is defined as

red(x) = k × (x mod 2m)− bx/2mc. (2)

This reduction can be efficiently implemented using shift and mask. Figure 3
shows two functions that implement red(x) and red(xy) for 32bit signed integers.
A key property is red(x) = kx (mod q). In addition, we have useful bounds:

|red(x)| ≤ |x|/2m + (q − k)

|red(wx)| ≤ k|x|+ (q − k) if 0 ≤ w < q (3)

By using this reduction, Longa and Naehrig propose the procedure shown1 in
Figure 4. As before, the input is an array a of n integers in standard order and
the array elements are assumed to be in the range [0, q). The NTT is computed
in place and the result is stored in a in bit-reversed order. Array p contains pre-
computed constants also in the range [0, q). These are powers of ω appropriately
scaled to cancel the factor k introduced by the reduction (i.e., replacing ωj mod q

1 We have modified the original slightly.

by (k−1ωj) mod q). This procedure mirrors the basic implementation in Figure 2,
except for line 15. This line performs an additional reduction. It is there to
prevent numerical overflows by reducing the magnitude of all elements in the
array. Because of this extra reduction, the result of the procedure is not quite
the NTT but a scaled version. This scaling can be corrected later by adapting
the inverse NTT calculation [29].

1 void ntt_red_ct_std2rev(int32_t *a, uint32_t n, const uint16_t *p) {
2 uint32_t j, s, t, u, d;
3 int32_t x, y, w;
4
5 d = n;
6 for (t = 1; t < n; t <<= 1) {
7 d >>= 1;
8 u = 0;
9 for (j = 0; j < t; j++) {

10 w = p[t + j]; // w_t^bitrev(j)
11 u += 2 * d;
12 for (s = u; s < u + d; s++) {
13 y = a[s];
14 x = mul_red(a[s + d], w);
15 if (t == 128) { y = red(y); x = red(x); }
16 a[s] = y + x;
17 a[s + d] = y - x;
18 }
19 }
20 }
21 }

Fig. 4. Example NTT procedure that uses the Longa-Naehrig reduction.

We are interested in verifying NTT procedures that use the Longa-Naehrig
reductions. In particular, we revise the procedure of Figure 4 to avoid the extra
reduction of line 15. To do this, we replace the constant coefficients stored in
array p, by equivalent coefficients that are smaller in absolute value. We just
allow these coefficients to be negative, so that they are all in the interval [−(q−
1)/2, (q − 1)/2] instead of [0, q − 1]. This ensures that the elements of a do not
grow as fast during execution. Our revised procedure is the same as in Figure 4,
except that elements of p have type int16 t and that line 15 is removed.

We have implemented this procedure and several variants that all use the
Longa-Naehrig reduction. The example in Figure 4 takes an input array in stan-
dard order and produces an output in bit-reversed order. Variants take input
in bit-reversed order and produce output in standard order. Other variants use
the Gentleman-Sande method instead of the Cooley-Tukey method, and some
combine NTT/INTT and multiplication by powers of ψ. All these examples are
available in our software repository hosted on GitHub [15].

A critical issue is showing that no numerical overflows occur in these pro-
cedures. One can try to estimate how large the coefficients grow by using in-
equalities such as (3), but this is tedious and error-prone and it is difficult to get
sufficiently precise bounds. Instead, we explore the use of static analysis tools.

3 Verification

To show that the NTT does not overflow, we first make assumptions on its
input. As shown in Figure 5, we use an approach common to software model
checkers: elements of array a are non-deterministic values (obtained by calling
external function int32 nd). These values are then constrained to be in the
range [0, 12289) by using an “assume” statement. All the tools that we have
tried support this approach.

1 #define Q 12289
2 extern int32_t int32_nd(void);
3 int main(void) {
4 int32_t nd_a [16];
5 int i;
6
7 for(i = 0; i < 16; i++) {
8 int32_t x = int32_nd ();
9 assume(x >= 0 && x < Q);

10 nd_a[i] = x;
11 }
12
13 // call NTT procedure using Longa -Naehrig reduction on nd_a
14 return 0;
15 }

Fig. 5. Test harness

We also need to annotate the NTT procedure with assertions to prove the
absence of integer overflows. Some verification tools do this automatically. Alter-
natively, we can add explicit assertions as shown in Figure 6. The bounds on z
in the assertion are calculated to ensure that red(z) fits in a signed 32bit integer.
In the general case, where q − 1 = k2m, these bounds are as follows:

−231+m + 2m(q − k) ≤ z ≤ 231+m + 2m − 1.

1 static int32_t mul_red(int32_t x, int32_t y) {
2 int64_t z;
3 z = (int64_t) x * y;
4 assert (-8796042698752 <= z && z <= 8796093026303);
5 x = z & 4095;
6 y = z >> 12;
7 return 3 * x - y;
8 }

Fig. 6. Property

3.1 Out-Of-The-Box Verification Techniques

We have attempted to prove the assertion at line 4 of Figure 6 using state-of-
the-art software-verification techniques and tools:

– Bounded model-checking: CBMC [6],
– Symbolic execution: SAW/Crucible [17].
– Infinite-state model checking: CPAChecker [3] and SeaHorn [24] with IC3-

PDR [27].
– Abstract interpretation: SeaHorn with Abstract Interpretation.

With default backend solvers, CBMC and Crucible work on a scaled-down ver-
sion of the problem with n = 16, but they fail when n = 1024 (we stopped them
after more than 24 hours of computation). The infinite-state model checkers all
timeout without finding an adequate inductive invariant (these tools use a de-
fault timeout of 900 s). The SeaHorn abstract interpreter finishes within seconds
but cannot prove the property.

These results are not too surprising because the Longa-Naehrig reduction in-
volves a mixture of logical and arithmetic operations that is not easy for general-
purpose tools to reason about. Moreover, these computations are stored in an
array and involve complex indexing that makes things even harder. For this rea-
son, we do not believe that increasing the timeout would help the infinite-state
model checkers.

CBMC and Crucible use bit-precise reasoning, which is adequate for the
Longa-Naehrig reduction, but the SAT or SMT problems they generate become
very hard when we increase n to 1024. With CBMC, we have managed to verify
an NTT transform with n = 1024 but that takes several hours of computation. To
perform this proof, we used the CaDiCaL SAT solver2 instead of the default3. In
this verification, CBMC produces a problem with more than five million Boolean
variables and 25 million clauses. CaDiCal 1.2.1 can show that this problem is
unsatisfiable (and thus that our assertions have no counterexamples) in 9026 s.
CBMC needs 287 s to generate the SAT instance.

3.2 Proofs by Abstract Interpretation

A more scalable solution is to devise specialized techniques based on abstract
interpretation. Since we have to compute safe bounds on the value of array
elements, we choose the interval abstract domain [8] as the numerical domain.
However, the bitwise operations used by the Longa-Naehrig reduction cause
difficulties for this domain. We solve this problem by defining a custom transfer
function4 to model the effect of lines 10-12 in Figure 3.

2 http://fmv.jku.at/cadical/
3 By default, CBMC relies on MiniSAT 2.2.1, but CBMC can convert bounded model

checking problems to the DIMACS format used by all modern Boolean satisfiability
solvers.

4 An interval domain over machine arithmetic such as e.g., [33] can reason more pre-
cisely about bitwise operations. However, the advantage of having a specialized trans-
fer function is that it can be modeled in other verification tools.

http://fmv.jku.at/cadical/

Specialized Transfer Function The interval domain abstracts the set of pos-
sible values of a variable as an interval. The abstract values are either non-empty
intervals with finite or infinite bounds, or a special symbol ⊥ denoting error or
unreachable:

I = {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b} ∪ {⊥}

The greatest element is [−∞,+∞] and the least element is ⊥. The concretization
function γI is defined in the natural way: γI(⊥) = ∅ and γI([a, b]) = {x ∈ Z | a ≤
x ≤ b}. The ordering between intervals is defined as [a, b] vI [c, d] ⇔ (a ≥
c)∧ (b ≤ d). The least upper bound of two intervals is defined as [a, b]tI [c, d] =
[min(a, c),max(b, d)]. The transfer functions for addition (+I) and subtraction
(−I) are defined as [a, b]+I [c, d] = [a+ c, b+d] and [a, b]−I [c, d] = [a−d, b− c],
respectively.

The transfer function for the Longa-Naehrig reduction, red, is defined as
follows for finite intervals:

redI([a, b]) =
[
red(max(b&∼4095, a)), red(min(a | 4095, b))

]
(4)

The operators & and | are the usual bitwise and and bitwise or, and ∼ is bit-
wise negation. Generalizing to infinite bounds is straightforward. We denote the
interval domain extended with redI as Ired.

Lemma 1 (redI is sound). {red(x) | x ∈ γI([a, b])} ⊆ redI([a, b])

Proof: If we write x = 4096d + r where 0 ≤ r < 4096 (by Euclidean division),
then we have red(x) = 3r − d. If a ≤ x ≤ b, the smallest value of red(x) is
obtained by setting d as large as possible and r as small as possible. Let x0
denote the largest integer such that x0 ≤ b and x0 mod 4096 = 0, then x0 is
equal to b&∼4095. Either a ≤ x0, in which case the minimum of red in [a, b] is
reached at x0, or a > x0, in which case the minimum is reached at a. Similarly,
to find the maximum of red in [a, b] we must make d as small as possible and r
as large as possible. Let x1 = a | 4095 then x1 is the smallest integer such that
x1 ≥ a and x1 mod 4096 = 4095. The maximum of red is reached either at point
x1 if x1 ≤ b or at b otherwise.

Arrays and Loops Abstract interpretation tools (such as our SeaHorn ana-
lyzer [24]) use abstract domains to represent arrays and compute fixed points
for loops using techniques such as widening. By default, SeaHorn uses a simple
array domain A(D) [4] that models each memory region offset separately with a
synthetic variable in the underlying numerical domain D. The synthetic variables
are smashed into a single summary variable if an array write occurs at an index
that cannot be determined constant during analysis. Once an array is smashed,
all the array writes are modeled as weak updates.

Such an array domain is not precise enough for our problem. To understand
why, let us focus on ntt ct std2rev in Figure 2. The abstract array representing
a gets first “smashed” because it is accessed at non-constant indices. After one

loop iteration, all elements of a are then represented by a summary variable
asum. Lines 16-17 perform operations: a[s + d] = a[s] - x; a[s] = a[s] +

x;, which make asum both increase and decrease by x. Eventually, widening
must be applied, which loses the lower and upper bounds of asum (i.e., the final
abstraction is [−∞,+∞]).

More precise array abstractions [16,22,25,10] together with a more precise
widening strategy (e.g., widening with thresholds [28]) could potentially help. A
simpler approach is loop unrolling. Once we fix n, all the loops and arrays in our
NTT examples are statically bounded. Modulo scalability issues, this means that
all loops can be fully unrolled. After unrolling, the loss of precision due to the
array smashing abstraction and the widening operator disappear and, therefore,
A(Ired) can prove that the assertion holds.

SeaHorn Results We have modified SeaHorn to support the analysis method
just described. The SeaHorn Verification Framework extends the LLVM com-
piler infrastructure with verification techniques based on Software Model Check-
ing and Abstract Interpretation. The SeaHorn abstract interpreter is called
Crab [12]. Crab does not analyze directly LLVM bitcode but instead, it an-
alyzes a control-flow graph (CFG) language5 from which equation systems are
extracted. These equations are solved using a chaotic iteration strategy [2] based
on Bourdoncle’s weak topological ordering. Crab implements general-purpose nu-
merical domains such as intervals [8], congruences [23], zones [30], octagons [31],
and polyhedra [11]. Crab also implements combination methods such as direct
and reduced products [9].

We have added the transfer function for red to Crab’s interval domain and
we leverage LLVM to fully unroll all the loops. On the resulting loop-free code,
Crab with domain A(Ired) can prove that all the assertions hold. Once loops are
unrolled, we can also employ an existing LLVM-optimization known as Scalar
Replacement of Aggregates (SROA) to further improve scalability. In our exam-
ples, SROA combined with loop-unrolling and function inlining results in LLVM
code where every array element a[i] is treated as a single scalar variable. After
this optimization, all reasoning is performed in the interval domain Ired and
there is no abstract array domain anymore.

Experimental results are shown in Tables 1 and 2. Table 1 shows verification
time when LLVM optimizations are not used. Table 2 shows results after aggres-
sive LLVM optimizations including SROA. All experiments were carried out on a
2.6GHz 6-Core Intel Core i7 MacOS laptop with 32GB of memory. The examples
in the table are variant implementations of the forward and inverse NTT using
both the Cooley-Tukey and the Gentleman-Sande variants. In most tests, we
used a fixed value for ψ and ω (i.e., ψ = 1014 and ω = 8209). In such cases, the
array p contains explicit constants. In examples ntt red1024c and ntt red1024d,
we treat array p symbolically. We initialize it with non-deterministic values in
the range [−6144, 6144] (i.e., [−q/2,+q/2]). The results show then that our NTT

5 Translation from LLVM bitcode to Crab CFG is implemented by a SeaHorn com-
ponent called Clam [5].

Program Description Num Checks Time (sec)

intt red1024 inv CT/std2rev, ψ = 1014 2026 900

intt red1024b inv CT/rev2std, ψ = 1014 2026 972

ntt red1024 CT/std2rev, ψ = 1014 2026 923

ntt red1024b CT/rev2std, ψ = 1014 2026 836

ntt red1024c CT/std2rev 1974 1151

ntt red1024d CT/rev2std 1974 1258

ntt red1024e GS/std2rev, ψ = 1014 8194 8265

ntt red1024f GS/rev2std, ψ = 1014 8194 8115

Table 1. SeaHorn with Crab with A(Ired) on NTT procedures. All programs are safe
(no integer overflow is possible). CT means Cooley-Tukey. GS means Gentleman-Sande.

Program Description Num Checks Time (sec)

intt red1024 inv CT/std2rev, ψ = 1014 8188 9

intt red1024b inv CT/rev2std, ψ = 1014 8188 9

ntt red1024 CT/std2rev, ψ = 1014 8188 9

ntt red1024b CT/rev2std, ψ = 1014 8188 9

ntt red1024c CT/std2rev 8194 9

ntt red1024d CT/rev2std 8194 11

ntt red1024e GS/std2rev, ψ = 1014 8188 10

ntt red1024f GS/rev2std, ψ = 1014 8188 10

Table 2. SeaHorn with Crab with Ired on NTT procedures aggressively optimized
through inlining followed by LLVM Scalar Replacement of Aggregates (SROA). All
programs are safe (no integer overflow is possible). CT means Cooley-Tukey. GS means
Gentleman-Sande.

procedures do not suffer integer overflows as long as all elements of p are in this
range, which implies no overflow for any choice of ω.

Without LLVM optimizations, SeaHorn can prove all properties with run-
times of the order of tens of minutes to a few hours. The LLVM optimization
pass has a dramatic impact on performance, reducing the runtime to seconds.
For comparison, we managed to prove the first example in both tables with
CBMC and CaDiCaL but the verification took more than two and a half hours
of CPU time.

Verification by Source-Code Transformation We now examine an alterna-
tive approach that does not build on a specialized tool such as SeaHorn. Instead,
we can perform abstract interpretation by transforming the source code to oper-
ate in the abstract domain. This idea is illustrated in Figure 7. The figure shows
an NTT procedure converted to work in the abstract domain (i.e., intervals)
rather than in the concrete domain (i.e., 32bit integers).

We implement the interval domain as sketched in the figure, namely, we repre-
sent an interval by a pair of 64bit signed integers. The 64bit bounds are sufficient
for our application but more general representations could be considered (e.g.,
infinite bounds or arbitrary-precision integers). We implement the usual transfer
functions for arithmetic operators such as, the functions add and sub used in
Figure 7. We also add specialized transfer function to handle the Longa-Naehrig
reduction. For example, function red scale in the figure is the transfer for the
operation mul red(x, y) of Figure 3 in the case where one argument is a con-
stant and the other is an interval. In other words, red scale(w, a) computes
an interval [l, h] such that ∀x : la ≤ x ≤ ha ⇒ l ≤ red(wx) ≤ h, where w is a
scalar constant and a is the interval [la, ha].

As shown in Figure 7, input to the abstract NTT function is now in the
abstract domain and consists of an array a of n intervals. We also instrument the
abstract function with code to print the abstract interpretation results at every
main iteration and to check that all the intervals are included in [−231, 231 − 1]
(which implies that all intermediate results fit in signed 32bit integers). To show
that no integer overflow is possible, we just execute the abstract procedure on a
suitable array of input intervals such as follows:

1 interval_t *a[1024];
2 for (int i=0; i <1024; i++) {
3 a[i] = interval(0, Q-1);
4 }
5 abstract_ntt_red_ct_std2rev(a, 1024, ntt_red1024_omega_powers_rev);

This method is not fully general but it works in our context because all
computations are bounded. We replace the concrete array a of 32bit integers by
an array of intervals. All other variables in the procedure (i.e., loop counters,
array indices, and bounds) remain concrete. Executing the abstract program
computes safe bounds on the value of the concrete array element a[i]. We check
that these bounds on a[i] are compatible with our concrete implementation
using 32bit arithmetic.

Although the source-code transformation could be automated, we currently
rewrite the code by hand. The interval domain and transfer functions are im-
plemented as a separate library. This analysis method is simple (it requires only
a C compiler) and it is very efficient and scalable. Table 3 shows verification
runtimes for the same examples as before. All runtimes are now less than 1 s.

1 // abstract domain
2 typedef struct interval_s {
3 int64_t min;
4 int64_t max;
5 } interval_t;
6
7 // basic operations
8 extern interval_t *add(const interval_t *a, const interval_t *b);
9 extern interval_t *sub(const interval_t *a, const interval_t *b);

10
11 // Reduction:
12 // red_scale(w, a) returns an interval [l, h]
13 // such that l <= red(w * x) <= h for any x in a
14 extern interval_t *red_scale(int64_t w, const interval_t *a);
15
16 // abstract version of ntt_red_ct_std2rev
17 void abstract_ntt_red_ct_std2rev(interval_t **a, uint32_t n,
18 const int16_t *p) {
19 uint32_t j, s, t, u, d;
20 interval_t *x, *y, *z;
21 int64_t w;
22
23 d = n;
24 for (t = 1; t < n; t <<= 1) {
25 show_intervals("ct_std2rev", t, a, n);
26
27 d >>= 1;
28 u = 0;
29 for (j = 0; j < t; j++) {
30 w = p[t + j]; // w_t^bitrev(j) extended to 64 bits
31 u += 2 * d;
32 for (s = u; s < u + d; s++) {
33 x = a[s + d];
34 y = a[s];
35 z = red_scale(w, x);
36 a[s + d] = sub(y, z);
37 a[s] = add(y, z);
38 }
39 }
40 }
41
42 show_intervals("ct_std2rev", t, a, n);
43 }

Fig. 7. Abstract NTT procedure. Array a is an array of intervals. Functions red scale,
add, and sub operate on intervals. Function show intervals prints intermediate results
and checks for overflows.

Program Description Time (sec)

intt red1024 inv CT/std2rev, ψ = 1014 0.02

intt red1024b inv CT/rev2std, ψ = 1014 0.02

ntt red1024 CT/std2rev, ψ = 1014 0.02

ntt red1024b CT/rev2std, ψ = 1014 0.02

ntt red1024c CT/std2rev 0.56

ntt red1024d CT/rev2std 0.58

ntt red1024e GS/std2rev, ψ = 1014 0.21

ntt red1024f GS/rev2std, ψ = 1014 0.19

Table 3. Verification Using Source-Code Transformation

4 Discussion and Future Work

The approach we use to prove the absence of overflows in NTT procedures is
based on loop unrolling and abstract interpretation. By taking advantage of the
special structure of the forward and inverse NTT transform, we have developed
two scalable verification methods. One is implemented in the SeaHorn analyzer
and makes aggressive use of existing LLVM optimization. The other approach
rewrites the source code to operate in the abstract domain and requires only a C
compiler. These techniques rely on a key property, namely, all NTT computations
are bounded once we fix the parameter n. A second major ingredient is the
definition of special transfer functions to handle the Longa-Naehrig reduction in
the interval domain.

Our most general results (examples ntt red1024c and ntt ref1024d) are that
the Longa-Naehrig procedures we analyze are safe for n = 1024 as long as the
constants in array p are all within the interval [−(q−1)/2, (q−1)/2]. This result
no longer holds for n = 2048. However, these bounds on p[i] are not precise. The
actual value of p[i] depends on i and the parameters ψ and n, and all elements
of p are powers of ω = ψ2 mod q. For a fixed n there are n possible choices
for parameter ψ. We can then exhaustively enumerate all possible values for ψ,
construct the corresponding constant table p, and verify the NTT procedures
for this p. Our abstract-interpretation approach is fast enough to enable this
exhaustive analysis. With this method, we can show that the NTT procedures
based on the Longa-Naehrig reduction are safe (for 32bit arithmetic) not just
for n = 1024 but also for n = 2048.

We can also show that no arithmetic overflow occurs under weaker assump-
tions than discussed in this paper. In particular, we can relax the assumption
that input elements in array a are between 0 and q − 1. For n = 1024, the
procedures remain safe for input in larger intervals.

In our verification, we have mostly considered fully automated verification
tools. In principle, other tools—such as, Frama-C [13]—that support analysis of
C code by deductive methods could also be used. However, the main issue with
using such tools in our applications is finding program annotations to show that
the procedures are correct. This amounts to finding appropriate inductive loop

invariants for the NTT procedures. We do not know automated methods for
finding such invariants other than the interval abstraction we propose. Alterna-
tives may include hand calculation using inequalities such as 3, but it is difficult
to derive precise enough bounds by hand. It is also unclear whether the default
SMT solvers used by Frama-C can handle the bit-shift and bit-mask operations
involved in the Longa-Naehrig reduction.

All our analysis so far has focused on soundness, namely, the absence of in-
teger overflow. We are also interested in automated methods to prove functional
correctness of different NTT implementations. An avenue we would like to ex-
plore is showing that the NTT procedure is linear, which we hope can be done
with automated tools. If we can prove that, then it will be enough to test the
NTT on a finite set of input vectors (i.e., a basis of Zq[X]/(Xn + 1)) to prove
that it is correct everywhere.

The NTT procedures that we discussed, and the verification examples and
tools are available in an open-source software repository hosted on GitHub [15].
Our verification work was motivated by our implementation of Bliss, which is
also available there [14]. SeaHorn, Crab, and Clam are also open-source and also
hosted on GitHub [37,12,5].

5 Conclusion

We have presented an experiment in verifying that an optimized implementation
of the Number Theoretic Transform (NTT) is free of integer overflows. Although
this implementation consists of few lines of code, it is very challenging for current
software verification technology due to a mix of array manipulation and bitwise
operations.

We have shown that combining static loop unrolling with a specialized ab-
stract interpretation method solves the problem. The technical foundations of
our work are not novel since the techniques used here are well-known. We believe
that verification of NTT algorithms is a good domain to demonstrate the useful-
ness of verification tools. We look forward to better abstractions and algorithms
to verify this kind of algorithms in a more efficient way.

Acknowledgments

Our work on the NTT benefited from many discussions with Tancrède Lep-
oint. The work was partially supported by NSF Grants CCF-1816936 and CCF-
1817204.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
A new hope. In: USENIX Security Symposium. pp. 327–343. USENIX Association
(2016)

2. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Logozzo, F.,
Fähndrich, M. (eds.) Static Analysis - 20th International Symposium, SAS 2013,
Seattle, WA, USA, June 20-22, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7935, pp. 25–42. Springer (2013)

3. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software verifica-
tion. In: CAV. pp. 184–190 (2011)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program an-
alyzer for safety-critical real-time embedded software. In: Mogensen, T., Schmidt,
D., Sudborough, I.H. (eds.) The Essence of Computation: Complexity, Analysis,
Transformation (2002)

5. Clam: Crab for Llvm Abstraction Manager, available at https://github.com/
seahorn/crab-llvm

6. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
TACAS. pp. 168–176 (2004)

7. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation 19(90), 297–301 (April 1965)

8. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs.
In: Proceedings of the second international symposium on Programming, Paris,
France. pp. 106–130 (1976)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282 (1979)

10. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL. pp. 105–118. ACM (2011)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, USA, January 1978. pp. 84–96. ACM Press (1978)

12. CoRnucopia of ABstractions: A language-agnostic library for abstract interpreta-
tion, available at https://github.com/seahorn/crab

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) Intenational Conference on Software Engineering and Formal
Methods (SEFM 2012). Lecture Notes in Computer Science, vol. 7504, pp. 233–
247. Springer (2012)

14. BLISS Implementation: Bimodal Lattice Signature Schemes, available at https:
//github.com/SRI-CSL/Bliss

15. An Implementation of the Number Theoretic Transform, available at https://
github.com/SRI-CSL/NTT

16. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) Proceedings of the 19th European Symposium on Program-
ming. vol. 6012, pp. 246–266 (2010)

17. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamme, D., Tomb, A.: Con-
structing semantic models of programs with the Sotware Analysis Workbench. In:
Blazy, S., Chechik, M. (eds.) Verified Software, Theories, Tools, and Experiments
(VSTTE 2016). Lecture Notes in Computer Science, vol. 9971, pp. 56–72. Springer
(2016). https://doi.org/10.1007/978-3-319-48869-1 5

18. Ducas, L.: Accelerating Bliss: the geometry of ternary polynomials. Cryptology
ePrint Archive, Report 2014/874 (2014), http://eprint.iacr.org/2014/874

https://github.com/seahorn/crab-llvm
https://github.com/seahorn/crab-llvm
https://github.com/seahorn/crab
https://github.com/SRI-CSL/Bliss
https://github.com/SRI-CSL/Bliss
https://github.com/SRI-CSL/NTT
https://github.com/SRI-CSL/NTT
https://doi.org/10.1007/978-3-319-48869-1_5
http://eprint.iacr.org/2014/874

19. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canettu, R., Garay, J.A. (eds.) Advances in Cryptology —
CRYPTO 2013. Lecture Notes in Computer Science, vol. 8042, pp. 40–56 (August
2013). https://doi.org/10.1007/978-3-642-40041-4 3

20. Fog, A.: Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs. www.agner.org/optimize
(2020)

21. Gentleman, W.M., Sande, G.: Fast Fourier transforms—for fun and profit. In:
AFIPS’66: Proceedings—Fall Joint Computer Conference. pp. 563–578 (November
1966). https://doi.org/10.1145/1464291.1464352

22. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. In: POPL. pp. 338–350. ACM (2005)

23. Granger, P.: Static analysis of arithmetical congruences. International Journal of
Computer Mathematics 30, 165–190 (1989)

24. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
343–361 (2015)

25. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI. pp. 339–348. ACM (2008)

26. Harvey, D.: Faster arithmetic for number-theoretic transforms. Journal of Symbolic
Computation 60, 113–119 (January 2014). https://doi.org/j.jsc.2013.09.002

27. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (2016)

28. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for pro-
grams with complex control graphs. In: Bultan, T., Hsiung, P.A. (eds.) Automated
Technology for Verification and Analysis. vol. 6996, pp. 492–502 (2011)

29. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) Cryptography and
Network Security (CANS 2016). Lecture Notes in Computer Science, vol. 10052,
pp. 124–139 (November 2016). https://doi.org/10.1007/978-3-319-48965-0 8

30. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Danvy, O., Filinski, A. (eds.) Programs as Data Objects, vol. 2053, pp. 155–172
(2001)

31. Miné, A.: The Octagon abstract domain. Higher-Order and Symbolic Computation
19(1), 31–100 (2006)

32. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (April 1985)

33. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: Precise integer bounds for low-level code. In: Jhala, R., Igarashi,
A. (eds.) Programming Languages and Systems - 10th Asian Symposium, APLAS
2012, Kyoto, Japan, December 11-13, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7705, pp. 115–130

34. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.)
Progress in Cryptology - LATINCRYPT 2012. Lecture Notes in Computer Sci-
ence, vol. 7533, pp. 139–158. Springer (October 2012). https://doi.org/10.1007/
978-3-642-33481-8 8

https://doi.org/10.1007/978-3-642-40041-4_3
www.agner.org/optimize
https://doi.org/10.1145/1464291.1464352
https://doi.org/j.jsc.2013.09.002
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1007/978-3-642-33481-8_8

35. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In: Lauter, K.E., Rodŕıguez-
Henŕıquez, F. (eds.) Progress in Cryptology - LATINCRYPT 2015. Lecture Notes
in Computer Science, vol. 9230, pp. 346–365. Springer (August 2015). https:
//doi.org/10.1007/978-3-319-22174-8 19

36. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) Cryptographic
Hardware and Embedded Systems (CHES 2014). Lecture Notes in Computer Sci-
ence, vol. 8731, pp. 371–391. Springer (September 2014). https://doi.org/10.1007/
978-3-662-44709-3 21

37. SeaHorn verification framework, available at https://github.com/seahorn/seahorn
38. Warren, H.S.: Hacker’s Delight – Second Edition. Addison-Wesley (2013)
39. Winkler, F.: Polynomial Algorithms in Computer Algebra. Texts and Monographs

in Symbolic Computation, Springer (1996)

https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-662-44709-3_21
https://doi.org/10.1007/978-3-662-44709-3_21
https://github.com/seahorn/seahorn

	Verification of an Optimized NTT Algorithm

